# ----------------------------------------------------------------------------- # Author: Jiawei Liu # Date: 2025-10-29 # ----------------------------------------------------------------------------- import json import re from pathlib import Path from rapidfuzz import fuzz def clean_text(text: str): text = re.sub( r"\nAvailable online at.+?\.\s\s$", "", text, flags=re.DOTALL | re.MULTILINE ) return text def extract_problems(markdown_text: str): problems = {} # 1. Find the block of text containing the problems # Block starts with '## Problems' # and ends before '## \(S 1\) Solutions to Day 1' problems_section = re.search( r"^## Problems\s*$(.*?)^##.*Solutions to Day 1", markdown_text, re.DOTALL | re.MULTILINE, ) if not problems_section: print(" - Not found '## Problems' section.") return problems problems_block = problems_section.group(1) # 2. Split the block into individual problems # Each problem starts with a number followed by a dot and space (e.g., '1. ') matchs = list(re.finditer(r"^(\d+)\.\s+", problems_block, flags=re.MULTILINE)) # Split the text into parts using the problem numbers as delimiters for i, m in enumerate(matchs): problem_label = m.group(1) problem = problems_block[ m.end() : matchs[i + 1].start() if i + 1 < len(matchs) else len(problems_block) ] problems[problem_label] = (problem.strip(), m.group()) print(f" - Extracted {len(problems)} problems.") return problems def extract_solutions(markdown_text): solutions = {} # 1. Find the block of text containing the solutions # Block starts with '## \(S 1\) Solutions to Day 1' and end of document solutions_section = re.search( r"^##.*?Solutions to Day 1\s*$(.*)", markdown_text, re.DOTALL | re.MULTILINE, ) if not solutions_section: print(" - Not found Solutions section.") return solutions solutions_block = solutions_section.group(1) ## \(\S 1.1\) IMO 2005/1, proposed by Bogdan Enescu (ROU) # 2. Split the block into individual solutions matchs = list( re.finditer(r"^##.*?IMO\s\d+\/(\d+).*?\n$", solutions_block, flags=re.MULTILINE) ) # Split the text into parts using the solution numbers as delimiters for i, m in enumerate(matchs): problem_label = m.group(1) solution = solutions_block[ m.end() : matchs[i + 1].start() if i + 1 < len(matchs) else len(solutions_block) ] solutions[problem_label] = (solution.strip(), m.group()) print(f" - Extracted {len(solutions)} solutions.") return solutions def join(problems: dict, solutions: dict): pairs = [] for problem_label, (problem, p_match) in problems.items(): solution, s_match = solutions.get(problem_label) # Clean solution by removing the part that overlaps with the problem statement problem_align = fuzz.partial_ratio_alignment(solution, problem) solution = solution.replace( solution[problem_align.src_start : problem_align.src_end], "" ) solution = re.sub( r"^\s*## Problem statement", "", solution, flags=re.IGNORECASE ).strip() if not solution: print(f" - Warning: No solution found for problem {problem_label}.") pairs.append((problem, solution, problem_label, p_match, s_match)) return pairs def write_pairs(output_file: Path, pairs: list, year: str, project_root: Path): output_jsonl_text = "" for problem, solution, problem_label, p_match, s_match in pairs: output_jsonl_text += ( json.dumps( { "year": year, "tier": "T0", "problem_label": problem_label, "problem_type": None, "exam": "IMO", "problem": problem, "solution": solution, "metadata": { "resource_path": output_file.relative_to( project_root ).as_posix(), "problem_match": p_match, "solution_match": s_match, }, }, ensure_ascii=False, ) + "\n" ) output_file.write_text(output_jsonl_text, encoding="utf-8") if __name__ == "__main__": compet_base_path = Path(__file__).resolve().parent.parent compet_md_path = compet_base_path / "md" seg_output_path = compet_base_path / "segmented" project_root = compet_base_path.parent num_problems = 0 num_solutions = 0 for md_file in list(compet_md_path.glob("**/*notes.md")): print(f"Processing {md_file}...") output_file = seg_output_path / md_file.relative_to(compet_md_path).with_suffix( ".jsonl" ) output_file.parent.mkdir(parents=True, exist_ok=True) # Read the markdown file markdown_text = "\n" + md_file.read_text(encoding="utf-8") markdown_text = clean_text(markdown_text) problems = extract_problems(markdown_text) solutions = extract_solutions(markdown_text) num_problems += len(problems) num_solutions += len(solutions) pairs = join(problems, solutions) year = re.search(r"\d{4}", output_file.stem).group() write_pairs(output_file, pairs, year, project_root) print() print(f"Total problems extracted: {num_problems}") print(f"Total solutions extracted: {num_solutions}")