Joblib
ynuozhang
add inference
470021d
# non fouling as example
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import os
import pandas as pd
from lightning.pytorch import seed_everything
import torch
from tqdm import tqdm
from datasets import Dataset, DatasetDict, Features, Value, Sequence
from transformers import AutoModelForMaskedLM
import sys
from transformers import AutoTokenizer, EsmModel
from datasets import Dataset, DatasetDict
import tqdm
seed_everything(1986)
# -------------------------
# Process from source
# -------------------------
m1 = [
'[PAD]','A','R','N','D','C','Q','E','G','H',
'I','L','K','M','F','P','S','T','W','Y','V'
]
m2 = dict(zip(
['[PAD]','[UNK]','[CLS]','[SEP]','[MASK]','L',
'A','G','V','E','S','I','K','R','D','T','P','N',
'Q','F','Y','M','H','C','W','X','U','B','Z','O'],
range(30)
))
# Create reverse mapping
reverse_m2 = {v: k for k, v in m2.items()}
sequences = []
labels = []
# Load and process positive sequences
print("Processing positive sequences...")
with np.load('nf-positive.npz') as pos:
pos_data = pos['arr_0']
for seq in pos_data:
sequence = ''.join(reverse_m2[token] for token in seq if token != 0)
sequences.append(sequence)
labels.append(1)
# Load and process negative sequences
print("Processing negative sequences...")
with np.load('nf-negative.npz') as neg:
neg_data = neg['arr_0']
for seq in neg_data:
sequence = ''.join(reverse_m2[token] for token in seq if token != 0)
sequences.append(sequence)
labels.append(0)
# Build a DataFrame and add stable IDs
ids = [f"seq_{i:06d}" for i in range(len(sequences))]
df = pd.DataFrame({
"id": ids,
"sequence": sequences,
"label": labels,
})
print("Before dedup:", len(df))
df = (
df
.drop_duplicates(subset=["sequence"]) # keep first occurrence
.reset_index(drop=True)
)
print("After dedup:", len(df))
# Save to CSV
df.to_csv("nf_all.csv", index=False)
print("Saved nf_all.csv")
# Save as FASTA for MMseqs
with open("nf_all.fasta", "w") as f:
for seq_id, seq in zip(df["id"], df["sequence"]):
f.write(f">{seq_id}\n{seq}\n")
print("Saved nf_all.fasta")
# -------------------------
# RUN MMSEQS IN TERMINAL
# -------------------------
# -------------------------
"""
mkdir -p mmseqs_tmp
mmseqs createdb nf_all.fasta nfDB
mmseqs cluster nfDB nfDB_clu mmseqs_tmp \
--min-seq-id 0.3 -c 0.8 --cov-mode 0
mmseqs createtsv nfDB nfDB nfDB_clu clusters-nf.tsv
"""
# -------------------------
# -------------------------
# Split based on clusters
# -------------------------
train_fraction = 0.8
csv_path = "nf_all.csv"
clusters_tsv = "clusters-nf.tsv"
rng = np.random.default_rng()
df = pd.read_csv(csv_path) # must contain: id, sequence, label
# Map id -> index
id_to_index = {sid: i for i, sid in enumerate(df["id"])}
# Read MMseqs clusters
cluster_map = {} # member_id -> cluster_id (rep_id)
with open(clusters_tsv) as f:
for line in f:
if not line.strip():
continue
rep_id, member_id = line.strip().split('\t')
cluster_map[member_id] = rep_id
# Handle singleton sequences (not clustered)
for sid in df["id"]:
if sid not in cluster_map:
cluster_map[sid] = sid
# Invert to cluster_id -> dataset indices
cluster_to_indices = {}
for sid, cid in cluster_map.items():
idx = id_to_index[sid]
cluster_to_indices.setdefault(cid, []).append(idx)
# Shuffle clusters
cluster_ids = list(cluster_to_indices.keys())
rng.shuffle(cluster_ids)
# Assign clusters to splits
total_n = len(df)
train_target = int(train_fraction * total_n)
train_indices = []
val_indices = []
current_train = 0
for cid in cluster_ids:
indices = cluster_to_indices[cid]
if current_train + len(indices) <= train_target:
train_indices.extend(indices)
current_train += len(indices)
else:
val_indices.extend(indices)
# Create split column
split = np.full(total_n, "val", dtype=object)
split[train_indices] = "train"
# ===== Master CSV with split =====
df_with_split = df.copy()
df_with_split["split"] = split
df_with_split.to_csv("nf_meta_with_split.csv", index=False)
# ===== Other CSVs =====
df_train = df_with_split[df_with_split["split"] == "train"].reset_index(drop=True)
df_val = df_with_split[df_with_split["split"] == "val"].reset_index(drop=True)
df_train.to_csv("nf_train.csv", index=False)
df_val.to_csv("nf_val.csv", index=False)
# ===== Quick sanity output =====
print("Split counts:")
print(df_with_split["split"].value_counts())
print()
print(f"Train size: {len(df_train)}")
print(f"Val size: {len(df_val)}")
print("Wrote:")
print(" - sol_meta_with_split.csv")
print(" - sol_train.csv")
print(" - sol_val.csv")
device = torch.device("cuda:0")
print(f"Using device: {device}")
meta_path = "./Classifier_Weight/training_data_cleaned/nf/nf_meta_with_split.csv"
save_path = "./Classifier_Weight/training_data_cleaned/nf/nf_wt_with_embeddings"
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")
model = EsmModel.from_pretrained("facebook/esm2_t33_650M_UR50D")
model = model.to(device)
model.eval()
def compute_embeddings(sequences, batch_size=32):
"""Return numpy array of shape (N, hidden_dim)."""
embeddings = []
for i in tqdm.trange(0, len(sequences), batch_size):
batch_sequences = sequences[i:i + batch_size]
inputs = tokenizer(
batch_sequences,
padding=True,
max_length=1022,
truncation=True,
return_tensors="pt"
)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state # (B, L, H)
attention_mask = inputs["attention_mask"].unsqueeze(-1)
masked_hidden_states = last_hidden_states * attention_mask
sum_hidden_states = masked_hidden_states.sum(dim=1)
seq_lengths = attention_mask.sum(dim=1)
batch_embeddings = sum_hidden_states / seq_lengths # (B, H)
embeddings.append(batch_embeddings.cpu())
return torch.cat(embeddings, dim=0).numpy()
def create_and_save_datasets():
# Load sequences + labels + splits
meta = pd.read_csv(meta_path)
sequences = meta["sequence"].tolist()
labels = meta["label"].tolist()
splits = meta["split"].tolist()
print(f"Total sequences: {len(sequences)}")
print("Split counts:", pd.Series(splits).value_counts().to_dict())
print("Computing ESM embeddings...")
embeddings = compute_embeddings(sequences) # shape (N, H)
full_ds = Dataset.from_dict({
"sequence": sequences,
"embedding": embeddings,
"label": labels,
"split": splits,
})
# Split into train / val, then drop the 'split' column
train_ds = full_ds.filter(lambda x: x["split"] == "train")
val_ds = full_ds.filter(lambda x: x["split"] == "val")
train_ds = train_ds.remove_columns("split")
val_ds = val_ds.remove_columns("split")
ds_dict = DatasetDict({
"train": train_ds,
"val": val_ds,
})
ds_dict.save_to_disk(save_path)
print(f"Saved DatasetDict with train/val to: {save_path}")
print("Train size:", len(ds_dict["train"]))
print("Val size:", len(ds_dict["val"]))
return ds_dict
ds = create_and_save_datasets()
ex = ds["train"][0]
print("\nExample from train:")
print("Sequence:", ex["sequence"])
print("Embedding shape:", np.array(ex["embedding"]).shape)
print("Label:", ex["label"])
torch.cuda.empty_cache()
meta_path = "./Classifier_Weight/training_data_cleaned/nf/nf_meta_with_split.csv"
save_path = "./Classifier_Weight/training_data_cleaned/nf/nf_wt_with_embeddings_unpooled"
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")
model = EsmModel.from_pretrained("facebook/esm2_t33_650M_UR50D", add_pooling_layer=False).to(device).eval()
cls_id = tokenizer.cls_token_id
eos_id = tokenizer.eos_token_id
@torch.no_grad()
def embed_one(seq, max_length=1022):
inputs = tokenizer(seq, padding=False, truncation=True, max_length=max_length, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
out = model(**inputs)
h = out.last_hidden_state[0] # (L, H)
attn = inputs["attention_mask"][0].bool() # (L,)
ids = inputs["input_ids"][0]
keep = attn.clone()
if cls_id is not None:
keep &= (ids != cls_id)
if eos_id is not None:
keep &= (ids != eos_id)
hb = h[keep].detach().cpu().to(torch.float16).numpy() # (Li, H)
return hb
H = 1280
features = Features({
"sequence": Value("string"),
"label": Value("int64"),
"embedding": Sequence(Sequence(Value("float16"), length=H)), # (Li, H) as nested lists
"attention_mask": Sequence(Value("int8")), # (Li,)
"length": Value("int64"),
})
def make_generator(df):
for seq, lab in tqdm.tqdm(zip(df["sequence"].tolist(), df["label"].astype(int).tolist()), total=len(df)):
emb = embed_one(seq) # (Li, H) float16
emb_list = emb.tolist()
li = len(emb_list)
yield {
"sequence": seq,
"label": int(lab),
"embedding": emb_list,
"attention_mask": [1] * li,
"length": li,
}
def build_and_save_split(df, out_dir):
ds = Dataset.from_generator(make_generator, gen_kwargs={"df": df}, features=features)
# small batches when writing prevents the 2GB offset overflow
ds.save_to_disk(out_dir, max_shard_size="1GB")
return ds
meta = pd.read_csv(meta_path)
train_df = meta[meta["split"] == "train"].reset_index(drop=True)
val_df = meta[meta["split"] == "val"].reset_index(drop=True)
train_dir = os.path.join(save_path, "train")
val_dir = os.path.join(save_path, "val")
os.makedirs(save_path, exist_ok=True)
train_ds = build_and_save_split(train_df, train_dir)
val_ds = build_and_save_split(val_df, val_dir)
ds_dict = DatasetDict({"train": train_ds, "val": val_ds})
ds_dict.save_to_disk(save_path)
print(ds_dict)