# ----------------------------------------------------------------------------- # Author: Marina # Date: 2024-11-15 # ----------------------------------------------------------------------------- """Script to segment IMO shortlist md files using regex. It takes as input the file en-compendium.md in en-shortlist and outputs the segmentation (problem/solution pairs) in en-shortlist-seg To run: `python segment_compendium.py` To debug (or see covered use cases by regex): `pytest test_segment_compendium` """ import json import os from pathlib import Path import re import pandas as pd base = "en-shortlist" seg_base = "en-shortlist-seg" basename = "en-compendium" level1_re = re.compile(r"^##\s+(Problems|Solutions|Notation and Abbreviations)$") year_re = re.compile(r"^[^=]*,\s+(\d{4})\s*$") problem_section_re = re.compile(r"^###\s+(\d+\.\d+\.\d+)\s+(.+)$") solution_section_re = re.compile(r"^###\s+(\d+\.\d+)\s+([\w\s]+)\s+(\d{4})$") problem_or_solution_re = re.compile(r"^(?:\[.*?\])?\s*(\d+)\s*\.\s*(.+)$") def add_content(current_dict): required_keys = ["year", "category", "section_label", "label", "lines"] if not all(current_dict[key] for key in required_keys): return text_str = " ".join(current_dict["lines"]).strip() entry = { "year": current_dict["year"], "category": current_dict["category"], "section": current_dict["section_label"], "label": current_dict["label"], } if current_dict["class"] == "problem": entry["problem"] = text_str current_dict["problems"].append(entry) elif current_dict["class"] == "solution": entry["solution"] = text_str current_dict["solutions"].append(entry) def get_category(s: str): cat = None if "contest" in s.lower(): cat = "contest" elif "shortlisted" in s.lower(): cat = "shortlisted" elif "longlisted" in s.lower(): cat = "longlisted" return cat def get_matching_section_label(s: str): """ extracts the section number to be used a a join key to pair a problem and solution for problems: 3.44.1 -> 44 for solutions: 4.20 -> 20 """ return s.split(".")[1] def parse(file): with open(file, "r", encoding="utf-8") as file: content = file.read() # problems, solutions = [], [] current = { "year": None, "category": None, "section_label": None, "label": None, "class": None, "lines": [], "problems": [], "solutions": [], } for line in content.splitlines(): if match := level1_re.match(line): add_content(current) (title,) = match.groups() current["class"] = { "Problems": "problem", "Solutions": "solution", }.get(title, "other") current["lines"] = [] elif match := year_re.match(line): add_content(current) current["year"] = match.group(1) current["lines"] = [] elif match := problem_section_re.match(line): add_content(current) number, title = match.groups() current["section_label"] = get_matching_section_label(number) current["category"] = get_category(title) current["lines"] = [] elif match := solution_section_re.match(line): add_content(current) number, title, year = match.groups() current["section_label"] = get_matching_section_label(number) current["category"] = get_category(title) current["year"] = year current["lines"] = [] elif match := problem_or_solution_re.match(line): add_content(current) current["label"] = match.group(1) current["lines"] = [line] else: if current["lines"]: current["lines"].append(line) problems_df = pd.DataFrame(current["problems"]) solutions_df = pd.DataFrame(current["solutions"]) return problems_df, solutions_df def join(problems_df, solutions_df): pairs_df = problems_df.merge( solutions_df, on=["year", "category", "section", "label"], how="outer" ) return pairs_df def add_metadata(pairs_df, resource_path): problem_type_mapping = { "A": "Algebra", "C": "Combinatorics", "G": "Geometry", "N": "Number Theory", } pairs_df["problem_type"] = pairs_df["problem"].str.extract(r"^\d+\.\s*([ACGN])\d*")[ 0 ] pairs_df["problem_type"] = pairs_df["problem_type"].map(problem_type_mapping) pairs_df["tier"] = "T0" # according to omnimath pairs_df["exam"] = "IMO" pairs_df["metadata"] = [{"resource_path": resource_path}] * len(pairs_df) pairs_df.rename( columns={"category": "problem_phase", "label": "problem_label"}, inplace=True, ) # pairs_df = pairs_df.drop(columns=["section", "label"]) return pairs_df[ [ "year", "tier", "problem_label", "problem_type", "exam", "problem", "solution", "metadata", ] ] def write_pairs(file_path, pairs_df): pairs_df = pairs_df.replace({pd.NA: None, pd.NaT: None, float("nan"): None}) pairs_dict = pairs_df.to_dict(orient="records") output_text = "" for pair in pairs_dict: output_text += json.dumps(pair, ensure_ascii=False) + "\n" file_path.write_text(output_text, encoding="utf-8") if __name__ == "__main__": project_root = Path(__file__).parent.parent.parent compet_base_path = Path(__file__).resolve().parent.parent compet_md_path = compet_base_path / "md" seg_output_path = compet_base_path / "segmented" for md_file in compet_md_path.glob("**/*.md"): if "compendium" in md_file.name: output_file = seg_output_path / md_file.relative_to( compet_md_path ).with_suffix(".jsonl") output_file.parent.mkdir(parents=True, exist_ok=True) problems, solutions = parse(md_file) pairs_df = join(problems, solutions) pairs_df = pairs_df[pairs_df.notnull().all(axis=1)] pairs_df = add_metadata( pairs_df, output_file.relative_to(project_root).as_posix() ) write_pairs(output_file, pairs_df) # problems contains duplicate problems (since problem in Shortlist appears in Contest, and problem in Longlist appeasr in Shortlist) # >>>print(len(problems)) # 2460 # >>>print(len(solutions)) # 961 # print(len(pairs_df)) # 960