Jingya HF Staff commited on
Commit
e239ee3
·
verified ·
1 Parent(s): 275ecef

Synchronizing local compiler cache.

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +23 -0
  2. neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.1/distilbert/philschmid/tiny-distilbert-classification/837658e2253fff5286df.json +54 -0
  3. neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.1/llama/llamafactory/tiny-random-Llama-3/26064e26e574b37f68b9.json +61 -0
  4. neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.1/stable-diffusion/echarlaix/tiny-random-stable-diffusion-xl/8a032920a6bdbe7160fd.json +167 -0
  5. neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/beit/hf-internal-testing/tiny-random-BeitForImageClassification/a601e953abf1141fc6e7.json +83 -0
  6. neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/convnext/hf-internal-testing/tiny-random-convnext/9f5ece00d8bb7fdb2d1f.json +2067 -0
  7. neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/convnextv2/hf-internal-testing/tiny-random-ConvNextV2Model/fd79c16eca1caa09810e.json +91 -0
  8. neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/cvt/hf-internal-testing/tiny-random-CvTModel/1afd90e8017356415fb8.json +124 -0
  9. neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/deit/hf-internal-testing/tiny-random-DeiTModel/914c1281867f49c8e1eb.json +46 -0
  10. neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/levit/hf-internal-testing/tiny-random-LevitModel/3e0b621f97b7931a72e0.json +89 -0
  11. neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/mobilenet_v2/hf-internal-testing/tiny-random-MobileNetV2Model/8d04e7858696532597ca.json +45 -0
  12. neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/mobilevit/hf-internal-testing/tiny-random-mobilevit/74da982e3be55934798d.json +2070 -0
  13. neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/swin/hf-internal-testing/tiny-random-SwinModel/13333b86135b1bc6e70e.json +70 -0
  14. neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/t5/hf-internal-testing/tiny-random-t5/23aee9198ab24878d3c0.json +91 -0
  15. neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/t5/hf-internal-testing/tiny-random-t5/4b4e8d0856ec3f8d566b.json +91 -0
  16. neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/t5/michaelbenayoun/t5-tiny-random/73a4cdf09236341bfef2.json +95 -0
  17. neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/vit/hf-internal-testing/tiny-random-vit/7b5b9664cc7a73d09e94.json +47 -0
  18. neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/vit/hf-internal-testing/tiny-random-vit/d7f77d9c87446c23d5cc.json +47 -0
  19. neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/yolos/hf-internal-testing/tiny-random-YolosModel/41e10361d5fb0f0b8464.json +65 -0
  20. neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/yolos/hf-internal-testing/tiny-random-YolosModel/649dbfdadb2821e2753e.json +65 -0
  21. neuronxcc-2.21.18209.0+043b1bf7/MODULE_1065964367471922642+e30acd3a/compile_flags.json +1 -0
  22. neuronxcc-2.21.18209.0+043b1bf7/MODULE_1065964367471922642+e30acd3a/model.done +0 -0
  23. neuronxcc-2.21.18209.0+043b1bf7/MODULE_1065964367471922642+e30acd3a/model.hlo_module.pb +3 -0
  24. neuronxcc-2.21.18209.0+043b1bf7/MODULE_1065964367471922642+e30acd3a/model.neff +0 -0
  25. neuronxcc-2.21.18209.0+043b1bf7/MODULE_11118848953388650737+e30acd3a/compile_flags.json +1 -0
  26. neuronxcc-2.21.18209.0+043b1bf7/MODULE_11118848953388650737+e30acd3a/model.done +0 -0
  27. neuronxcc-2.21.18209.0+043b1bf7/MODULE_11118848953388650737+e30acd3a/model.hlo_module.pb +3 -0
  28. neuronxcc-2.21.18209.0+043b1bf7/MODULE_11118848953388650737+e30acd3a/model.neff +0 -0
  29. neuronxcc-2.21.18209.0+043b1bf7/MODULE_13333b86135b1bc6e70e/config.json +69 -0
  30. neuronxcc-2.21.18209.0+043b1bf7/MODULE_13333b86135b1bc6e70e/model.neuron +3 -0
  31. neuronxcc-2.21.18209.0+043b1bf7/MODULE_13333b86135b1bc6e70e/preprocessor_config.json +24 -0
  32. neuronxcc-2.21.18209.0+043b1bf7/MODULE_1afd90e8017356415fb8/config.json +123 -0
  33. neuronxcc-2.21.18209.0+043b1bf7/MODULE_1afd90e8017356415fb8/model.neuron +3 -0
  34. neuronxcc-2.21.18209.0+043b1bf7/MODULE_1afd90e8017356415fb8/preprocessor_config.json +23 -0
  35. neuronxcc-2.21.18209.0+043b1bf7/MODULE_23aee9198ab24878d3c0/config.json +28 -0
  36. neuronxcc-2.21.18209.0+043b1bf7/MODULE_23aee9198ab24878d3c0/decoder/config.json +49 -0
  37. neuronxcc-2.21.18209.0+043b1bf7/MODULE_23aee9198ab24878d3c0/decoder/model.neuron +3 -0
  38. neuronxcc-2.21.18209.0+043b1bf7/MODULE_23aee9198ab24878d3c0/encoder/config.json +49 -0
  39. neuronxcc-2.21.18209.0+043b1bf7/MODULE_23aee9198ab24878d3c0/encoder/model.neuron +3 -0
  40. neuronxcc-2.21.18209.0+043b1bf7/MODULE_23aee9198ab24878d3c0/generation_config.json +8 -0
  41. neuronxcc-2.21.18209.0+043b1bf7/MODULE_23aee9198ab24878d3c0/special_tokens_map.json +125 -0
  42. neuronxcc-2.21.18209.0+043b1bf7/MODULE_23aee9198ab24878d3c0/tokenizer.json +0 -0
  43. neuronxcc-2.21.18209.0+043b1bf7/MODULE_23aee9198ab24878d3c0/tokenizer_config.json +939 -0
  44. neuronxcc-2.21.18209.0+043b1bf7/MODULE_306829ff9e3811933fe7+a02c3a36/model.neff +1 -1
  45. neuronxcc-2.21.18209.0+043b1bf7/MODULE_306829ff9e3811933fe7+a02c3a36/wrapped_neff.hlo +1 -1
  46. neuronxcc-2.21.18209.0+043b1bf7/MODULE_3198402281722258467+e30acd3a/compile_flags.json +1 -0
  47. neuronxcc-2.21.18209.0+043b1bf7/MODULE_3198402281722258467+e30acd3a/model.done +0 -0
  48. neuronxcc-2.21.18209.0+043b1bf7/MODULE_3198402281722258467+e30acd3a/model.hlo_module.pb +3 -0
  49. neuronxcc-2.21.18209.0+043b1bf7/MODULE_3198402281722258467+e30acd3a/model.neff +0 -0
  50. neuronxcc-2.21.18209.0+043b1bf7/MODULE_3e0b621f97b7931a72e0/config.json +88 -0
.gitattributes CHANGED
@@ -5431,3 +5431,26 @@ neuronxcc-2.21.18209.0+043b1bf7/MODULE_e0ce3525251d35c118ed+24129607/model.neff
5431
  neuronxcc-2.21.18209.0+043b1bf7/MODULE_eaa781288c2e1d7ed527+a02c3a36/model.neff filter=lfs diff=lfs merge=lfs -text
5432
  neuronxcc-2.21.18209.0+043b1bf7/MODULE_eaa781288c2e1d7ed527+a02c3a36/wrapped_neff.hlo filter=lfs diff=lfs merge=lfs -text
5433
  neuronxcc-2.21.18209.0+043b1bf7/MODULE_fd32caf35dc9cdf42fac+24129607/model.neff filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5431
  neuronxcc-2.21.18209.0+043b1bf7/MODULE_eaa781288c2e1d7ed527+a02c3a36/model.neff filter=lfs diff=lfs merge=lfs -text
5432
  neuronxcc-2.21.18209.0+043b1bf7/MODULE_eaa781288c2e1d7ed527+a02c3a36/wrapped_neff.hlo filter=lfs diff=lfs merge=lfs -text
5433
  neuronxcc-2.21.18209.0+043b1bf7/MODULE_fd32caf35dc9cdf42fac+24129607/model.neff filter=lfs diff=lfs merge=lfs -text
5434
+ neuronxcc-2.21.18209.0+043b1bf7/MODULE_13333b86135b1bc6e70e/model.neuron filter=lfs diff=lfs merge=lfs -text
5435
+ neuronxcc-2.21.18209.0+043b1bf7/MODULE_1afd90e8017356415fb8/model.neuron filter=lfs diff=lfs merge=lfs -text
5436
+ neuronxcc-2.21.18209.0+043b1bf7/MODULE_23aee9198ab24878d3c0/decoder/model.neuron filter=lfs diff=lfs merge=lfs -text
5437
+ neuronxcc-2.21.18209.0+043b1bf7/MODULE_23aee9198ab24878d3c0/encoder/model.neuron filter=lfs diff=lfs merge=lfs -text
5438
+ neuronxcc-2.21.18209.0+043b1bf7/MODULE_3e0b621f97b7931a72e0/model.neuron filter=lfs diff=lfs merge=lfs -text
5439
+ neuronxcc-2.21.18209.0+043b1bf7/MODULE_41e10361d5fb0f0b8464/model.neuron filter=lfs diff=lfs merge=lfs -text
5440
+ neuronxcc-2.21.18209.0+043b1bf7/MODULE_4b4e8d0856ec3f8d566b/decoder/model.neuron filter=lfs diff=lfs merge=lfs -text
5441
+ neuronxcc-2.21.18209.0+043b1bf7/MODULE_4b4e8d0856ec3f8d566b/encoder/model.neuron filter=lfs diff=lfs merge=lfs -text
5442
+ neuronxcc-2.21.18209.0+043b1bf7/MODULE_649dbfdadb2821e2753e/model.neuron filter=lfs diff=lfs merge=lfs -text
5443
+ neuronxcc-2.21.18209.0+043b1bf7/MODULE_74da982e3be55934798d/model.neuron filter=lfs diff=lfs merge=lfs -text
5444
+ neuronxcc-2.21.18209.0+043b1bf7/MODULE_7b5b9664cc7a73d09e94/model.neuron filter=lfs diff=lfs merge=lfs -text
5445
+ neuronxcc-2.21.18209.0+043b1bf7/MODULE_837658e2253fff5286df/model.neuron filter=lfs diff=lfs merge=lfs -text
5446
+ neuronxcc-2.21.18209.0+043b1bf7/MODULE_8a032920a6bdbe7160fd/text_encoder/model.neuron filter=lfs diff=lfs merge=lfs -text
5447
+ neuronxcc-2.21.18209.0+043b1bf7/MODULE_8a032920a6bdbe7160fd/text_encoder_2/model.neuron filter=lfs diff=lfs merge=lfs -text
5448
+ neuronxcc-2.21.18209.0+043b1bf7/MODULE_8a032920a6bdbe7160fd/unet/model.neuron filter=lfs diff=lfs merge=lfs -text
5449
+ neuronxcc-2.21.18209.0+043b1bf7/MODULE_8a032920a6bdbe7160fd/vae_decoder/model.neuron filter=lfs diff=lfs merge=lfs -text
5450
+ neuronxcc-2.21.18209.0+043b1bf7/MODULE_8a032920a6bdbe7160fd/vae_encoder/model.neuron filter=lfs diff=lfs merge=lfs -text
5451
+ neuronxcc-2.21.18209.0+043b1bf7/MODULE_8d04e7858696532597ca/model.neuron filter=lfs diff=lfs merge=lfs -text
5452
+ neuronxcc-2.21.18209.0+043b1bf7/MODULE_914c1281867f49c8e1eb/model.neuron filter=lfs diff=lfs merge=lfs -text
5453
+ neuronxcc-2.21.18209.0+043b1bf7/MODULE_9f5ece00d8bb7fdb2d1f/model.neuron filter=lfs diff=lfs merge=lfs -text
5454
+ neuronxcc-2.21.18209.0+043b1bf7/MODULE_a601e953abf1141fc6e7/model.neuron filter=lfs diff=lfs merge=lfs -text
5455
+ neuronxcc-2.21.18209.0+043b1bf7/MODULE_d7f77d9c87446c23d5cc/model.neuron filter=lfs diff=lfs merge=lfs -text
5456
+ neuronxcc-2.21.18209.0+043b1bf7/MODULE_fd79c16eca1caa09810e/model.neuron filter=lfs diff=lfs merge=lfs -text
neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.1/distilbert/philschmid/tiny-distilbert-classification/837658e2253fff5286df.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_entry_class": "SingleModelCacheEntry",
3
+ "_model_id": "philschmid/tiny-distilbert-classification",
4
+ "_task": "text-classification",
5
+ "activation": "gelu",
6
+ "architectures": [
7
+ "DistilBertForSequenceClassification"
8
+ ],
9
+ "attention_dropout": 0.1,
10
+ "dim": 2,
11
+ "dropout": 0.1,
12
+ "finetuning_task": "sst-2",
13
+ "hidden_dim": 2,
14
+ "id2label": {
15
+ "0": "NEGATIVE",
16
+ "1": "POSITIVE"
17
+ },
18
+ "initializer_range": 0.02,
19
+ "label2id": {
20
+ "NEGATIVE": 0,
21
+ "POSITIVE": 1
22
+ },
23
+ "max_position_embeddings": 512,
24
+ "model_type": "distilbert",
25
+ "n_heads": 2,
26
+ "n_layers": 2,
27
+ "neuron": {
28
+ "auto_cast": null,
29
+ "auto_cast_type": null,
30
+ "compiler_type": "neuronx-cc",
31
+ "compiler_version": "2.21.18209.0+043b1bf7",
32
+ "disable_fallback": false,
33
+ "disable_fast_relayout": false,
34
+ "dynamic_batch_size": false,
35
+ "float_dtype": "fp32",
36
+ "inline_weights_to_neff": true,
37
+ "instance_type": "trn1",
38
+ "int_dtype": "int64",
39
+ "model_type": "distilbert",
40
+ "optlevel": "2",
41
+ "output_attentions": false,
42
+ "output_hidden_states": false,
43
+ "static_batch_size": 1,
44
+ "static_sequence_length": 128,
45
+ "task": "text-classification",
46
+ "tensor_parallel_size": 1
47
+ },
48
+ "output_past": true,
49
+ "qa_dropout": 0.1,
50
+ "seq_classif_dropout": 0.2,
51
+ "sinusoidal_pos_embds": false,
52
+ "tie_weights_": true,
53
+ "vocab_size": 30522
54
+ }
neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.1/llama/llamafactory/tiny-random-Llama-3/26064e26e574b37f68b9.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_entry_class": "SingleModelCacheEntry",
3
+ "_model_id": "llamafactory/tiny-random-Llama-3",
4
+ "_task": "text-generation",
5
+ "architectures": [
6
+ "LlamaForCausalLM"
7
+ ],
8
+ "attention_bias": false,
9
+ "attention_dropout": 0.0,
10
+ "head_dim": 4,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 16,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 64,
15
+ "max_position_embeddings": 131072,
16
+ "mlp_bias": false,
17
+ "model_type": "llama",
18
+ "neuron": {
19
+ "_serialized_key": "NxDNeuronConfig",
20
+ "batch_size": 1,
21
+ "capacity_factor": null,
22
+ "checkpoint_id": "llamafactory/tiny-random-Llama-3",
23
+ "checkpoint_revision": "bf2a2e3bf199ad2ee96f02a3c00246c608db22a8",
24
+ "continuous_batching": false,
25
+ "ep_degree": 1,
26
+ "fused_qkv": true,
27
+ "glu_mlp": true,
28
+ "local_ranks_size": 2,
29
+ "max_batch_size": 1,
30
+ "max_context_length": 1024,
31
+ "max_topk": 256,
32
+ "n_active_tokens": 1024,
33
+ "neuronxcc_version": "2.21.18209.0+043b1bf7",
34
+ "on_device_sampling": true,
35
+ "optimum_neuron_version": "0.4.1",
36
+ "output_logits": false,
37
+ "pp_degree": 1,
38
+ "sequence_length": 1024,
39
+ "speculation_length": 0,
40
+ "start_rank_id": 0,
41
+ "target": "trn1",
42
+ "torch_dtype": "float16",
43
+ "tp_degree": 2
44
+ },
45
+ "num_attention_heads": 4,
46
+ "num_hidden_layers": 2,
47
+ "num_key_value_heads": 4,
48
+ "pretraining_tp": 1,
49
+ "rms_norm_eps": 1e-05,
50
+ "rope_scaling": {
51
+ "factor": 8.0,
52
+ "high_freq_factor": 4.0,
53
+ "low_freq_factor": 1.0,
54
+ "original_max_position_embeddings": 8192,
55
+ "rope_type": "llama3"
56
+ },
57
+ "rope_theta": 500000.0,
58
+ "tie_word_embeddings": false,
59
+ "use_cache": true,
60
+ "vocab_size": 128256
61
+ }
neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.1/stable-diffusion/echarlaix/tiny-random-stable-diffusion-xl/8a032920a6bdbe7160fd.json ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_entry_class": "MultiModelCacheEntry",
3
+ "_model_id": "echarlaix/tiny-random-stable-diffusion-xl",
4
+ "_task": null,
5
+ "text_encoder": {
6
+ "architectures": [
7
+ "CLIPTextModel"
8
+ ],
9
+ "attention_dropout": 0.0,
10
+ "export_model_type": "clip-text-model",
11
+ "hidden_act": "gelu",
12
+ "hidden_size": 32,
13
+ "initializer_factor": 1.0,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 37,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 77,
18
+ "model_type": "clip_text_model",
19
+ "neuron": {
20
+ "auto_cast": "matmul",
21
+ "auto_cast_type": "bf16",
22
+ "compiler_type": "neuronx-cc",
23
+ "compiler_version": "2.21.18209.0+043b1bf7",
24
+ "dynamic_batch_size": false,
25
+ "float_dtype": "fp32",
26
+ "inline_weights_to_neff": true,
27
+ "instance_type": "trn1",
28
+ "int_dtype": "int64",
29
+ "optlevel": "2",
30
+ "output_attentions": false,
31
+ "output_hidden_states": false,
32
+ "static_batch_size": 1,
33
+ "static_sequence_length": 77,
34
+ "task": "feature-extraction",
35
+ "tensor_parallel_size": 1
36
+ },
37
+ "num_attention_heads": 4,
38
+ "num_hidden_layers": 5,
39
+ "output_hidden_states": true,
40
+ "vocab_size": 1000
41
+ },
42
+ "text_encoder_2": {
43
+ "architectures": [
44
+ "CLIPTextModelWithProjection"
45
+ ],
46
+ "attention_dropout": 0.0,
47
+ "export_model_type": "clip-text-with-projection",
48
+ "hidden_act": "gelu",
49
+ "hidden_size": 32,
50
+ "initializer_factor": 1.0,
51
+ "initializer_range": 0.02,
52
+ "intermediate_size": 37,
53
+ "layer_norm_eps": 1e-05,
54
+ "max_position_embeddings": 77,
55
+ "model_type": "clip_text_model",
56
+ "neuron": {
57
+ "auto_cast": "matmul",
58
+ "auto_cast_type": "bf16",
59
+ "compiler_type": "neuronx-cc",
60
+ "compiler_version": "2.21.18209.0+043b1bf7",
61
+ "dynamic_batch_size": false,
62
+ "float_dtype": "fp32",
63
+ "inline_weights_to_neff": true,
64
+ "instance_type": "trn1",
65
+ "int_dtype": "int64",
66
+ "optlevel": "2",
67
+ "output_attentions": false,
68
+ "output_hidden_states": false,
69
+ "static_batch_size": 1,
70
+ "static_sequence_length": 77,
71
+ "task": "feature-extraction",
72
+ "tensor_parallel_size": 1
73
+ },
74
+ "num_attention_heads": 4,
75
+ "num_hidden_layers": 5,
76
+ "output_hidden_states": true,
77
+ "vocab_size": 1000
78
+ },
79
+ "unet": {
80
+ "_class_name": "UNet2DConditionModel",
81
+ "act_fn": "silu",
82
+ "addition_embed_type": "text_time",
83
+ "addition_embed_type_num_heads": 64,
84
+ "addition_time_embed_dim": 8,
85
+ "attention_head_dim": [
86
+ 2,
87
+ 4
88
+ ],
89
+ "attention_type": "default",
90
+ "block_out_channels": [
91
+ 32,
92
+ 64
93
+ ],
94
+ "center_input_sample": false,
95
+ "class_embed_type": null,
96
+ "class_embeddings_concat": false,
97
+ "conv_in_kernel": 3,
98
+ "conv_out_kernel": 3,
99
+ "cross_attention_dim": 64,
100
+ "cross_attention_norm": null,
101
+ "down_block_types": [
102
+ "DownBlock2D",
103
+ "CrossAttnDownBlock2D"
104
+ ],
105
+ "downsample_padding": 1,
106
+ "dropout": 0.0,
107
+ "dual_cross_attention": false,
108
+ "encoder_hid_dim": null,
109
+ "encoder_hid_dim_type": null,
110
+ "flip_sin_to_cos": true,
111
+ "freq_shift": 0,
112
+ "in_channels": 4,
113
+ "layers_per_block": 2,
114
+ "mid_block_only_cross_attention": null,
115
+ "mid_block_scale_factor": 1,
116
+ "mid_block_type": "UNetMidBlock2DCrossAttn",
117
+ "neuron": {
118
+ "auto_cast": "matmul",
119
+ "auto_cast_type": "bf16",
120
+ "compiler_type": "neuronx-cc",
121
+ "compiler_version": "2.21.18209.0+043b1bf7",
122
+ "dynamic_batch_size": false,
123
+ "float_dtype": "fp32",
124
+ "inline_weights_to_neff": true,
125
+ "instance_type": "trn1",
126
+ "int_dtype": "int64",
127
+ "optlevel": "2",
128
+ "output_attentions": false,
129
+ "output_hidden_states": false,
130
+ "static_batch_size": 1,
131
+ "static_height": 32,
132
+ "static_num_channels": 4,
133
+ "static_sequence_length": 77,
134
+ "static_vae_scale_factor": 2,
135
+ "static_width": 32,
136
+ "task": "semantic-segmentation",
137
+ "tensor_parallel_size": 1
138
+ },
139
+ "norm_eps": 1e-05,
140
+ "norm_num_groups": 32,
141
+ "num_attention_heads": null,
142
+ "num_class_embeds": null,
143
+ "only_cross_attention": false,
144
+ "out_channels": 4,
145
+ "output_attentions": false,
146
+ "projection_class_embeddings_input_dim": 80,
147
+ "resnet_out_scale_factor": 1.0,
148
+ "resnet_skip_time_act": false,
149
+ "resnet_time_scale_shift": "default",
150
+ "reverse_transformer_layers_per_block": null,
151
+ "time_cond_proj_dim": null,
152
+ "time_embedding_act_fn": null,
153
+ "time_embedding_dim": null,
154
+ "time_embedding_type": "positional",
155
+ "timestep_post_act": null,
156
+ "transformer_layers_per_block": [
157
+ 1,
158
+ 2
159
+ ],
160
+ "up_block_types": [
161
+ "CrossAttnUpBlock2D",
162
+ "UpBlock2D"
163
+ ],
164
+ "upcast_attention": false,
165
+ "use_linear_projection": true
166
+ }
167
+ }
neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/beit/hf-internal-testing/tiny-random-BeitForImageClassification/a601e953abf1141fc6e7.json ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_entry_class": "SingleModelCacheEntry",
3
+ "_model_id": "hf-internal-testing/tiny-random-BeitForImageClassification",
4
+ "_task": "image-classification",
5
+ "add_fpn": false,
6
+ "architectures": [
7
+ "BeitForImageClassification"
8
+ ],
9
+ "attention_probs_dropout_prob": 0.1,
10
+ "auxiliary_channels": 256,
11
+ "auxiliary_concat_input": false,
12
+ "auxiliary_loss_weight": 0.4,
13
+ "auxiliary_num_convs": 1,
14
+ "drop_path_rate": 0.1,
15
+ "dtype": "float32",
16
+ "hidden_act": "gelu",
17
+ "hidden_dropout_prob": 0.1,
18
+ "hidden_size": 32,
19
+ "image_size": 30,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 37,
22
+ "layer_norm_eps": 1e-12,
23
+ "layer_scale_init_value": 0.1,
24
+ "model_type": "beit",
25
+ "neuron": {
26
+ "auto_cast": null,
27
+ "auto_cast_type": null,
28
+ "compiler_type": "neuronx-cc",
29
+ "compiler_version": "2.21.18209.0+043b1bf7",
30
+ "disable_fallback": false,
31
+ "disable_fast_relayout": false,
32
+ "dynamic_batch_size": false,
33
+ "float_dtype": "fp32",
34
+ "inline_weights_to_neff": true,
35
+ "instance_type": "trn1",
36
+ "int_dtype": "int64",
37
+ "model_type": "beit",
38
+ "optlevel": "2",
39
+ "output_attentions": false,
40
+ "output_hidden_states": false,
41
+ "static_batch_size": 1,
42
+ "task": "image-classification",
43
+ "tensor_parallel_size": 1
44
+ },
45
+ "num_attention_heads": 4,
46
+ "num_channels": 3,
47
+ "num_hidden_layers": 4,
48
+ "out_features": [
49
+ "stem",
50
+ "stage1",
51
+ "stage2",
52
+ "stage3"
53
+ ],
54
+ "out_indices": [
55
+ 0,
56
+ 1,
57
+ 2,
58
+ 3
59
+ ],
60
+ "patch_size": 2,
61
+ "pool_scales": [
62
+ 1,
63
+ 2,
64
+ 3,
65
+ 6
66
+ ],
67
+ "reshape_hidden_states": true,
68
+ "semantic_loss_ignore_index": 255,
69
+ "stage_names": [
70
+ "stem",
71
+ "stage1",
72
+ "stage2",
73
+ "stage3",
74
+ "stage4"
75
+ ],
76
+ "use_absolute_position_embeddings": false,
77
+ "use_auxiliary_head": true,
78
+ "use_mask_token": false,
79
+ "use_mean_pooling": true,
80
+ "use_relative_position_bias": false,
81
+ "use_shared_relative_position_bias": false,
82
+ "vocab_size": 100
83
+ }
neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/convnext/hf-internal-testing/tiny-random-convnext/9f5ece00d8bb7fdb2d1f.json ADDED
@@ -0,0 +1,2067 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_entry_class": "SingleModelCacheEntry",
3
+ "_model_id": "hf-internal-testing/tiny-random-convnext",
4
+ "_task": "image-classification",
5
+ "architectures": [
6
+ "ConvNextForImageClassification"
7
+ ],
8
+ "depths": [
9
+ 3,
10
+ 3,
11
+ 9,
12
+ 3
13
+ ],
14
+ "drop_path_rate": 0.0,
15
+ "dtype": "float32",
16
+ "hidden_act": "gelu",
17
+ "hidden_sizes": [
18
+ 6,
19
+ 12,
20
+ 24,
21
+ 48
22
+ ],
23
+ "id2label": {
24
+ "0": "tench, Tinca tinca",
25
+ "1": "goldfish, Carassius auratus",
26
+ "2": "great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias",
27
+ "3": "tiger shark, Galeocerdo cuvieri",
28
+ "4": "hammerhead, hammerhead shark",
29
+ "5": "electric ray, crampfish, numbfish, torpedo",
30
+ "6": "stingray",
31
+ "7": "cock",
32
+ "8": "hen",
33
+ "9": "ostrich, Struthio camelus",
34
+ "10": "brambling, Fringilla montifringilla",
35
+ "11": "goldfinch, Carduelis carduelis",
36
+ "12": "house finch, linnet, Carpodacus mexicanus",
37
+ "13": "junco, snowbird",
38
+ "14": "indigo bunting, indigo finch, indigo bird, Passerina cyanea",
39
+ "15": "robin, American robin, Turdus migratorius",
40
+ "16": "bulbul",
41
+ "17": "jay",
42
+ "18": "magpie",
43
+ "19": "chickadee",
44
+ "20": "water ouzel, dipper",
45
+ "21": "kite",
46
+ "22": "bald eagle, American eagle, Haliaeetus leucocephalus",
47
+ "23": "vulture",
48
+ "24": "great grey owl, great gray owl, Strix nebulosa",
49
+ "25": "European fire salamander, Salamandra salamandra",
50
+ "26": "common newt, Triturus vulgaris",
51
+ "27": "eft",
52
+ "28": "spotted salamander, Ambystoma maculatum",
53
+ "29": "axolotl, mud puppy, Ambystoma mexicanum",
54
+ "30": "bullfrog, Rana catesbeiana",
55
+ "31": "tree frog, tree-frog",
56
+ "32": "tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui",
57
+ "33": "loggerhead, loggerhead turtle, Caretta caretta",
58
+ "34": "leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea",
59
+ "35": "mud turtle",
60
+ "36": "terrapin",
61
+ "37": "box turtle, box tortoise",
62
+ "38": "banded gecko",
63
+ "39": "common iguana, iguana, Iguana iguana",
64
+ "40": "American chameleon, anole, Anolis carolinensis",
65
+ "41": "whiptail, whiptail lizard",
66
+ "42": "agama",
67
+ "43": "frilled lizard, Chlamydosaurus kingi",
68
+ "44": "alligator lizard",
69
+ "45": "Gila monster, Heloderma suspectum",
70
+ "46": "green lizard, Lacerta viridis",
71
+ "47": "African chameleon, Chamaeleo chamaeleon",
72
+ "48": "Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis",
73
+ "49": "African crocodile, Nile crocodile, Crocodylus niloticus",
74
+ "50": "American alligator, Alligator mississipiensis",
75
+ "51": "triceratops",
76
+ "52": "thunder snake, worm snake, Carphophis amoenus",
77
+ "53": "ringneck snake, ring-necked snake, ring snake",
78
+ "54": "hognose snake, puff adder, sand viper",
79
+ "55": "green snake, grass snake",
80
+ "56": "king snake, kingsnake",
81
+ "57": "garter snake, grass snake",
82
+ "58": "water snake",
83
+ "59": "vine snake",
84
+ "60": "night snake, Hypsiglena torquata",
85
+ "61": "boa constrictor, Constrictor constrictor",
86
+ "62": "rock python, rock snake, Python sebae",
87
+ "63": "Indian cobra, Naja naja",
88
+ "64": "green mamba",
89
+ "65": "sea snake",
90
+ "66": "horned viper, cerastes, sand viper, horned asp, Cerastes cornutus",
91
+ "67": "diamondback, diamondback rattlesnake, Crotalus adamanteus",
92
+ "68": "sidewinder, horned rattlesnake, Crotalus cerastes",
93
+ "69": "trilobite",
94
+ "70": "harvestman, daddy longlegs, Phalangium opilio",
95
+ "71": "scorpion",
96
+ "72": "black and gold garden spider, Argiope aurantia",
97
+ "73": "barn spider, Araneus cavaticus",
98
+ "74": "garden spider, Aranea diademata",
99
+ "75": "black widow, Latrodectus mactans",
100
+ "76": "tarantula",
101
+ "77": "wolf spider, hunting spider",
102
+ "78": "tick",
103
+ "79": "centipede",
104
+ "80": "black grouse",
105
+ "81": "ptarmigan",
106
+ "82": "ruffed grouse, partridge, Bonasa umbellus",
107
+ "83": "prairie chicken, prairie grouse, prairie fowl",
108
+ "84": "peacock",
109
+ "85": "quail",
110
+ "86": "partridge",
111
+ "87": "African grey, African gray, Psittacus erithacus",
112
+ "88": "macaw",
113
+ "89": "sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita",
114
+ "90": "lorikeet",
115
+ "91": "coucal",
116
+ "92": "bee eater",
117
+ "93": "hornbill",
118
+ "94": "hummingbird",
119
+ "95": "jacamar",
120
+ "96": "toucan",
121
+ "97": "drake",
122
+ "98": "red-breasted merganser, Mergus serrator",
123
+ "99": "goose",
124
+ "100": "black swan, Cygnus atratus",
125
+ "101": "tusker",
126
+ "102": "echidna, spiny anteater, anteater",
127
+ "103": "platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus",
128
+ "104": "wallaby, brush kangaroo",
129
+ "105": "koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus",
130
+ "106": "wombat",
131
+ "107": "jellyfish",
132
+ "108": "sea anemone, anemone",
133
+ "109": "brain coral",
134
+ "110": "flatworm, platyhelminth",
135
+ "111": "nematode, nematode worm, roundworm",
136
+ "112": "conch",
137
+ "113": "snail",
138
+ "114": "slug",
139
+ "115": "sea slug, nudibranch",
140
+ "116": "chiton, coat-of-mail shell, sea cradle, polyplacophore",
141
+ "117": "chambered nautilus, pearly nautilus, nautilus",
142
+ "118": "Dungeness crab, Cancer magister",
143
+ "119": "rock crab, Cancer irroratus",
144
+ "120": "fiddler crab",
145
+ "121": "king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica",
146
+ "122": "American lobster, Northern lobster, Maine lobster, Homarus americanus",
147
+ "123": "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish",
148
+ "124": "crayfish, crawfish, crawdad, crawdaddy",
149
+ "125": "hermit crab",
150
+ "126": "isopod",
151
+ "127": "white stork, Ciconia ciconia",
152
+ "128": "black stork, Ciconia nigra",
153
+ "129": "spoonbill",
154
+ "130": "flamingo",
155
+ "131": "little blue heron, Egretta caerulea",
156
+ "132": "American egret, great white heron, Egretta albus",
157
+ "133": "bittern",
158
+ "134": "crane",
159
+ "135": "limpkin, Aramus pictus",
160
+ "136": "European gallinule, Porphyrio porphyrio",
161
+ "137": "American coot, marsh hen, mud hen, water hen, Fulica americana",
162
+ "138": "bustard",
163
+ "139": "ruddy turnstone, Arenaria interpres",
164
+ "140": "red-backed sandpiper, dunlin, Erolia alpina",
165
+ "141": "redshank, Tringa totanus",
166
+ "142": "dowitcher",
167
+ "143": "oystercatcher, oyster catcher",
168
+ "144": "pelican",
169
+ "145": "king penguin, Aptenodytes patagonica",
170
+ "146": "albatross, mollymawk",
171
+ "147": "grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus",
172
+ "148": "killer whale, killer, orca, grampus, sea wolf, Orcinus orca",
173
+ "149": "dugong, Dugong dugon",
174
+ "150": "sea lion",
175
+ "151": "Chihuahua",
176
+ "152": "Japanese spaniel",
177
+ "153": "Maltese dog, Maltese terrier, Maltese",
178
+ "154": "Pekinese, Pekingese, Peke",
179
+ "155": "Shih-Tzu",
180
+ "156": "Blenheim spaniel",
181
+ "157": "papillon",
182
+ "158": "toy terrier",
183
+ "159": "Rhodesian ridgeback",
184
+ "160": "Afghan hound, Afghan",
185
+ "161": "basset, basset hound",
186
+ "162": "beagle",
187
+ "163": "bloodhound, sleuthhound",
188
+ "164": "bluetick",
189
+ "165": "black-and-tan coonhound",
190
+ "166": "Walker hound, Walker foxhound",
191
+ "167": "English foxhound",
192
+ "168": "redbone",
193
+ "169": "borzoi, Russian wolfhound",
194
+ "170": "Irish wolfhound",
195
+ "171": "Italian greyhound",
196
+ "172": "whippet",
197
+ "173": "Ibizan hound, Ibizan Podenco",
198
+ "174": "Norwegian elkhound, elkhound",
199
+ "175": "otterhound, otter hound",
200
+ "176": "Saluki, gazelle hound",
201
+ "177": "Scottish deerhound, deerhound",
202
+ "178": "Weimaraner",
203
+ "179": "Staffordshire bullterrier, Staffordshire bull terrier",
204
+ "180": "American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier",
205
+ "181": "Bedlington terrier",
206
+ "182": "Border terrier",
207
+ "183": "Kerry blue terrier",
208
+ "184": "Irish terrier",
209
+ "185": "Norfolk terrier",
210
+ "186": "Norwich terrier",
211
+ "187": "Yorkshire terrier",
212
+ "188": "wire-haired fox terrier",
213
+ "189": "Lakeland terrier",
214
+ "190": "Sealyham terrier, Sealyham",
215
+ "191": "Airedale, Airedale terrier",
216
+ "192": "cairn, cairn terrier",
217
+ "193": "Australian terrier",
218
+ "194": "Dandie Dinmont, Dandie Dinmont terrier",
219
+ "195": "Boston bull, Boston terrier",
220
+ "196": "miniature schnauzer",
221
+ "197": "giant schnauzer",
222
+ "198": "standard schnauzer",
223
+ "199": "Scotch terrier, Scottish terrier, Scottie",
224
+ "200": "Tibetan terrier, chrysanthemum dog",
225
+ "201": "silky terrier, Sydney silky",
226
+ "202": "soft-coated wheaten terrier",
227
+ "203": "West Highland white terrier",
228
+ "204": "Lhasa, Lhasa apso",
229
+ "205": "flat-coated retriever",
230
+ "206": "curly-coated retriever",
231
+ "207": "golden retriever",
232
+ "208": "Labrador retriever",
233
+ "209": "Chesapeake Bay retriever",
234
+ "210": "German short-haired pointer",
235
+ "211": "vizsla, Hungarian pointer",
236
+ "212": "English setter",
237
+ "213": "Irish setter, red setter",
238
+ "214": "Gordon setter",
239
+ "215": "Brittany spaniel",
240
+ "216": "clumber, clumber spaniel",
241
+ "217": "English springer, English springer spaniel",
242
+ "218": "Welsh springer spaniel",
243
+ "219": "cocker spaniel, English cocker spaniel, cocker",
244
+ "220": "Sussex spaniel",
245
+ "221": "Irish water spaniel",
246
+ "222": "kuvasz",
247
+ "223": "schipperke",
248
+ "224": "groenendael",
249
+ "225": "malinois",
250
+ "226": "briard",
251
+ "227": "kelpie",
252
+ "228": "komondor",
253
+ "229": "Old English sheepdog, bobtail",
254
+ "230": "Shetland sheepdog, Shetland sheep dog, Shetland",
255
+ "231": "collie",
256
+ "232": "Border collie",
257
+ "233": "Bouvier des Flandres, Bouviers des Flandres",
258
+ "234": "Rottweiler",
259
+ "235": "German shepherd, German shepherd dog, German police dog, alsatian",
260
+ "236": "Doberman, Doberman pinscher",
261
+ "237": "miniature pinscher",
262
+ "238": "Greater Swiss Mountain dog",
263
+ "239": "Bernese mountain dog",
264
+ "240": "Appenzeller",
265
+ "241": "EntleBucher",
266
+ "242": "boxer",
267
+ "243": "bull mastiff",
268
+ "244": "Tibetan mastiff",
269
+ "245": "French bulldog",
270
+ "246": "Great Dane",
271
+ "247": "Saint Bernard, St Bernard",
272
+ "248": "Eskimo dog, husky",
273
+ "249": "malamute, malemute, Alaskan malamute",
274
+ "250": "Siberian husky",
275
+ "251": "dalmatian, coach dog, carriage dog",
276
+ "252": "affenpinscher, monkey pinscher, monkey dog",
277
+ "253": "basenji",
278
+ "254": "pug, pug-dog",
279
+ "255": "Leonberg",
280
+ "256": "Newfoundland, Newfoundland dog",
281
+ "257": "Great Pyrenees",
282
+ "258": "Samoyed, Samoyede",
283
+ "259": "Pomeranian",
284
+ "260": "chow, chow chow",
285
+ "261": "keeshond",
286
+ "262": "Brabancon griffon",
287
+ "263": "Pembroke, Pembroke Welsh corgi",
288
+ "264": "Cardigan, Cardigan Welsh corgi",
289
+ "265": "toy poodle",
290
+ "266": "miniature poodle",
291
+ "267": "standard poodle",
292
+ "268": "Mexican hairless",
293
+ "269": "timber wolf, grey wolf, gray wolf, Canis lupus",
294
+ "270": "white wolf, Arctic wolf, Canis lupus tundrarum",
295
+ "271": "red wolf, maned wolf, Canis rufus, Canis niger",
296
+ "272": "coyote, prairie wolf, brush wolf, Canis latrans",
297
+ "273": "dingo, warrigal, warragal, Canis dingo",
298
+ "274": "dhole, Cuon alpinus",
299
+ "275": "African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus",
300
+ "276": "hyena, hyaena",
301
+ "277": "red fox, Vulpes vulpes",
302
+ "278": "kit fox, Vulpes macrotis",
303
+ "279": "Arctic fox, white fox, Alopex lagopus",
304
+ "280": "grey fox, gray fox, Urocyon cinereoargenteus",
305
+ "281": "tabby, tabby cat",
306
+ "282": "tiger cat",
307
+ "283": "Persian cat",
308
+ "284": "Siamese cat, Siamese",
309
+ "285": "Egyptian cat",
310
+ "286": "cougar, puma, catamount, mountain lion, painter, panther, Felis concolor",
311
+ "287": "lynx, catamount",
312
+ "288": "leopard, Panthera pardus",
313
+ "289": "snow leopard, ounce, Panthera uncia",
314
+ "290": "jaguar, panther, Panthera onca, Felis onca",
315
+ "291": "lion, king of beasts, Panthera leo",
316
+ "292": "tiger, Panthera tigris",
317
+ "293": "cheetah, chetah, Acinonyx jubatus",
318
+ "294": "brown bear, bruin, Ursus arctos",
319
+ "295": "American black bear, black bear, Ursus americanus, Euarctos americanus",
320
+ "296": "ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus",
321
+ "297": "sloth bear, Melursus ursinus, Ursus ursinus",
322
+ "298": "mongoose",
323
+ "299": "meerkat, mierkat",
324
+ "300": "tiger beetle",
325
+ "301": "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle",
326
+ "302": "ground beetle, carabid beetle",
327
+ "303": "long-horned beetle, longicorn, longicorn beetle",
328
+ "304": "leaf beetle, chrysomelid",
329
+ "305": "dung beetle",
330
+ "306": "rhinoceros beetle",
331
+ "307": "weevil",
332
+ "308": "fly",
333
+ "309": "bee",
334
+ "310": "ant, emmet, pismire",
335
+ "311": "grasshopper, hopper",
336
+ "312": "cricket",
337
+ "313": "walking stick, walkingstick, stick insect",
338
+ "314": "cockroach, roach",
339
+ "315": "mantis, mantid",
340
+ "316": "cicada, cicala",
341
+ "317": "leafhopper",
342
+ "318": "lacewing, lacewing fly",
343
+ "319": "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk",
344
+ "320": "damselfly",
345
+ "321": "admiral",
346
+ "322": "ringlet, ringlet butterfly",
347
+ "323": "monarch, monarch butterfly, milkweed butterfly, Danaus plexippus",
348
+ "324": "cabbage butterfly",
349
+ "325": "sulphur butterfly, sulfur butterfly",
350
+ "326": "lycaenid, lycaenid butterfly",
351
+ "327": "starfish, sea star",
352
+ "328": "sea urchin",
353
+ "329": "sea cucumber, holothurian",
354
+ "330": "wood rabbit, cottontail, cottontail rabbit",
355
+ "331": "hare",
356
+ "332": "Angora, Angora rabbit",
357
+ "333": "hamster",
358
+ "334": "porcupine, hedgehog",
359
+ "335": "fox squirrel, eastern fox squirrel, Sciurus niger",
360
+ "336": "marmot",
361
+ "337": "beaver",
362
+ "338": "guinea pig, Cavia cobaya",
363
+ "339": "sorrel",
364
+ "340": "zebra",
365
+ "341": "hog, pig, grunter, squealer, Sus scrofa",
366
+ "342": "wild boar, boar, Sus scrofa",
367
+ "343": "warthog",
368
+ "344": "hippopotamus, hippo, river horse, Hippopotamus amphibius",
369
+ "345": "ox",
370
+ "346": "water buffalo, water ox, Asiatic buffalo, Bubalus bubalis",
371
+ "347": "bison",
372
+ "348": "ram, tup",
373
+ "349": "bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis",
374
+ "350": "ibex, Capra ibex",
375
+ "351": "hartebeest",
376
+ "352": "impala, Aepyceros melampus",
377
+ "353": "gazelle",
378
+ "354": "Arabian camel, dromedary, Camelus dromedarius",
379
+ "355": "llama",
380
+ "356": "weasel",
381
+ "357": "mink",
382
+ "358": "polecat, fitch, foulmart, foumart, Mustela putorius",
383
+ "359": "black-footed ferret, ferret, Mustela nigripes",
384
+ "360": "otter",
385
+ "361": "skunk, polecat, wood pussy",
386
+ "362": "badger",
387
+ "363": "armadillo",
388
+ "364": "three-toed sloth, ai, Bradypus tridactylus",
389
+ "365": "orangutan, orang, orangutang, Pongo pygmaeus",
390
+ "366": "gorilla, Gorilla gorilla",
391
+ "367": "chimpanzee, chimp, Pan troglodytes",
392
+ "368": "gibbon, Hylobates lar",
393
+ "369": "siamang, Hylobates syndactylus, Symphalangus syndactylus",
394
+ "370": "guenon, guenon monkey",
395
+ "371": "patas, hussar monkey, Erythrocebus patas",
396
+ "372": "baboon",
397
+ "373": "macaque",
398
+ "374": "langur",
399
+ "375": "colobus, colobus monkey",
400
+ "376": "proboscis monkey, Nasalis larvatus",
401
+ "377": "marmoset",
402
+ "378": "capuchin, ringtail, Cebus capucinus",
403
+ "379": "howler monkey, howler",
404
+ "380": "titi, titi monkey",
405
+ "381": "spider monkey, Ateles geoffroyi",
406
+ "382": "squirrel monkey, Saimiri sciureus",
407
+ "383": "Madagascar cat, ring-tailed lemur, Lemur catta",
408
+ "384": "indri, indris, Indri indri, Indri brevicaudatus",
409
+ "385": "Indian elephant, Elephas maximus",
410
+ "386": "African elephant, Loxodonta africana",
411
+ "387": "lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens",
412
+ "388": "giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca",
413
+ "389": "barracouta, snoek",
414
+ "390": "eel",
415
+ "391": "coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch",
416
+ "392": "rock beauty, Holocanthus tricolor",
417
+ "393": "anemone fish",
418
+ "394": "sturgeon",
419
+ "395": "gar, garfish, garpike, billfish, Lepisosteus osseus",
420
+ "396": "lionfish",
421
+ "397": "puffer, pufferfish, blowfish, globefish",
422
+ "398": "abacus",
423
+ "399": "abaya",
424
+ "400": "academic gown, academic robe, judge's robe",
425
+ "401": "accordion, piano accordion, squeeze box",
426
+ "402": "acoustic guitar",
427
+ "403": "aircraft carrier, carrier, flattop, attack aircraft carrier",
428
+ "404": "airliner",
429
+ "405": "airship, dirigible",
430
+ "406": "altar",
431
+ "407": "ambulance",
432
+ "408": "amphibian, amphibious vehicle",
433
+ "409": "analog clock",
434
+ "410": "apiary, bee house",
435
+ "411": "apron",
436
+ "412": "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin",
437
+ "413": "assault rifle, assault gun",
438
+ "414": "backpack, back pack, knapsack, packsack, rucksack, haversack",
439
+ "415": "bakery, bakeshop, bakehouse",
440
+ "416": "balance beam, beam",
441
+ "417": "balloon",
442
+ "418": "ballpoint, ballpoint pen, ballpen, Biro",
443
+ "419": "Band Aid",
444
+ "420": "banjo",
445
+ "421": "bannister, banister, balustrade, balusters, handrail",
446
+ "422": "barbell",
447
+ "423": "barber chair",
448
+ "424": "barbershop",
449
+ "425": "barn",
450
+ "426": "barometer",
451
+ "427": "barrel, cask",
452
+ "428": "barrow, garden cart, lawn cart, wheelbarrow",
453
+ "429": "baseball",
454
+ "430": "basketball",
455
+ "431": "bassinet",
456
+ "432": "bassoon",
457
+ "433": "bathing cap, swimming cap",
458
+ "434": "bath towel",
459
+ "435": "bathtub, bathing tub, bath, tub",
460
+ "436": "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon",
461
+ "437": "beacon, lighthouse, beacon light, pharos",
462
+ "438": "beaker",
463
+ "439": "bearskin, busby, shako",
464
+ "440": "beer bottle",
465
+ "441": "beer glass",
466
+ "442": "bell cote, bell cot",
467
+ "443": "bib",
468
+ "444": "bicycle-built-for-two, tandem bicycle, tandem",
469
+ "445": "bikini, two-piece",
470
+ "446": "binder, ring-binder",
471
+ "447": "binoculars, field glasses, opera glasses",
472
+ "448": "birdhouse",
473
+ "449": "boathouse",
474
+ "450": "bobsled, bobsleigh, bob",
475
+ "451": "bolo tie, bolo, bola tie, bola",
476
+ "452": "bonnet, poke bonnet",
477
+ "453": "bookcase",
478
+ "454": "bookshop, bookstore, bookstall",
479
+ "455": "bottlecap",
480
+ "456": "bow",
481
+ "457": "bow tie, bow-tie, bowtie",
482
+ "458": "brass, memorial tablet, plaque",
483
+ "459": "brassiere, bra, bandeau",
484
+ "460": "breakwater, groin, groyne, mole, bulwark, seawall, jetty",
485
+ "461": "breastplate, aegis, egis",
486
+ "462": "broom",
487
+ "463": "bucket, pail",
488
+ "464": "buckle",
489
+ "465": "bulletproof vest",
490
+ "466": "bullet train, bullet",
491
+ "467": "butcher shop, meat market",
492
+ "468": "cab, hack, taxi, taxicab",
493
+ "469": "caldron, cauldron",
494
+ "470": "candle, taper, wax light",
495
+ "471": "cannon",
496
+ "472": "canoe",
497
+ "473": "can opener, tin opener",
498
+ "474": "cardigan",
499
+ "475": "car mirror",
500
+ "476": "carousel, carrousel, merry-go-round, roundabout, whirligig",
501
+ "477": "carpenter's kit, tool kit",
502
+ "478": "carton",
503
+ "479": "car wheel",
504
+ "480": "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM",
505
+ "481": "cassette",
506
+ "482": "cassette player",
507
+ "483": "castle",
508
+ "484": "catamaran",
509
+ "485": "CD player",
510
+ "486": "cello, violoncello",
511
+ "487": "cellular telephone, cellular phone, cellphone, cell, mobile phone",
512
+ "488": "chain",
513
+ "489": "chainlink fence",
514
+ "490": "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour",
515
+ "491": "chain saw, chainsaw",
516
+ "492": "chest",
517
+ "493": "chiffonier, commode",
518
+ "494": "chime, bell, gong",
519
+ "495": "china cabinet, china closet",
520
+ "496": "Christmas stocking",
521
+ "497": "church, church building",
522
+ "498": "cinema, movie theater, movie theatre, movie house, picture palace",
523
+ "499": "cleaver, meat cleaver, chopper",
524
+ "500": "cliff dwelling",
525
+ "501": "cloak",
526
+ "502": "clog, geta, patten, sabot",
527
+ "503": "cocktail shaker",
528
+ "504": "coffee mug",
529
+ "505": "coffeepot",
530
+ "506": "coil, spiral, volute, whorl, helix",
531
+ "507": "combination lock",
532
+ "508": "computer keyboard, keypad",
533
+ "509": "confectionery, confectionary, candy store",
534
+ "510": "container ship, containership, container vessel",
535
+ "511": "convertible",
536
+ "512": "corkscrew, bottle screw",
537
+ "513": "cornet, horn, trumpet, trump",
538
+ "514": "cowboy boot",
539
+ "515": "cowboy hat, ten-gallon hat",
540
+ "516": "cradle",
541
+ "517": "crane",
542
+ "518": "crash helmet",
543
+ "519": "crate",
544
+ "520": "crib, cot",
545
+ "521": "Crock Pot",
546
+ "522": "croquet ball",
547
+ "523": "crutch",
548
+ "524": "cuirass",
549
+ "525": "dam, dike, dyke",
550
+ "526": "desk",
551
+ "527": "desktop computer",
552
+ "528": "dial telephone, dial phone",
553
+ "529": "diaper, nappy, napkin",
554
+ "530": "digital clock",
555
+ "531": "digital watch",
556
+ "532": "dining table, board",
557
+ "533": "dishrag, dishcloth",
558
+ "534": "dishwasher, dish washer, dishwashing machine",
559
+ "535": "disk brake, disc brake",
560
+ "536": "dock, dockage, docking facility",
561
+ "537": "dogsled, dog sled, dog sleigh",
562
+ "538": "dome",
563
+ "539": "doormat, welcome mat",
564
+ "540": "drilling platform, offshore rig",
565
+ "541": "drum, membranophone, tympan",
566
+ "542": "drumstick",
567
+ "543": "dumbbell",
568
+ "544": "Dutch oven",
569
+ "545": "electric fan, blower",
570
+ "546": "electric guitar",
571
+ "547": "electric locomotive",
572
+ "548": "entertainment center",
573
+ "549": "envelope",
574
+ "550": "espresso maker",
575
+ "551": "face powder",
576
+ "552": "feather boa, boa",
577
+ "553": "file, file cabinet, filing cabinet",
578
+ "554": "fireboat",
579
+ "555": "fire engine, fire truck",
580
+ "556": "fire screen, fireguard",
581
+ "557": "flagpole, flagstaff",
582
+ "558": "flute, transverse flute",
583
+ "559": "folding chair",
584
+ "560": "football helmet",
585
+ "561": "forklift",
586
+ "562": "fountain",
587
+ "563": "fountain pen",
588
+ "564": "four-poster",
589
+ "565": "freight car",
590
+ "566": "French horn, horn",
591
+ "567": "frying pan, frypan, skillet",
592
+ "568": "fur coat",
593
+ "569": "garbage truck, dustcart",
594
+ "570": "gasmask, respirator, gas helmet",
595
+ "571": "gas pump, gasoline pump, petrol pump, island dispenser",
596
+ "572": "goblet",
597
+ "573": "go-kart",
598
+ "574": "golf ball",
599
+ "575": "golfcart, golf cart",
600
+ "576": "gondola",
601
+ "577": "gong, tam-tam",
602
+ "578": "gown",
603
+ "579": "grand piano, grand",
604
+ "580": "greenhouse, nursery, glasshouse",
605
+ "581": "grille, radiator grille",
606
+ "582": "grocery store, grocery, food market, market",
607
+ "583": "guillotine",
608
+ "584": "hair slide",
609
+ "585": "hair spray",
610
+ "586": "half track",
611
+ "587": "hammer",
612
+ "588": "hamper",
613
+ "589": "hand blower, blow dryer, blow drier, hair dryer, hair drier",
614
+ "590": "hand-held computer, hand-held microcomputer",
615
+ "591": "handkerchief, hankie, hanky, hankey",
616
+ "592": "hard disc, hard disk, fixed disk",
617
+ "593": "harmonica, mouth organ, harp, mouth harp",
618
+ "594": "harp",
619
+ "595": "harvester, reaper",
620
+ "596": "hatchet",
621
+ "597": "holster",
622
+ "598": "home theater, home theatre",
623
+ "599": "honeycomb",
624
+ "600": "hook, claw",
625
+ "601": "hoopskirt, crinoline",
626
+ "602": "horizontal bar, high bar",
627
+ "603": "horse cart, horse-cart",
628
+ "604": "hourglass",
629
+ "605": "iPod",
630
+ "606": "iron, smoothing iron",
631
+ "607": "jack-o'-lantern",
632
+ "608": "jean, blue jean, denim",
633
+ "609": "jeep, landrover",
634
+ "610": "jersey, T-shirt, tee shirt",
635
+ "611": "jigsaw puzzle",
636
+ "612": "jinrikisha, ricksha, rickshaw",
637
+ "613": "joystick",
638
+ "614": "kimono",
639
+ "615": "knee pad",
640
+ "616": "knot",
641
+ "617": "lab coat, laboratory coat",
642
+ "618": "ladle",
643
+ "619": "lampshade, lamp shade",
644
+ "620": "laptop, laptop computer",
645
+ "621": "lawn mower, mower",
646
+ "622": "lens cap, lens cover",
647
+ "623": "letter opener, paper knife, paperknife",
648
+ "624": "library",
649
+ "625": "lifeboat",
650
+ "626": "lighter, light, igniter, ignitor",
651
+ "627": "limousine, limo",
652
+ "628": "liner, ocean liner",
653
+ "629": "lipstick, lip rouge",
654
+ "630": "Loafer",
655
+ "631": "lotion",
656
+ "632": "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system",
657
+ "633": "loupe, jeweler's loupe",
658
+ "634": "lumbermill, sawmill",
659
+ "635": "magnetic compass",
660
+ "636": "mailbag, postbag",
661
+ "637": "mailbox, letter box",
662
+ "638": "maillot",
663
+ "639": "maillot, tank suit",
664
+ "640": "manhole cover",
665
+ "641": "maraca",
666
+ "642": "marimba, xylophone",
667
+ "643": "mask",
668
+ "644": "matchstick",
669
+ "645": "maypole",
670
+ "646": "maze, labyrinth",
671
+ "647": "measuring cup",
672
+ "648": "medicine chest, medicine cabinet",
673
+ "649": "megalith, megalithic structure",
674
+ "650": "microphone, mike",
675
+ "651": "microwave, microwave oven",
676
+ "652": "military uniform",
677
+ "653": "milk can",
678
+ "654": "minibus",
679
+ "655": "miniskirt, mini",
680
+ "656": "minivan",
681
+ "657": "missile",
682
+ "658": "mitten",
683
+ "659": "mixing bowl",
684
+ "660": "mobile home, manufactured home",
685
+ "661": "Model T",
686
+ "662": "modem",
687
+ "663": "monastery",
688
+ "664": "monitor",
689
+ "665": "moped",
690
+ "666": "mortar",
691
+ "667": "mortarboard",
692
+ "668": "mosque",
693
+ "669": "mosquito net",
694
+ "670": "motor scooter, scooter",
695
+ "671": "mountain bike, all-terrain bike, off-roader",
696
+ "672": "mountain tent",
697
+ "673": "mouse, computer mouse",
698
+ "674": "mousetrap",
699
+ "675": "moving van",
700
+ "676": "muzzle",
701
+ "677": "nail",
702
+ "678": "neck brace",
703
+ "679": "necklace",
704
+ "680": "nipple",
705
+ "681": "notebook, notebook computer",
706
+ "682": "obelisk",
707
+ "683": "oboe, hautboy, hautbois",
708
+ "684": "ocarina, sweet potato",
709
+ "685": "odometer, hodometer, mileometer, milometer",
710
+ "686": "oil filter",
711
+ "687": "organ, pipe organ",
712
+ "688": "oscilloscope, scope, cathode-ray oscilloscope, CRO",
713
+ "689": "overskirt",
714
+ "690": "oxcart",
715
+ "691": "oxygen mask",
716
+ "692": "packet",
717
+ "693": "paddle, boat paddle",
718
+ "694": "paddlewheel, paddle wheel",
719
+ "695": "padlock",
720
+ "696": "paintbrush",
721
+ "697": "pajama, pyjama, pj's, jammies",
722
+ "698": "palace",
723
+ "699": "panpipe, pandean pipe, syrinx",
724
+ "700": "paper towel",
725
+ "701": "parachute, chute",
726
+ "702": "parallel bars, bars",
727
+ "703": "park bench",
728
+ "704": "parking meter",
729
+ "705": "passenger car, coach, carriage",
730
+ "706": "patio, terrace",
731
+ "707": "pay-phone, pay-station",
732
+ "708": "pedestal, plinth, footstall",
733
+ "709": "pencil box, pencil case",
734
+ "710": "pencil sharpener",
735
+ "711": "perfume, essence",
736
+ "712": "Petri dish",
737
+ "713": "photocopier",
738
+ "714": "pick, plectrum, plectron",
739
+ "715": "pickelhaube",
740
+ "716": "picket fence, paling",
741
+ "717": "pickup, pickup truck",
742
+ "718": "pier",
743
+ "719": "piggy bank, penny bank",
744
+ "720": "pill bottle",
745
+ "721": "pillow",
746
+ "722": "ping-pong ball",
747
+ "723": "pinwheel",
748
+ "724": "pirate, pirate ship",
749
+ "725": "pitcher, ewer",
750
+ "726": "plane, carpenter's plane, woodworking plane",
751
+ "727": "planetarium",
752
+ "728": "plastic bag",
753
+ "729": "plate rack",
754
+ "730": "plow, plough",
755
+ "731": "plunger, plumber's helper",
756
+ "732": "Polaroid camera, Polaroid Land camera",
757
+ "733": "pole",
758
+ "734": "police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria",
759
+ "735": "poncho",
760
+ "736": "pool table, billiard table, snooker table",
761
+ "737": "pop bottle, soda bottle",
762
+ "738": "pot, flowerpot",
763
+ "739": "potter's wheel",
764
+ "740": "power drill",
765
+ "741": "prayer rug, prayer mat",
766
+ "742": "printer",
767
+ "743": "prison, prison house",
768
+ "744": "projectile, missile",
769
+ "745": "projector",
770
+ "746": "puck, hockey puck",
771
+ "747": "punching bag, punch bag, punching ball, punchball",
772
+ "748": "purse",
773
+ "749": "quill, quill pen",
774
+ "750": "quilt, comforter, comfort, puff",
775
+ "751": "racer, race car, racing car",
776
+ "752": "racket, racquet",
777
+ "753": "radiator",
778
+ "754": "radio, wireless",
779
+ "755": "radio telescope, radio reflector",
780
+ "756": "rain barrel",
781
+ "757": "recreational vehicle, RV, R.V.",
782
+ "758": "reel",
783
+ "759": "reflex camera",
784
+ "760": "refrigerator, icebox",
785
+ "761": "remote control, remote",
786
+ "762": "restaurant, eating house, eating place, eatery",
787
+ "763": "revolver, six-gun, six-shooter",
788
+ "764": "rifle",
789
+ "765": "rocking chair, rocker",
790
+ "766": "rotisserie",
791
+ "767": "rubber eraser, rubber, pencil eraser",
792
+ "768": "rugby ball",
793
+ "769": "rule, ruler",
794
+ "770": "running shoe",
795
+ "771": "safe",
796
+ "772": "safety pin",
797
+ "773": "saltshaker, salt shaker",
798
+ "774": "sandal",
799
+ "775": "sarong",
800
+ "776": "sax, saxophone",
801
+ "777": "scabbard",
802
+ "778": "scale, weighing machine",
803
+ "779": "school bus",
804
+ "780": "schooner",
805
+ "781": "scoreboard",
806
+ "782": "screen, CRT screen",
807
+ "783": "screw",
808
+ "784": "screwdriver",
809
+ "785": "seat belt, seatbelt",
810
+ "786": "sewing machine",
811
+ "787": "shield, buckler",
812
+ "788": "shoe shop, shoe-shop, shoe store",
813
+ "789": "shoji",
814
+ "790": "shopping basket",
815
+ "791": "shopping cart",
816
+ "792": "shovel",
817
+ "793": "shower cap",
818
+ "794": "shower curtain",
819
+ "795": "ski",
820
+ "796": "ski mask",
821
+ "797": "sleeping bag",
822
+ "798": "slide rule, slipstick",
823
+ "799": "sliding door",
824
+ "800": "slot, one-armed bandit",
825
+ "801": "snorkel",
826
+ "802": "snowmobile",
827
+ "803": "snowplow, snowplough",
828
+ "804": "soap dispenser",
829
+ "805": "soccer ball",
830
+ "806": "sock",
831
+ "807": "solar dish, solar collector, solar furnace",
832
+ "808": "sombrero",
833
+ "809": "soup bowl",
834
+ "810": "space bar",
835
+ "811": "space heater",
836
+ "812": "space shuttle",
837
+ "813": "spatula",
838
+ "814": "speedboat",
839
+ "815": "spider web, spider's web",
840
+ "816": "spindle",
841
+ "817": "sports car, sport car",
842
+ "818": "spotlight, spot",
843
+ "819": "stage",
844
+ "820": "steam locomotive",
845
+ "821": "steel arch bridge",
846
+ "822": "steel drum",
847
+ "823": "stethoscope",
848
+ "824": "stole",
849
+ "825": "stone wall",
850
+ "826": "stopwatch, stop watch",
851
+ "827": "stove",
852
+ "828": "strainer",
853
+ "829": "streetcar, tram, tramcar, trolley, trolley car",
854
+ "830": "stretcher",
855
+ "831": "studio couch, day bed",
856
+ "832": "stupa, tope",
857
+ "833": "submarine, pigboat, sub, U-boat",
858
+ "834": "suit, suit of clothes",
859
+ "835": "sundial",
860
+ "836": "sunglass",
861
+ "837": "sunglasses, dark glasses, shades",
862
+ "838": "sunscreen, sunblock, sun blocker",
863
+ "839": "suspension bridge",
864
+ "840": "swab, swob, mop",
865
+ "841": "sweatshirt",
866
+ "842": "swimming trunks, bathing trunks",
867
+ "843": "swing",
868
+ "844": "switch, electric switch, electrical switch",
869
+ "845": "syringe",
870
+ "846": "table lamp",
871
+ "847": "tank, army tank, armored combat vehicle, armoured combat vehicle",
872
+ "848": "tape player",
873
+ "849": "teapot",
874
+ "850": "teddy, teddy bear",
875
+ "851": "television, television system",
876
+ "852": "tennis ball",
877
+ "853": "thatch, thatched roof",
878
+ "854": "theater curtain, theatre curtain",
879
+ "855": "thimble",
880
+ "856": "thresher, thrasher, threshing machine",
881
+ "857": "throne",
882
+ "858": "tile roof",
883
+ "859": "toaster",
884
+ "860": "tobacco shop, tobacconist shop, tobacconist",
885
+ "861": "toilet seat",
886
+ "862": "torch",
887
+ "863": "totem pole",
888
+ "864": "tow truck, tow car, wrecker",
889
+ "865": "toyshop",
890
+ "866": "tractor",
891
+ "867": "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi",
892
+ "868": "tray",
893
+ "869": "trench coat",
894
+ "870": "tricycle, trike, velocipede",
895
+ "871": "trimaran",
896
+ "872": "tripod",
897
+ "873": "triumphal arch",
898
+ "874": "trolleybus, trolley coach, trackless trolley",
899
+ "875": "trombone",
900
+ "876": "tub, vat",
901
+ "877": "turnstile",
902
+ "878": "typewriter keyboard",
903
+ "879": "umbrella",
904
+ "880": "unicycle, monocycle",
905
+ "881": "upright, upright piano",
906
+ "882": "vacuum, vacuum cleaner",
907
+ "883": "vase",
908
+ "884": "vault",
909
+ "885": "velvet",
910
+ "886": "vending machine",
911
+ "887": "vestment",
912
+ "888": "viaduct",
913
+ "889": "violin, fiddle",
914
+ "890": "volleyball",
915
+ "891": "waffle iron",
916
+ "892": "wall clock",
917
+ "893": "wallet, billfold, notecase, pocketbook",
918
+ "894": "wardrobe, closet, press",
919
+ "895": "warplane, military plane",
920
+ "896": "washbasin, handbasin, washbowl, lavabo, wash-hand basin",
921
+ "897": "washer, automatic washer, washing machine",
922
+ "898": "water bottle",
923
+ "899": "water jug",
924
+ "900": "water tower",
925
+ "901": "whiskey jug",
926
+ "902": "whistle",
927
+ "903": "wig",
928
+ "904": "window screen",
929
+ "905": "window shade",
930
+ "906": "Windsor tie",
931
+ "907": "wine bottle",
932
+ "908": "wing",
933
+ "909": "wok",
934
+ "910": "wooden spoon",
935
+ "911": "wool, woolen, woollen",
936
+ "912": "worm fence, snake fence, snake-rail fence, Virginia fence",
937
+ "913": "wreck",
938
+ "914": "yawl",
939
+ "915": "yurt",
940
+ "916": "web site, website, internet site, site",
941
+ "917": "comic book",
942
+ "918": "crossword puzzle, crossword",
943
+ "919": "street sign",
944
+ "920": "traffic light, traffic signal, stoplight",
945
+ "921": "book jacket, dust cover, dust jacket, dust wrapper",
946
+ "922": "menu",
947
+ "923": "plate",
948
+ "924": "guacamole",
949
+ "925": "consomme",
950
+ "926": "hot pot, hotpot",
951
+ "927": "trifle",
952
+ "928": "ice cream, icecream",
953
+ "929": "ice lolly, lolly, lollipop, popsicle",
954
+ "930": "French loaf",
955
+ "931": "bagel, beigel",
956
+ "932": "pretzel",
957
+ "933": "cheeseburger",
958
+ "934": "hotdog, hot dog, red hot",
959
+ "935": "mashed potato",
960
+ "936": "head cabbage",
961
+ "937": "broccoli",
962
+ "938": "cauliflower",
963
+ "939": "zucchini, courgette",
964
+ "940": "spaghetti squash",
965
+ "941": "acorn squash",
966
+ "942": "butternut squash",
967
+ "943": "cucumber, cuke",
968
+ "944": "artichoke, globe artichoke",
969
+ "945": "bell pepper",
970
+ "946": "cardoon",
971
+ "947": "mushroom",
972
+ "948": "Granny Smith",
973
+ "949": "strawberry",
974
+ "950": "orange",
975
+ "951": "lemon",
976
+ "952": "fig",
977
+ "953": "pineapple, ananas",
978
+ "954": "banana",
979
+ "955": "jackfruit, jak, jack",
980
+ "956": "custard apple",
981
+ "957": "pomegranate",
982
+ "958": "hay",
983
+ "959": "carbonara",
984
+ "960": "chocolate sauce, chocolate syrup",
985
+ "961": "dough",
986
+ "962": "meat loaf, meatloaf",
987
+ "963": "pizza, pizza pie",
988
+ "964": "potpie",
989
+ "965": "burrito",
990
+ "966": "red wine",
991
+ "967": "espresso",
992
+ "968": "cup",
993
+ "969": "eggnog",
994
+ "970": "alp",
995
+ "971": "bubble",
996
+ "972": "cliff, drop, drop-off",
997
+ "973": "coral reef",
998
+ "974": "geyser",
999
+ "975": "lakeside, lakeshore",
1000
+ "976": "promontory, headland, head, foreland",
1001
+ "977": "sandbar, sand bar",
1002
+ "978": "seashore, coast, seacoast, sea-coast",
1003
+ "979": "valley, vale",
1004
+ "980": "volcano",
1005
+ "981": "ballplayer, baseball player",
1006
+ "982": "groom, bridegroom",
1007
+ "983": "scuba diver",
1008
+ "984": "rapeseed",
1009
+ "985": "daisy",
1010
+ "986": "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum",
1011
+ "987": "corn",
1012
+ "988": "acorn",
1013
+ "989": "hip, rose hip, rosehip",
1014
+ "990": "buckeye, horse chestnut, conker",
1015
+ "991": "coral fungus",
1016
+ "992": "agaric",
1017
+ "993": "gyromitra",
1018
+ "994": "stinkhorn, carrion fungus",
1019
+ "995": "earthstar",
1020
+ "996": "hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa",
1021
+ "997": "bolete",
1022
+ "998": "ear, spike, capitulum",
1023
+ "999": "toilet tissue, toilet paper, bathroom tissue"
1024
+ },
1025
+ "image_size": 224,
1026
+ "initializer_range": 0.02,
1027
+ "label2id": {
1028
+ "Afghan hound, Afghan": 160,
1029
+ "African chameleon, Chamaeleo chamaeleon": 47,
1030
+ "African crocodile, Nile crocodile, Crocodylus niloticus": 49,
1031
+ "African elephant, Loxodonta africana": 386,
1032
+ "African grey, African gray, Psittacus erithacus": 87,
1033
+ "African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus": 275,
1034
+ "Airedale, Airedale terrier": 191,
1035
+ "American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier": 180,
1036
+ "American alligator, Alligator mississipiensis": 50,
1037
+ "American black bear, black bear, Ursus americanus, Euarctos americanus": 295,
1038
+ "American chameleon, anole, Anolis carolinensis": 40,
1039
+ "American coot, marsh hen, mud hen, water hen, Fulica americana": 137,
1040
+ "American egret, great white heron, Egretta albus": 132,
1041
+ "American lobster, Northern lobster, Maine lobster, Homarus americanus": 122,
1042
+ "Angora, Angora rabbit": 332,
1043
+ "Appenzeller": 240,
1044
+ "Arabian camel, dromedary, Camelus dromedarius": 354,
1045
+ "Arctic fox, white fox, Alopex lagopus": 279,
1046
+ "Australian terrier": 193,
1047
+ "Band Aid": 419,
1048
+ "Bedlington terrier": 181,
1049
+ "Bernese mountain dog": 239,
1050
+ "Blenheim spaniel": 156,
1051
+ "Border collie": 232,
1052
+ "Border terrier": 182,
1053
+ "Boston bull, Boston terrier": 195,
1054
+ "Bouvier des Flandres, Bouviers des Flandres": 233,
1055
+ "Brabancon griffon": 262,
1056
+ "Brittany spaniel": 215,
1057
+ "CD player": 485,
1058
+ "Cardigan, Cardigan Welsh corgi": 264,
1059
+ "Chesapeake Bay retriever": 209,
1060
+ "Chihuahua": 151,
1061
+ "Christmas stocking": 496,
1062
+ "Crock Pot": 521,
1063
+ "Dandie Dinmont, Dandie Dinmont terrier": 194,
1064
+ "Doberman, Doberman pinscher": 236,
1065
+ "Dungeness crab, Cancer magister": 118,
1066
+ "Dutch oven": 544,
1067
+ "Egyptian cat": 285,
1068
+ "English foxhound": 167,
1069
+ "English setter": 212,
1070
+ "English springer, English springer spaniel": 217,
1071
+ "EntleBucher": 241,
1072
+ "Eskimo dog, husky": 248,
1073
+ "European fire salamander, Salamandra salamandra": 25,
1074
+ "European gallinule, Porphyrio porphyrio": 136,
1075
+ "French bulldog": 245,
1076
+ "French horn, horn": 566,
1077
+ "French loaf": 930,
1078
+ "German shepherd, German shepherd dog, German police dog, alsatian": 235,
1079
+ "German short-haired pointer": 210,
1080
+ "Gila monster, Heloderma suspectum": 45,
1081
+ "Gordon setter": 214,
1082
+ "Granny Smith": 948,
1083
+ "Great Dane": 246,
1084
+ "Great Pyrenees": 257,
1085
+ "Greater Swiss Mountain dog": 238,
1086
+ "Ibizan hound, Ibizan Podenco": 173,
1087
+ "Indian cobra, Naja naja": 63,
1088
+ "Indian elephant, Elephas maximus": 385,
1089
+ "Irish setter, red setter": 213,
1090
+ "Irish terrier": 184,
1091
+ "Irish water spaniel": 221,
1092
+ "Irish wolfhound": 170,
1093
+ "Italian greyhound": 171,
1094
+ "Japanese spaniel": 152,
1095
+ "Kerry blue terrier": 183,
1096
+ "Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis": 48,
1097
+ "Labrador retriever": 208,
1098
+ "Lakeland terrier": 189,
1099
+ "Leonberg": 255,
1100
+ "Lhasa, Lhasa apso": 204,
1101
+ "Loafer": 630,
1102
+ "Madagascar cat, ring-tailed lemur, Lemur catta": 383,
1103
+ "Maltese dog, Maltese terrier, Maltese": 153,
1104
+ "Mexican hairless": 268,
1105
+ "Model T": 661,
1106
+ "Newfoundland, Newfoundland dog": 256,
1107
+ "Norfolk terrier": 185,
1108
+ "Norwegian elkhound, elkhound": 174,
1109
+ "Norwich terrier": 186,
1110
+ "Old English sheepdog, bobtail": 229,
1111
+ "Pekinese, Pekingese, Peke": 154,
1112
+ "Pembroke, Pembroke Welsh corgi": 263,
1113
+ "Persian cat": 283,
1114
+ "Petri dish": 712,
1115
+ "Polaroid camera, Polaroid Land camera": 732,
1116
+ "Pomeranian": 259,
1117
+ "Rhodesian ridgeback": 159,
1118
+ "Rottweiler": 234,
1119
+ "Saint Bernard, St Bernard": 247,
1120
+ "Saluki, gazelle hound": 176,
1121
+ "Samoyed, Samoyede": 258,
1122
+ "Scotch terrier, Scottish terrier, Scottie": 199,
1123
+ "Scottish deerhound, deerhound": 177,
1124
+ "Sealyham terrier, Sealyham": 190,
1125
+ "Shetland sheepdog, Shetland sheep dog, Shetland": 230,
1126
+ "Shih-Tzu": 155,
1127
+ "Siamese cat, Siamese": 284,
1128
+ "Siberian husky": 250,
1129
+ "Staffordshire bullterrier, Staffordshire bull terrier": 179,
1130
+ "Sussex spaniel": 220,
1131
+ "Tibetan mastiff": 244,
1132
+ "Tibetan terrier, chrysanthemum dog": 200,
1133
+ "Walker hound, Walker foxhound": 166,
1134
+ "Weimaraner": 178,
1135
+ "Welsh springer spaniel": 218,
1136
+ "West Highland white terrier": 203,
1137
+ "Windsor tie": 906,
1138
+ "Yorkshire terrier": 187,
1139
+ "abacus": 398,
1140
+ "abaya": 399,
1141
+ "academic gown, academic robe, judge's robe": 400,
1142
+ "accordion, piano accordion, squeeze box": 401,
1143
+ "acorn": 988,
1144
+ "acorn squash": 941,
1145
+ "acoustic guitar": 402,
1146
+ "admiral": 321,
1147
+ "affenpinscher, monkey pinscher, monkey dog": 252,
1148
+ "agama": 42,
1149
+ "agaric": 992,
1150
+ "aircraft carrier, carrier, flattop, attack aircraft carrier": 403,
1151
+ "airliner": 404,
1152
+ "airship, dirigible": 405,
1153
+ "albatross, mollymawk": 146,
1154
+ "alligator lizard": 44,
1155
+ "alp": 970,
1156
+ "altar": 406,
1157
+ "ambulance": 407,
1158
+ "amphibian, amphibious vehicle": 408,
1159
+ "analog clock": 409,
1160
+ "anemone fish": 393,
1161
+ "ant, emmet, pismire": 310,
1162
+ "apiary, bee house": 410,
1163
+ "apron": 411,
1164
+ "armadillo": 363,
1165
+ "artichoke, globe artichoke": 944,
1166
+ "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin": 412,
1167
+ "assault rifle, assault gun": 413,
1168
+ "axolotl, mud puppy, Ambystoma mexicanum": 29,
1169
+ "baboon": 372,
1170
+ "backpack, back pack, knapsack, packsack, rucksack, haversack": 414,
1171
+ "badger": 362,
1172
+ "bagel, beigel": 931,
1173
+ "bakery, bakeshop, bakehouse": 415,
1174
+ "balance beam, beam": 416,
1175
+ "bald eagle, American eagle, Haliaeetus leucocephalus": 22,
1176
+ "balloon": 417,
1177
+ "ballplayer, baseball player": 981,
1178
+ "ballpoint, ballpoint pen, ballpen, Biro": 418,
1179
+ "banana": 954,
1180
+ "banded gecko": 38,
1181
+ "banjo": 420,
1182
+ "bannister, banister, balustrade, balusters, handrail": 421,
1183
+ "barbell": 422,
1184
+ "barber chair": 423,
1185
+ "barbershop": 424,
1186
+ "barn": 425,
1187
+ "barn spider, Araneus cavaticus": 73,
1188
+ "barometer": 426,
1189
+ "barracouta, snoek": 389,
1190
+ "barrel, cask": 427,
1191
+ "barrow, garden cart, lawn cart, wheelbarrow": 428,
1192
+ "baseball": 429,
1193
+ "basenji": 253,
1194
+ "basketball": 430,
1195
+ "basset, basset hound": 161,
1196
+ "bassinet": 431,
1197
+ "bassoon": 432,
1198
+ "bath towel": 434,
1199
+ "bathing cap, swimming cap": 433,
1200
+ "bathtub, bathing tub, bath, tub": 435,
1201
+ "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon": 436,
1202
+ "beacon, lighthouse, beacon light, pharos": 437,
1203
+ "beagle": 162,
1204
+ "beaker": 438,
1205
+ "bearskin, busby, shako": 439,
1206
+ "beaver": 337,
1207
+ "bee": 309,
1208
+ "bee eater": 92,
1209
+ "beer bottle": 440,
1210
+ "beer glass": 441,
1211
+ "bell cote, bell cot": 442,
1212
+ "bell pepper": 945,
1213
+ "bib": 443,
1214
+ "bicycle-built-for-two, tandem bicycle, tandem": 444,
1215
+ "bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis": 349,
1216
+ "bikini, two-piece": 445,
1217
+ "binder, ring-binder": 446,
1218
+ "binoculars, field glasses, opera glasses": 447,
1219
+ "birdhouse": 448,
1220
+ "bison": 347,
1221
+ "bittern": 133,
1222
+ "black and gold garden spider, Argiope aurantia": 72,
1223
+ "black grouse": 80,
1224
+ "black stork, Ciconia nigra": 128,
1225
+ "black swan, Cygnus atratus": 100,
1226
+ "black widow, Latrodectus mactans": 75,
1227
+ "black-and-tan coonhound": 165,
1228
+ "black-footed ferret, ferret, Mustela nigripes": 359,
1229
+ "bloodhound, sleuthhound": 163,
1230
+ "bluetick": 164,
1231
+ "boa constrictor, Constrictor constrictor": 61,
1232
+ "boathouse": 449,
1233
+ "bobsled, bobsleigh, bob": 450,
1234
+ "bolete": 997,
1235
+ "bolo tie, bolo, bola tie, bola": 451,
1236
+ "bonnet, poke bonnet": 452,
1237
+ "book jacket, dust cover, dust jacket, dust wrapper": 921,
1238
+ "bookcase": 453,
1239
+ "bookshop, bookstore, bookstall": 454,
1240
+ "borzoi, Russian wolfhound": 169,
1241
+ "bottlecap": 455,
1242
+ "bow": 456,
1243
+ "bow tie, bow-tie, bowtie": 457,
1244
+ "box turtle, box tortoise": 37,
1245
+ "boxer": 242,
1246
+ "brain coral": 109,
1247
+ "brambling, Fringilla montifringilla": 10,
1248
+ "brass, memorial tablet, plaque": 458,
1249
+ "brassiere, bra, bandeau": 459,
1250
+ "breakwater, groin, groyne, mole, bulwark, seawall, jetty": 460,
1251
+ "breastplate, aegis, egis": 461,
1252
+ "briard": 226,
1253
+ "broccoli": 937,
1254
+ "broom": 462,
1255
+ "brown bear, bruin, Ursus arctos": 294,
1256
+ "bubble": 971,
1257
+ "bucket, pail": 463,
1258
+ "buckeye, horse chestnut, conker": 990,
1259
+ "buckle": 464,
1260
+ "bulbul": 16,
1261
+ "bull mastiff": 243,
1262
+ "bullet train, bullet": 466,
1263
+ "bulletproof vest": 465,
1264
+ "bullfrog, Rana catesbeiana": 30,
1265
+ "burrito": 965,
1266
+ "bustard": 138,
1267
+ "butcher shop, meat market": 467,
1268
+ "butternut squash": 942,
1269
+ "cab, hack, taxi, taxicab": 468,
1270
+ "cabbage butterfly": 324,
1271
+ "cairn, cairn terrier": 192,
1272
+ "caldron, cauldron": 469,
1273
+ "can opener, tin opener": 473,
1274
+ "candle, taper, wax light": 470,
1275
+ "cannon": 471,
1276
+ "canoe": 472,
1277
+ "capuchin, ringtail, Cebus capucinus": 378,
1278
+ "car mirror": 475,
1279
+ "car wheel": 479,
1280
+ "carbonara": 959,
1281
+ "cardigan": 474,
1282
+ "cardoon": 946,
1283
+ "carousel, carrousel, merry-go-round, roundabout, whirligig": 476,
1284
+ "carpenter's kit, tool kit": 477,
1285
+ "carton": 478,
1286
+ "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM": 480,
1287
+ "cassette": 481,
1288
+ "cassette player": 482,
1289
+ "castle": 483,
1290
+ "catamaran": 484,
1291
+ "cauliflower": 938,
1292
+ "cello, violoncello": 486,
1293
+ "cellular telephone, cellular phone, cellphone, cell, mobile phone": 487,
1294
+ "centipede": 79,
1295
+ "chain": 488,
1296
+ "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour": 490,
1297
+ "chain saw, chainsaw": 491,
1298
+ "chainlink fence": 489,
1299
+ "chambered nautilus, pearly nautilus, nautilus": 117,
1300
+ "cheeseburger": 933,
1301
+ "cheetah, chetah, Acinonyx jubatus": 293,
1302
+ "chest": 492,
1303
+ "chickadee": 19,
1304
+ "chiffonier, commode": 493,
1305
+ "chime, bell, gong": 494,
1306
+ "chimpanzee, chimp, Pan troglodytes": 367,
1307
+ "china cabinet, china closet": 495,
1308
+ "chiton, coat-of-mail shell, sea cradle, polyplacophore": 116,
1309
+ "chocolate sauce, chocolate syrup": 960,
1310
+ "chow, chow chow": 260,
1311
+ "church, church building": 497,
1312
+ "cicada, cicala": 316,
1313
+ "cinema, movie theater, movie theatre, movie house, picture palace": 498,
1314
+ "cleaver, meat cleaver, chopper": 499,
1315
+ "cliff dwelling": 500,
1316
+ "cliff, drop, drop-off": 972,
1317
+ "cloak": 501,
1318
+ "clog, geta, patten, sabot": 502,
1319
+ "clumber, clumber spaniel": 216,
1320
+ "cock": 7,
1321
+ "cocker spaniel, English cocker spaniel, cocker": 219,
1322
+ "cockroach, roach": 314,
1323
+ "cocktail shaker": 503,
1324
+ "coffee mug": 504,
1325
+ "coffeepot": 505,
1326
+ "coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch": 391,
1327
+ "coil, spiral, volute, whorl, helix": 506,
1328
+ "collie": 231,
1329
+ "colobus, colobus monkey": 375,
1330
+ "combination lock": 507,
1331
+ "comic book": 917,
1332
+ "common iguana, iguana, Iguana iguana": 39,
1333
+ "common newt, Triturus vulgaris": 26,
1334
+ "computer keyboard, keypad": 508,
1335
+ "conch": 112,
1336
+ "confectionery, confectionary, candy store": 509,
1337
+ "consomme": 925,
1338
+ "container ship, containership, container vessel": 510,
1339
+ "convertible": 511,
1340
+ "coral fungus": 991,
1341
+ "coral reef": 973,
1342
+ "corkscrew, bottle screw": 512,
1343
+ "corn": 987,
1344
+ "cornet, horn, trumpet, trump": 513,
1345
+ "coucal": 91,
1346
+ "cougar, puma, catamount, mountain lion, painter, panther, Felis concolor": 286,
1347
+ "cowboy boot": 514,
1348
+ "cowboy hat, ten-gallon hat": 515,
1349
+ "coyote, prairie wolf, brush wolf, Canis latrans": 272,
1350
+ "cradle": 516,
1351
+ "crane": 517,
1352
+ "crash helmet": 518,
1353
+ "crate": 519,
1354
+ "crayfish, crawfish, crawdad, crawdaddy": 124,
1355
+ "crib, cot": 520,
1356
+ "cricket": 312,
1357
+ "croquet ball": 522,
1358
+ "crossword puzzle, crossword": 918,
1359
+ "crutch": 523,
1360
+ "cucumber, cuke": 943,
1361
+ "cuirass": 524,
1362
+ "cup": 968,
1363
+ "curly-coated retriever": 206,
1364
+ "custard apple": 956,
1365
+ "daisy": 985,
1366
+ "dalmatian, coach dog, carriage dog": 251,
1367
+ "dam, dike, dyke": 525,
1368
+ "damselfly": 320,
1369
+ "desk": 526,
1370
+ "desktop computer": 527,
1371
+ "dhole, Cuon alpinus": 274,
1372
+ "dial telephone, dial phone": 528,
1373
+ "diamondback, diamondback rattlesnake, Crotalus adamanteus": 67,
1374
+ "diaper, nappy, napkin": 529,
1375
+ "digital clock": 530,
1376
+ "digital watch": 531,
1377
+ "dingo, warrigal, warragal, Canis dingo": 273,
1378
+ "dining table, board": 532,
1379
+ "dishrag, dishcloth": 533,
1380
+ "dishwasher, dish washer, dishwashing machine": 534,
1381
+ "disk brake, disc brake": 535,
1382
+ "dock, dockage, docking facility": 536,
1383
+ "dogsled, dog sled, dog sleigh": 537,
1384
+ "dome": 538,
1385
+ "doormat, welcome mat": 539,
1386
+ "dough": 961,
1387
+ "dowitcher": 142,
1388
+ "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk": 319,
1389
+ "drake": 97,
1390
+ "drilling platform, offshore rig": 540,
1391
+ "drum, membranophone, tympan": 541,
1392
+ "drumstick": 542,
1393
+ "dugong, Dugong dugon": 149,
1394
+ "dumbbell": 543,
1395
+ "dung beetle": 305,
1396
+ "ear, spike, capitulum": 998,
1397
+ "earthstar": 995,
1398
+ "echidna, spiny anteater, anteater": 102,
1399
+ "eel": 390,
1400
+ "eft": 27,
1401
+ "eggnog": 969,
1402
+ "electric fan, blower": 545,
1403
+ "electric guitar": 546,
1404
+ "electric locomotive": 547,
1405
+ "electric ray, crampfish, numbfish, torpedo": 5,
1406
+ "entertainment center": 548,
1407
+ "envelope": 549,
1408
+ "espresso": 967,
1409
+ "espresso maker": 550,
1410
+ "face powder": 551,
1411
+ "feather boa, boa": 552,
1412
+ "fiddler crab": 120,
1413
+ "fig": 952,
1414
+ "file, file cabinet, filing cabinet": 553,
1415
+ "fire engine, fire truck": 555,
1416
+ "fire screen, fireguard": 556,
1417
+ "fireboat": 554,
1418
+ "flagpole, flagstaff": 557,
1419
+ "flamingo": 130,
1420
+ "flat-coated retriever": 205,
1421
+ "flatworm, platyhelminth": 110,
1422
+ "flute, transverse flute": 558,
1423
+ "fly": 308,
1424
+ "folding chair": 559,
1425
+ "football helmet": 560,
1426
+ "forklift": 561,
1427
+ "fountain": 562,
1428
+ "fountain pen": 563,
1429
+ "four-poster": 564,
1430
+ "fox squirrel, eastern fox squirrel, Sciurus niger": 335,
1431
+ "freight car": 565,
1432
+ "frilled lizard, Chlamydosaurus kingi": 43,
1433
+ "frying pan, frypan, skillet": 567,
1434
+ "fur coat": 568,
1435
+ "gar, garfish, garpike, billfish, Lepisosteus osseus": 395,
1436
+ "garbage truck, dustcart": 569,
1437
+ "garden spider, Aranea diademata": 74,
1438
+ "garter snake, grass snake": 57,
1439
+ "gas pump, gasoline pump, petrol pump, island dispenser": 571,
1440
+ "gasmask, respirator, gas helmet": 570,
1441
+ "gazelle": 353,
1442
+ "geyser": 974,
1443
+ "giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca": 388,
1444
+ "giant schnauzer": 197,
1445
+ "gibbon, Hylobates lar": 368,
1446
+ "go-kart": 573,
1447
+ "goblet": 572,
1448
+ "golden retriever": 207,
1449
+ "goldfinch, Carduelis carduelis": 11,
1450
+ "goldfish, Carassius auratus": 1,
1451
+ "golf ball": 574,
1452
+ "golfcart, golf cart": 575,
1453
+ "gondola": 576,
1454
+ "gong, tam-tam": 577,
1455
+ "goose": 99,
1456
+ "gorilla, Gorilla gorilla": 366,
1457
+ "gown": 578,
1458
+ "grand piano, grand": 579,
1459
+ "grasshopper, hopper": 311,
1460
+ "great grey owl, great gray owl, Strix nebulosa": 24,
1461
+ "great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias": 2,
1462
+ "green lizard, Lacerta viridis": 46,
1463
+ "green mamba": 64,
1464
+ "green snake, grass snake": 55,
1465
+ "greenhouse, nursery, glasshouse": 580,
1466
+ "grey fox, gray fox, Urocyon cinereoargenteus": 280,
1467
+ "grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus": 147,
1468
+ "grille, radiator grille": 581,
1469
+ "grocery store, grocery, food market, market": 582,
1470
+ "groenendael": 224,
1471
+ "groom, bridegroom": 982,
1472
+ "ground beetle, carabid beetle": 302,
1473
+ "guacamole": 924,
1474
+ "guenon, guenon monkey": 370,
1475
+ "guillotine": 583,
1476
+ "guinea pig, Cavia cobaya": 338,
1477
+ "gyromitra": 993,
1478
+ "hair slide": 584,
1479
+ "hair spray": 585,
1480
+ "half track": 586,
1481
+ "hammer": 587,
1482
+ "hammerhead, hammerhead shark": 4,
1483
+ "hamper": 588,
1484
+ "hamster": 333,
1485
+ "hand blower, blow dryer, blow drier, hair dryer, hair drier": 589,
1486
+ "hand-held computer, hand-held microcomputer": 590,
1487
+ "handkerchief, hankie, hanky, hankey": 591,
1488
+ "hard disc, hard disk, fixed disk": 592,
1489
+ "hare": 331,
1490
+ "harmonica, mouth organ, harp, mouth harp": 593,
1491
+ "harp": 594,
1492
+ "hartebeest": 351,
1493
+ "harvester, reaper": 595,
1494
+ "harvestman, daddy longlegs, Phalangium opilio": 70,
1495
+ "hatchet": 596,
1496
+ "hay": 958,
1497
+ "head cabbage": 936,
1498
+ "hen": 8,
1499
+ "hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa": 996,
1500
+ "hermit crab": 125,
1501
+ "hip, rose hip, rosehip": 989,
1502
+ "hippopotamus, hippo, river horse, Hippopotamus amphibius": 344,
1503
+ "hog, pig, grunter, squealer, Sus scrofa": 341,
1504
+ "hognose snake, puff adder, sand viper": 54,
1505
+ "holster": 597,
1506
+ "home theater, home theatre": 598,
1507
+ "honeycomb": 599,
1508
+ "hook, claw": 600,
1509
+ "hoopskirt, crinoline": 601,
1510
+ "horizontal bar, high bar": 602,
1511
+ "hornbill": 93,
1512
+ "horned viper, cerastes, sand viper, horned asp, Cerastes cornutus": 66,
1513
+ "horse cart, horse-cart": 603,
1514
+ "hot pot, hotpot": 926,
1515
+ "hotdog, hot dog, red hot": 934,
1516
+ "hourglass": 604,
1517
+ "house finch, linnet, Carpodacus mexicanus": 12,
1518
+ "howler monkey, howler": 379,
1519
+ "hummingbird": 94,
1520
+ "hyena, hyaena": 276,
1521
+ "iPod": 605,
1522
+ "ibex, Capra ibex": 350,
1523
+ "ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus": 296,
1524
+ "ice cream, icecream": 928,
1525
+ "ice lolly, lolly, lollipop, popsicle": 929,
1526
+ "impala, Aepyceros melampus": 352,
1527
+ "indigo bunting, indigo finch, indigo bird, Passerina cyanea": 14,
1528
+ "indri, indris, Indri indri, Indri brevicaudatus": 384,
1529
+ "iron, smoothing iron": 606,
1530
+ "isopod": 126,
1531
+ "jacamar": 95,
1532
+ "jack-o'-lantern": 607,
1533
+ "jackfruit, jak, jack": 955,
1534
+ "jaguar, panther, Panthera onca, Felis onca": 290,
1535
+ "jay": 17,
1536
+ "jean, blue jean, denim": 608,
1537
+ "jeep, landrover": 609,
1538
+ "jellyfish": 107,
1539
+ "jersey, T-shirt, tee shirt": 610,
1540
+ "jigsaw puzzle": 611,
1541
+ "jinrikisha, ricksha, rickshaw": 612,
1542
+ "joystick": 613,
1543
+ "junco, snowbird": 13,
1544
+ "keeshond": 261,
1545
+ "kelpie": 227,
1546
+ "killer whale, killer, orca, grampus, sea wolf, Orcinus orca": 148,
1547
+ "kimono": 614,
1548
+ "king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica": 121,
1549
+ "king penguin, Aptenodytes patagonica": 145,
1550
+ "king snake, kingsnake": 56,
1551
+ "kit fox, Vulpes macrotis": 278,
1552
+ "kite": 21,
1553
+ "knee pad": 615,
1554
+ "knot": 616,
1555
+ "koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus": 105,
1556
+ "komondor": 228,
1557
+ "kuvasz": 222,
1558
+ "lab coat, laboratory coat": 617,
1559
+ "lacewing, lacewing fly": 318,
1560
+ "ladle": 618,
1561
+ "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle": 301,
1562
+ "lakeside, lakeshore": 975,
1563
+ "lampshade, lamp shade": 619,
1564
+ "langur": 374,
1565
+ "laptop, laptop computer": 620,
1566
+ "lawn mower, mower": 621,
1567
+ "leaf beetle, chrysomelid": 304,
1568
+ "leafhopper": 317,
1569
+ "leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea": 34,
1570
+ "lemon": 951,
1571
+ "lens cap, lens cover": 622,
1572
+ "leopard, Panthera pardus": 288,
1573
+ "lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens": 387,
1574
+ "letter opener, paper knife, paperknife": 623,
1575
+ "library": 624,
1576
+ "lifeboat": 625,
1577
+ "lighter, light, igniter, ignitor": 626,
1578
+ "limousine, limo": 627,
1579
+ "limpkin, Aramus pictus": 135,
1580
+ "liner, ocean liner": 628,
1581
+ "lion, king of beasts, Panthera leo": 291,
1582
+ "lionfish": 396,
1583
+ "lipstick, lip rouge": 629,
1584
+ "little blue heron, Egretta caerulea": 131,
1585
+ "llama": 355,
1586
+ "loggerhead, loggerhead turtle, Caretta caretta": 33,
1587
+ "long-horned beetle, longicorn, longicorn beetle": 303,
1588
+ "lorikeet": 90,
1589
+ "lotion": 631,
1590
+ "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system": 632,
1591
+ "loupe, jeweler's loupe": 633,
1592
+ "lumbermill, sawmill": 634,
1593
+ "lycaenid, lycaenid butterfly": 326,
1594
+ "lynx, catamount": 287,
1595
+ "macaque": 373,
1596
+ "macaw": 88,
1597
+ "magnetic compass": 635,
1598
+ "magpie": 18,
1599
+ "mailbag, postbag": 636,
1600
+ "mailbox, letter box": 637,
1601
+ "maillot": 638,
1602
+ "maillot, tank suit": 639,
1603
+ "malamute, malemute, Alaskan malamute": 249,
1604
+ "malinois": 225,
1605
+ "manhole cover": 640,
1606
+ "mantis, mantid": 315,
1607
+ "maraca": 641,
1608
+ "marimba, xylophone": 642,
1609
+ "marmoset": 377,
1610
+ "marmot": 336,
1611
+ "mashed potato": 935,
1612
+ "mask": 643,
1613
+ "matchstick": 644,
1614
+ "maypole": 645,
1615
+ "maze, labyrinth": 646,
1616
+ "measuring cup": 647,
1617
+ "meat loaf, meatloaf": 962,
1618
+ "medicine chest, medicine cabinet": 648,
1619
+ "meerkat, mierkat": 299,
1620
+ "megalith, megalithic structure": 649,
1621
+ "menu": 922,
1622
+ "microphone, mike": 650,
1623
+ "microwave, microwave oven": 651,
1624
+ "military uniform": 652,
1625
+ "milk can": 653,
1626
+ "miniature pinscher": 237,
1627
+ "miniature poodle": 266,
1628
+ "miniature schnauzer": 196,
1629
+ "minibus": 654,
1630
+ "miniskirt, mini": 655,
1631
+ "minivan": 656,
1632
+ "mink": 357,
1633
+ "missile": 657,
1634
+ "mitten": 658,
1635
+ "mixing bowl": 659,
1636
+ "mobile home, manufactured home": 660,
1637
+ "modem": 662,
1638
+ "monarch, monarch butterfly, milkweed butterfly, Danaus plexippus": 323,
1639
+ "monastery": 663,
1640
+ "mongoose": 298,
1641
+ "monitor": 664,
1642
+ "moped": 665,
1643
+ "mortar": 666,
1644
+ "mortarboard": 667,
1645
+ "mosque": 668,
1646
+ "mosquito net": 669,
1647
+ "motor scooter, scooter": 670,
1648
+ "mountain bike, all-terrain bike, off-roader": 671,
1649
+ "mountain tent": 672,
1650
+ "mouse, computer mouse": 673,
1651
+ "mousetrap": 674,
1652
+ "moving van": 675,
1653
+ "mud turtle": 35,
1654
+ "mushroom": 947,
1655
+ "muzzle": 676,
1656
+ "nail": 677,
1657
+ "neck brace": 678,
1658
+ "necklace": 679,
1659
+ "nematode, nematode worm, roundworm": 111,
1660
+ "night snake, Hypsiglena torquata": 60,
1661
+ "nipple": 680,
1662
+ "notebook, notebook computer": 681,
1663
+ "obelisk": 682,
1664
+ "oboe, hautboy, hautbois": 683,
1665
+ "ocarina, sweet potato": 684,
1666
+ "odometer, hodometer, mileometer, milometer": 685,
1667
+ "oil filter": 686,
1668
+ "orange": 950,
1669
+ "orangutan, orang, orangutang, Pongo pygmaeus": 365,
1670
+ "organ, pipe organ": 687,
1671
+ "oscilloscope, scope, cathode-ray oscilloscope, CRO": 688,
1672
+ "ostrich, Struthio camelus": 9,
1673
+ "otter": 360,
1674
+ "otterhound, otter hound": 175,
1675
+ "overskirt": 689,
1676
+ "ox": 345,
1677
+ "oxcart": 690,
1678
+ "oxygen mask": 691,
1679
+ "oystercatcher, oyster catcher": 143,
1680
+ "packet": 692,
1681
+ "paddle, boat paddle": 693,
1682
+ "paddlewheel, paddle wheel": 694,
1683
+ "padlock": 695,
1684
+ "paintbrush": 696,
1685
+ "pajama, pyjama, pj's, jammies": 697,
1686
+ "palace": 698,
1687
+ "panpipe, pandean pipe, syrinx": 699,
1688
+ "paper towel": 700,
1689
+ "papillon": 157,
1690
+ "parachute, chute": 701,
1691
+ "parallel bars, bars": 702,
1692
+ "park bench": 703,
1693
+ "parking meter": 704,
1694
+ "partridge": 86,
1695
+ "passenger car, coach, carriage": 705,
1696
+ "patas, hussar monkey, Erythrocebus patas": 371,
1697
+ "patio, terrace": 706,
1698
+ "pay-phone, pay-station": 707,
1699
+ "peacock": 84,
1700
+ "pedestal, plinth, footstall": 708,
1701
+ "pelican": 144,
1702
+ "pencil box, pencil case": 709,
1703
+ "pencil sharpener": 710,
1704
+ "perfume, essence": 711,
1705
+ "photocopier": 713,
1706
+ "pick, plectrum, plectron": 714,
1707
+ "pickelhaube": 715,
1708
+ "picket fence, paling": 716,
1709
+ "pickup, pickup truck": 717,
1710
+ "pier": 718,
1711
+ "piggy bank, penny bank": 719,
1712
+ "pill bottle": 720,
1713
+ "pillow": 721,
1714
+ "pineapple, ananas": 953,
1715
+ "ping-pong ball": 722,
1716
+ "pinwheel": 723,
1717
+ "pirate, pirate ship": 724,
1718
+ "pitcher, ewer": 725,
1719
+ "pizza, pizza pie": 963,
1720
+ "plane, carpenter's plane, woodworking plane": 726,
1721
+ "planetarium": 727,
1722
+ "plastic bag": 728,
1723
+ "plate": 923,
1724
+ "plate rack": 729,
1725
+ "platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus": 103,
1726
+ "plow, plough": 730,
1727
+ "plunger, plumber's helper": 731,
1728
+ "pole": 733,
1729
+ "polecat, fitch, foulmart, foumart, Mustela putorius": 358,
1730
+ "police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria": 734,
1731
+ "pomegranate": 957,
1732
+ "poncho": 735,
1733
+ "pool table, billiard table, snooker table": 736,
1734
+ "pop bottle, soda bottle": 737,
1735
+ "porcupine, hedgehog": 334,
1736
+ "pot, flowerpot": 738,
1737
+ "potpie": 964,
1738
+ "potter's wheel": 739,
1739
+ "power drill": 740,
1740
+ "prairie chicken, prairie grouse, prairie fowl": 83,
1741
+ "prayer rug, prayer mat": 741,
1742
+ "pretzel": 932,
1743
+ "printer": 742,
1744
+ "prison, prison house": 743,
1745
+ "proboscis monkey, Nasalis larvatus": 376,
1746
+ "projectile, missile": 744,
1747
+ "projector": 745,
1748
+ "promontory, headland, head, foreland": 976,
1749
+ "ptarmigan": 81,
1750
+ "puck, hockey puck": 746,
1751
+ "puffer, pufferfish, blowfish, globefish": 397,
1752
+ "pug, pug-dog": 254,
1753
+ "punching bag, punch bag, punching ball, punchball": 747,
1754
+ "purse": 748,
1755
+ "quail": 85,
1756
+ "quill, quill pen": 749,
1757
+ "quilt, comforter, comfort, puff": 750,
1758
+ "racer, race car, racing car": 751,
1759
+ "racket, racquet": 752,
1760
+ "radiator": 753,
1761
+ "radio telescope, radio reflector": 755,
1762
+ "radio, wireless": 754,
1763
+ "rain barrel": 756,
1764
+ "ram, tup": 348,
1765
+ "rapeseed": 984,
1766
+ "recreational vehicle, RV, R.V.": 757,
1767
+ "red fox, Vulpes vulpes": 277,
1768
+ "red wine": 966,
1769
+ "red wolf, maned wolf, Canis rufus, Canis niger": 271,
1770
+ "red-backed sandpiper, dunlin, Erolia alpina": 140,
1771
+ "red-breasted merganser, Mergus serrator": 98,
1772
+ "redbone": 168,
1773
+ "redshank, Tringa totanus": 141,
1774
+ "reel": 758,
1775
+ "reflex camera": 759,
1776
+ "refrigerator, icebox": 760,
1777
+ "remote control, remote": 761,
1778
+ "restaurant, eating house, eating place, eatery": 762,
1779
+ "revolver, six-gun, six-shooter": 763,
1780
+ "rhinoceros beetle": 306,
1781
+ "rifle": 764,
1782
+ "ringlet, ringlet butterfly": 322,
1783
+ "ringneck snake, ring-necked snake, ring snake": 53,
1784
+ "robin, American robin, Turdus migratorius": 15,
1785
+ "rock beauty, Holocanthus tricolor": 392,
1786
+ "rock crab, Cancer irroratus": 119,
1787
+ "rock python, rock snake, Python sebae": 62,
1788
+ "rocking chair, rocker": 765,
1789
+ "rotisserie": 766,
1790
+ "rubber eraser, rubber, pencil eraser": 767,
1791
+ "ruddy turnstone, Arenaria interpres": 139,
1792
+ "ruffed grouse, partridge, Bonasa umbellus": 82,
1793
+ "rugby ball": 768,
1794
+ "rule, ruler": 769,
1795
+ "running shoe": 770,
1796
+ "safe": 771,
1797
+ "safety pin": 772,
1798
+ "saltshaker, salt shaker": 773,
1799
+ "sandal": 774,
1800
+ "sandbar, sand bar": 977,
1801
+ "sarong": 775,
1802
+ "sax, saxophone": 776,
1803
+ "scabbard": 777,
1804
+ "scale, weighing machine": 778,
1805
+ "schipperke": 223,
1806
+ "school bus": 779,
1807
+ "schooner": 780,
1808
+ "scoreboard": 781,
1809
+ "scorpion": 71,
1810
+ "screen, CRT screen": 782,
1811
+ "screw": 783,
1812
+ "screwdriver": 784,
1813
+ "scuba diver": 983,
1814
+ "sea anemone, anemone": 108,
1815
+ "sea cucumber, holothurian": 329,
1816
+ "sea lion": 150,
1817
+ "sea slug, nudibranch": 115,
1818
+ "sea snake": 65,
1819
+ "sea urchin": 328,
1820
+ "seashore, coast, seacoast, sea-coast": 978,
1821
+ "seat belt, seatbelt": 785,
1822
+ "sewing machine": 786,
1823
+ "shield, buckler": 787,
1824
+ "shoe shop, shoe-shop, shoe store": 788,
1825
+ "shoji": 789,
1826
+ "shopping basket": 790,
1827
+ "shopping cart": 791,
1828
+ "shovel": 792,
1829
+ "shower cap": 793,
1830
+ "shower curtain": 794,
1831
+ "siamang, Hylobates syndactylus, Symphalangus syndactylus": 369,
1832
+ "sidewinder, horned rattlesnake, Crotalus cerastes": 68,
1833
+ "silky terrier, Sydney silky": 201,
1834
+ "ski": 795,
1835
+ "ski mask": 796,
1836
+ "skunk, polecat, wood pussy": 361,
1837
+ "sleeping bag": 797,
1838
+ "slide rule, slipstick": 798,
1839
+ "sliding door": 799,
1840
+ "slot, one-armed bandit": 800,
1841
+ "sloth bear, Melursus ursinus, Ursus ursinus": 297,
1842
+ "slug": 114,
1843
+ "snail": 113,
1844
+ "snorkel": 801,
1845
+ "snow leopard, ounce, Panthera uncia": 289,
1846
+ "snowmobile": 802,
1847
+ "snowplow, snowplough": 803,
1848
+ "soap dispenser": 804,
1849
+ "soccer ball": 805,
1850
+ "sock": 806,
1851
+ "soft-coated wheaten terrier": 202,
1852
+ "solar dish, solar collector, solar furnace": 807,
1853
+ "sombrero": 808,
1854
+ "sorrel": 339,
1855
+ "soup bowl": 809,
1856
+ "space bar": 810,
1857
+ "space heater": 811,
1858
+ "space shuttle": 812,
1859
+ "spaghetti squash": 940,
1860
+ "spatula": 813,
1861
+ "speedboat": 814,
1862
+ "spider monkey, Ateles geoffroyi": 381,
1863
+ "spider web, spider's web": 815,
1864
+ "spindle": 816,
1865
+ "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish": 123,
1866
+ "spoonbill": 129,
1867
+ "sports car, sport car": 817,
1868
+ "spotlight, spot": 818,
1869
+ "spotted salamander, Ambystoma maculatum": 28,
1870
+ "squirrel monkey, Saimiri sciureus": 382,
1871
+ "stage": 819,
1872
+ "standard poodle": 267,
1873
+ "standard schnauzer": 198,
1874
+ "starfish, sea star": 327,
1875
+ "steam locomotive": 820,
1876
+ "steel arch bridge": 821,
1877
+ "steel drum": 822,
1878
+ "stethoscope": 823,
1879
+ "stingray": 6,
1880
+ "stinkhorn, carrion fungus": 994,
1881
+ "stole": 824,
1882
+ "stone wall": 825,
1883
+ "stopwatch, stop watch": 826,
1884
+ "stove": 827,
1885
+ "strainer": 828,
1886
+ "strawberry": 949,
1887
+ "street sign": 919,
1888
+ "streetcar, tram, tramcar, trolley, trolley car": 829,
1889
+ "stretcher": 830,
1890
+ "studio couch, day bed": 831,
1891
+ "stupa, tope": 832,
1892
+ "sturgeon": 394,
1893
+ "submarine, pigboat, sub, U-boat": 833,
1894
+ "suit, suit of clothes": 834,
1895
+ "sulphur butterfly, sulfur butterfly": 325,
1896
+ "sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita": 89,
1897
+ "sundial": 835,
1898
+ "sunglass": 836,
1899
+ "sunglasses, dark glasses, shades": 837,
1900
+ "sunscreen, sunblock, sun blocker": 838,
1901
+ "suspension bridge": 839,
1902
+ "swab, swob, mop": 840,
1903
+ "sweatshirt": 841,
1904
+ "swimming trunks, bathing trunks": 842,
1905
+ "swing": 843,
1906
+ "switch, electric switch, electrical switch": 844,
1907
+ "syringe": 845,
1908
+ "tabby, tabby cat": 281,
1909
+ "table lamp": 846,
1910
+ "tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui": 32,
1911
+ "tank, army tank, armored combat vehicle, armoured combat vehicle": 847,
1912
+ "tape player": 848,
1913
+ "tarantula": 76,
1914
+ "teapot": 849,
1915
+ "teddy, teddy bear": 850,
1916
+ "television, television system": 851,
1917
+ "tench, Tinca tinca": 0,
1918
+ "tennis ball": 852,
1919
+ "terrapin": 36,
1920
+ "thatch, thatched roof": 853,
1921
+ "theater curtain, theatre curtain": 854,
1922
+ "thimble": 855,
1923
+ "three-toed sloth, ai, Bradypus tridactylus": 364,
1924
+ "thresher, thrasher, threshing machine": 856,
1925
+ "throne": 857,
1926
+ "thunder snake, worm snake, Carphophis amoenus": 52,
1927
+ "tick": 78,
1928
+ "tiger beetle": 300,
1929
+ "tiger cat": 282,
1930
+ "tiger shark, Galeocerdo cuvieri": 3,
1931
+ "tiger, Panthera tigris": 292,
1932
+ "tile roof": 858,
1933
+ "timber wolf, grey wolf, gray wolf, Canis lupus": 269,
1934
+ "titi, titi monkey": 380,
1935
+ "toaster": 859,
1936
+ "tobacco shop, tobacconist shop, tobacconist": 860,
1937
+ "toilet seat": 861,
1938
+ "toilet tissue, toilet paper, bathroom tissue": 999,
1939
+ "torch": 862,
1940
+ "totem pole": 863,
1941
+ "toucan": 96,
1942
+ "tow truck, tow car, wrecker": 864,
1943
+ "toy poodle": 265,
1944
+ "toy terrier": 158,
1945
+ "toyshop": 865,
1946
+ "tractor": 866,
1947
+ "traffic light, traffic signal, stoplight": 920,
1948
+ "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi": 867,
1949
+ "tray": 868,
1950
+ "tree frog, tree-frog": 31,
1951
+ "trench coat": 869,
1952
+ "triceratops": 51,
1953
+ "tricycle, trike, velocipede": 870,
1954
+ "trifle": 927,
1955
+ "trilobite": 69,
1956
+ "trimaran": 871,
1957
+ "tripod": 872,
1958
+ "triumphal arch": 873,
1959
+ "trolleybus, trolley coach, trackless trolley": 874,
1960
+ "trombone": 875,
1961
+ "tub, vat": 876,
1962
+ "turnstile": 877,
1963
+ "tusker": 101,
1964
+ "typewriter keyboard": 878,
1965
+ "umbrella": 879,
1966
+ "unicycle, monocycle": 880,
1967
+ "upright, upright piano": 881,
1968
+ "vacuum, vacuum cleaner": 882,
1969
+ "valley, vale": 979,
1970
+ "vase": 883,
1971
+ "vault": 884,
1972
+ "velvet": 885,
1973
+ "vending machine": 886,
1974
+ "vestment": 887,
1975
+ "viaduct": 888,
1976
+ "vine snake": 59,
1977
+ "violin, fiddle": 889,
1978
+ "vizsla, Hungarian pointer": 211,
1979
+ "volcano": 980,
1980
+ "volleyball": 890,
1981
+ "vulture": 23,
1982
+ "waffle iron": 891,
1983
+ "walking stick, walkingstick, stick insect": 313,
1984
+ "wall clock": 892,
1985
+ "wallaby, brush kangaroo": 104,
1986
+ "wallet, billfold, notecase, pocketbook": 893,
1987
+ "wardrobe, closet, press": 894,
1988
+ "warplane, military plane": 895,
1989
+ "warthog": 343,
1990
+ "washbasin, handbasin, washbowl, lavabo, wash-hand basin": 896,
1991
+ "washer, automatic washer, washing machine": 897,
1992
+ "water bottle": 898,
1993
+ "water buffalo, water ox, Asiatic buffalo, Bubalus bubalis": 346,
1994
+ "water jug": 899,
1995
+ "water ouzel, dipper": 20,
1996
+ "water snake": 58,
1997
+ "water tower": 900,
1998
+ "weasel": 356,
1999
+ "web site, website, internet site, site": 916,
2000
+ "weevil": 307,
2001
+ "whippet": 172,
2002
+ "whiptail, whiptail lizard": 41,
2003
+ "whiskey jug": 901,
2004
+ "whistle": 902,
2005
+ "white stork, Ciconia ciconia": 127,
2006
+ "white wolf, Arctic wolf, Canis lupus tundrarum": 270,
2007
+ "wig": 903,
2008
+ "wild boar, boar, Sus scrofa": 342,
2009
+ "window screen": 904,
2010
+ "window shade": 905,
2011
+ "wine bottle": 907,
2012
+ "wing": 908,
2013
+ "wire-haired fox terrier": 188,
2014
+ "wok": 909,
2015
+ "wolf spider, hunting spider": 77,
2016
+ "wombat": 106,
2017
+ "wood rabbit, cottontail, cottontail rabbit": 330,
2018
+ "wooden spoon": 910,
2019
+ "wool, woolen, woollen": 911,
2020
+ "worm fence, snake fence, snake-rail fence, Virginia fence": 912,
2021
+ "wreck": 913,
2022
+ "yawl": 914,
2023
+ "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum": 986,
2024
+ "yurt": 915,
2025
+ "zebra": 340,
2026
+ "zucchini, courgette": 939
2027
+ },
2028
+ "layer_norm_eps": 1e-12,
2029
+ "layer_scale_init_value": 1e-06,
2030
+ "model_type": "convnext",
2031
+ "neuron": {
2032
+ "auto_cast": null,
2033
+ "auto_cast_type": null,
2034
+ "compiler_type": "neuronx-cc",
2035
+ "compiler_version": "2.21.18209.0+043b1bf7",
2036
+ "disable_fallback": false,
2037
+ "disable_fast_relayout": false,
2038
+ "dynamic_batch_size": false,
2039
+ "float_dtype": "fp32",
2040
+ "inline_weights_to_neff": true,
2041
+ "instance_type": "trn1",
2042
+ "int_dtype": "int64",
2043
+ "model_type": "convnext",
2044
+ "optlevel": "2",
2045
+ "output_attentions": false,
2046
+ "output_hidden_states": false,
2047
+ "static_batch_size": 1,
2048
+ "task": "image-classification",
2049
+ "tensor_parallel_size": 1
2050
+ },
2051
+ "num_channels": 3,
2052
+ "num_stages": 4,
2053
+ "out_features": [
2054
+ "stage4"
2055
+ ],
2056
+ "out_indices": [
2057
+ 4
2058
+ ],
2059
+ "patch_size": 4,
2060
+ "stage_names": [
2061
+ "stem",
2062
+ "stage1",
2063
+ "stage2",
2064
+ "stage3",
2065
+ "stage4"
2066
+ ]
2067
+ }
neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/convnextv2/hf-internal-testing/tiny-random-ConvNextV2Model/fd79c16eca1caa09810e.json ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_entry_class": "SingleModelCacheEntry",
3
+ "_model_id": "hf-internal-testing/tiny-random-ConvNextV2Model",
4
+ "_task": "image-classification",
5
+ "architectures": [
6
+ "ConvNextV2Model"
7
+ ],
8
+ "depths": [
9
+ 2,
10
+ 2,
11
+ 3,
12
+ 2
13
+ ],
14
+ "drop_path_rate": 0.0,
15
+ "dtype": "float32",
16
+ "hidden_act": "gelu",
17
+ "hidden_sizes": [
18
+ 10,
19
+ 20,
20
+ 30,
21
+ 40
22
+ ],
23
+ "id2label": {
24
+ "0": "LABEL_0",
25
+ "1": "LABEL_1",
26
+ "2": "LABEL_2",
27
+ "3": "LABEL_3",
28
+ "4": "LABEL_4",
29
+ "5": "LABEL_5",
30
+ "6": "LABEL_6",
31
+ "7": "LABEL_7",
32
+ "8": "LABEL_8",
33
+ "9": "LABEL_9"
34
+ },
35
+ "image_size": 224,
36
+ "initializer_range": 0.02,
37
+ "label2id": {
38
+ "LABEL_0": 0,
39
+ "LABEL_1": 1,
40
+ "LABEL_2": 2,
41
+ "LABEL_3": 3,
42
+ "LABEL_4": 4,
43
+ "LABEL_5": 5,
44
+ "LABEL_6": 6,
45
+ "LABEL_7": 7,
46
+ "LABEL_8": 8,
47
+ "LABEL_9": 9
48
+ },
49
+ "layer_norm_eps": 1e-12,
50
+ "model_type": "convnextv2",
51
+ "neuron": {
52
+ "auto_cast": null,
53
+ "auto_cast_type": null,
54
+ "compiler_type": "neuronx-cc",
55
+ "compiler_version": "2.21.18209.0+043b1bf7",
56
+ "disable_fallback": false,
57
+ "disable_fast_relayout": false,
58
+ "dynamic_batch_size": false,
59
+ "float_dtype": "fp32",
60
+ "inline_weights_to_neff": true,
61
+ "instance_type": "trn1",
62
+ "int_dtype": "int64",
63
+ "model_type": "convnextv2",
64
+ "optlevel": "2",
65
+ "output_attentions": false,
66
+ "output_hidden_states": false,
67
+ "static_batch_size": 1,
68
+ "task": "image-classification",
69
+ "tensor_parallel_size": 1
70
+ },
71
+ "num_channels": 3,
72
+ "num_stages": 4,
73
+ "out_features": [
74
+ "stage2",
75
+ "stage3",
76
+ "stage4"
77
+ ],
78
+ "out_indices": [
79
+ 2,
80
+ 3,
81
+ 4
82
+ ],
83
+ "patch_size": 4,
84
+ "stage_names": [
85
+ "stem",
86
+ "stage1",
87
+ "stage2",
88
+ "stage3",
89
+ "stage4"
90
+ ]
91
+ }
neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/cvt/hf-internal-testing/tiny-random-CvTModel/1afd90e8017356415fb8.json ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_entry_class": "SingleModelCacheEntry",
3
+ "_model_id": "hf-internal-testing/tiny-random-CvTModel",
4
+ "_task": "image-classification",
5
+ "architectures": [
6
+ "CvtModel"
7
+ ],
8
+ "attention_drop_rate": [
9
+ 0.0,
10
+ 0.0,
11
+ 0.0
12
+ ],
13
+ "cls_token": [
14
+ false,
15
+ false,
16
+ true
17
+ ],
18
+ "depth": [
19
+ 1,
20
+ 2,
21
+ 10
22
+ ],
23
+ "drop_path_rate": [
24
+ 0.0,
25
+ 0.0,
26
+ 0.1
27
+ ],
28
+ "drop_rate": [
29
+ 0.0,
30
+ 0.0,
31
+ 0.0
32
+ ],
33
+ "dtype": "float32",
34
+ "embed_dim": [
35
+ 16,
36
+ 48,
37
+ 96
38
+ ],
39
+ "image_size": 64,
40
+ "initializer_range": 0.02,
41
+ "kernel_qkv": [
42
+ 3,
43
+ 3,
44
+ 3
45
+ ],
46
+ "layer_norm_eps": 1e-12,
47
+ "mlp_ratio": [
48
+ 4.0,
49
+ 4.0,
50
+ 4.0
51
+ ],
52
+ "model_type": "cvt",
53
+ "neuron": {
54
+ "auto_cast": null,
55
+ "auto_cast_type": null,
56
+ "compiler_type": "neuronx-cc",
57
+ "compiler_version": "2.21.18209.0+043b1bf7",
58
+ "disable_fallback": false,
59
+ "disable_fast_relayout": false,
60
+ "dynamic_batch_size": false,
61
+ "float_dtype": "fp32",
62
+ "inline_weights_to_neff": true,
63
+ "instance_type": "trn1",
64
+ "int_dtype": "int64",
65
+ "model_type": "cvt",
66
+ "optlevel": "2",
67
+ "output_attentions": false,
68
+ "output_hidden_states": false,
69
+ "static_batch_size": 1,
70
+ "task": "image-classification",
71
+ "tensor_parallel_size": 1
72
+ },
73
+ "num_channels": 3,
74
+ "num_heads": [
75
+ 1,
76
+ 3,
77
+ 6
78
+ ],
79
+ "padding_kv": [
80
+ 1,
81
+ 1,
82
+ 1
83
+ ],
84
+ "padding_q": [
85
+ 1,
86
+ 1,
87
+ 1
88
+ ],
89
+ "patch_padding": [
90
+ 2,
91
+ 1,
92
+ 1
93
+ ],
94
+ "patch_sizes": [
95
+ 7,
96
+ 3,
97
+ 3
98
+ ],
99
+ "patch_stride": [
100
+ 4,
101
+ 2,
102
+ 2
103
+ ],
104
+ "qkv_bias": [
105
+ true,
106
+ true,
107
+ true
108
+ ],
109
+ "qkv_projection_method": [
110
+ "dw_bn",
111
+ "dw_bn",
112
+ "dw_bn"
113
+ ],
114
+ "stride_kv": [
115
+ 2,
116
+ 2,
117
+ 2
118
+ ],
119
+ "stride_q": [
120
+ 1,
121
+ 1,
122
+ 1
123
+ ]
124
+ }
neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/deit/hf-internal-testing/tiny-random-DeiTModel/914c1281867f49c8e1eb.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_entry_class": "SingleModelCacheEntry",
3
+ "_model_id": "hf-internal-testing/tiny-random-DeiTModel",
4
+ "_task": "image-classification",
5
+ "architectures": [
6
+ "DeiTModel"
7
+ ],
8
+ "attention_probs_dropout_prob": 0.1,
9
+ "dtype": "float32",
10
+ "encoder_stride": 2,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 32,
14
+ "image_size": 30,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 37,
17
+ "layer_norm_eps": 1e-12,
18
+ "model_type": "deit",
19
+ "neuron": {
20
+ "auto_cast": null,
21
+ "auto_cast_type": null,
22
+ "compiler_type": "neuronx-cc",
23
+ "compiler_version": "2.21.18209.0+043b1bf7",
24
+ "disable_fallback": false,
25
+ "disable_fast_relayout": false,
26
+ "dynamic_batch_size": false,
27
+ "float_dtype": "fp32",
28
+ "inline_weights_to_neff": true,
29
+ "instance_type": "trn1",
30
+ "int_dtype": "int64",
31
+ "model_type": "deit",
32
+ "optlevel": "2",
33
+ "output_attentions": false,
34
+ "output_hidden_states": false,
35
+ "static_batch_size": 1,
36
+ "task": "image-classification",
37
+ "tensor_parallel_size": 1
38
+ },
39
+ "num_attention_heads": 4,
40
+ "num_channels": 3,
41
+ "num_hidden_layers": 5,
42
+ "patch_size": 2,
43
+ "pooler_act": "tanh",
44
+ "pooler_output_size": 32,
45
+ "qkv_bias": true
46
+ }
neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/levit/hf-internal-testing/tiny-random-LevitModel/3e0b621f97b7931a72e0.json ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_entry_class": "SingleModelCacheEntry",
3
+ "_model_id": "hf-internal-testing/tiny-random-LevitModel",
4
+ "_task": "image-classification",
5
+ "architectures": [
6
+ "LevitModel"
7
+ ],
8
+ "attention_ratio": [
9
+ 2,
10
+ 2,
11
+ 2
12
+ ],
13
+ "depths": [
14
+ 2,
15
+ 3,
16
+ 4
17
+ ],
18
+ "down_ops": [
19
+ [
20
+ "Subsample",
21
+ 16,
22
+ 8,
23
+ 4,
24
+ 2,
25
+ 2
26
+ ],
27
+ [
28
+ "Subsample",
29
+ 16,
30
+ 16,
31
+ 4,
32
+ 2,
33
+ 2
34
+ ],
35
+ [
36
+ ""
37
+ ]
38
+ ],
39
+ "drop_path_rate": 0,
40
+ "dtype": "float32",
41
+ "hidden_sizes": [
42
+ 128,
43
+ 256,
44
+ 384
45
+ ],
46
+ "image_size": 64,
47
+ "initializer_range": 0.02,
48
+ "kernel_size": 3,
49
+ "key_dim": [
50
+ 16,
51
+ 16,
52
+ 16
53
+ ],
54
+ "mlp_ratio": [
55
+ 2,
56
+ 2,
57
+ 2
58
+ ],
59
+ "model_type": "levit",
60
+ "neuron": {
61
+ "auto_cast": null,
62
+ "auto_cast_type": null,
63
+ "compiler_type": "neuronx-cc",
64
+ "compiler_version": "2.21.18209.0+043b1bf7",
65
+ "disable_fallback": false,
66
+ "disable_fast_relayout": false,
67
+ "dynamic_batch_size": false,
68
+ "float_dtype": "fp32",
69
+ "inline_weights_to_neff": true,
70
+ "instance_type": "trn1",
71
+ "int_dtype": "int64",
72
+ "model_type": "levit",
73
+ "optlevel": "2",
74
+ "output_attentions": false,
75
+ "output_hidden_states": false,
76
+ "static_batch_size": 1,
77
+ "task": "image-classification",
78
+ "tensor_parallel_size": 1
79
+ },
80
+ "num_attention_heads": [
81
+ 4,
82
+ 6,
83
+ 8
84
+ ],
85
+ "num_channels": 3,
86
+ "padding": 1,
87
+ "patch_size": 16,
88
+ "stride": 2
89
+ }
neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/mobilenet_v2/hf-internal-testing/tiny-random-MobileNetV2Model/8d04e7858696532597ca.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_entry_class": "SingleModelCacheEntry",
3
+ "_model_id": "hf-internal-testing/tiny-random-MobileNetV2Model",
4
+ "_task": "image-classification",
5
+ "architectures": [
6
+ "MobileNetV2Model"
7
+ ],
8
+ "classifier_dropout_prob": 0.1,
9
+ "depth_divisible_by": 8,
10
+ "depth_multiplier": 0.25,
11
+ "dtype": "float32",
12
+ "expand_ratio": 6,
13
+ "finegrained_output": true,
14
+ "first_layer_is_expansion": true,
15
+ "hidden_act": "relu6",
16
+ "image_size": 32,
17
+ "initializer_range": 0.02,
18
+ "layer_norm_eps": 0.001,
19
+ "min_depth": 8,
20
+ "model_type": "mobilenet_v2",
21
+ "neuron": {
22
+ "auto_cast": null,
23
+ "auto_cast_type": null,
24
+ "compiler_type": "neuronx-cc",
25
+ "compiler_version": "2.21.18209.0+043b1bf7",
26
+ "disable_fallback": false,
27
+ "disable_fast_relayout": false,
28
+ "dynamic_batch_size": false,
29
+ "float_dtype": "fp32",
30
+ "inline_weights_to_neff": true,
31
+ "instance_type": "trn1",
32
+ "int_dtype": "int64",
33
+ "model_type": "mobilenet-v2",
34
+ "optlevel": "2",
35
+ "output_attentions": false,
36
+ "output_hidden_states": false,
37
+ "static_batch_size": 1,
38
+ "task": "image-classification",
39
+ "tensor_parallel_size": 1
40
+ },
41
+ "num_channels": 3,
42
+ "output_stride": 32,
43
+ "semantic_loss_ignore_index": 255,
44
+ "tf_padding": true
45
+ }
neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/mobilevit/hf-internal-testing/tiny-random-mobilevit/74da982e3be55934798d.json ADDED
@@ -0,0 +1,2070 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_entry_class": "SingleModelCacheEntry",
3
+ "_model_id": "hf-internal-testing/tiny-random-mobilevit",
4
+ "_task": "image-classification",
5
+ "architectures": [
6
+ "MobileViTForImageClassification"
7
+ ],
8
+ "aspp_dropout_prob": 0.1,
9
+ "aspp_out_channels": 256,
10
+ "atrous_rates": [
11
+ 6,
12
+ 12,
13
+ 18
14
+ ],
15
+ "attention_probs_dropout_prob": 0.0,
16
+ "classifier_dropout_prob": 0.1,
17
+ "conv_kernel_size": 3,
18
+ "dtype": "float32",
19
+ "expand_ratio": 4.0,
20
+ "hidden_act": "silu",
21
+ "hidden_dropout_prob": 0.1,
22
+ "hidden_sizes": [
23
+ 6,
24
+ 12,
25
+ 24
26
+ ],
27
+ "id2label": {
28
+ "0": "tench, Tinca tinca",
29
+ "1": "goldfish, Carassius auratus",
30
+ "2": "great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias",
31
+ "3": "tiger shark, Galeocerdo cuvieri",
32
+ "4": "hammerhead, hammerhead shark",
33
+ "5": "electric ray, crampfish, numbfish, torpedo",
34
+ "6": "stingray",
35
+ "7": "cock",
36
+ "8": "hen",
37
+ "9": "ostrich, Struthio camelus",
38
+ "10": "brambling, Fringilla montifringilla",
39
+ "11": "goldfinch, Carduelis carduelis",
40
+ "12": "house finch, linnet, Carpodacus mexicanus",
41
+ "13": "junco, snowbird",
42
+ "14": "indigo bunting, indigo finch, indigo bird, Passerina cyanea",
43
+ "15": "robin, American robin, Turdus migratorius",
44
+ "16": "bulbul",
45
+ "17": "jay",
46
+ "18": "magpie",
47
+ "19": "chickadee",
48
+ "20": "water ouzel, dipper",
49
+ "21": "kite",
50
+ "22": "bald eagle, American eagle, Haliaeetus leucocephalus",
51
+ "23": "vulture",
52
+ "24": "great grey owl, great gray owl, Strix nebulosa",
53
+ "25": "European fire salamander, Salamandra salamandra",
54
+ "26": "common newt, Triturus vulgaris",
55
+ "27": "eft",
56
+ "28": "spotted salamander, Ambystoma maculatum",
57
+ "29": "axolotl, mud puppy, Ambystoma mexicanum",
58
+ "30": "bullfrog, Rana catesbeiana",
59
+ "31": "tree frog, tree-frog",
60
+ "32": "tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui",
61
+ "33": "loggerhead, loggerhead turtle, Caretta caretta",
62
+ "34": "leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea",
63
+ "35": "mud turtle",
64
+ "36": "terrapin",
65
+ "37": "box turtle, box tortoise",
66
+ "38": "banded gecko",
67
+ "39": "common iguana, iguana, Iguana iguana",
68
+ "40": "American chameleon, anole, Anolis carolinensis",
69
+ "41": "whiptail, whiptail lizard",
70
+ "42": "agama",
71
+ "43": "frilled lizard, Chlamydosaurus kingi",
72
+ "44": "alligator lizard",
73
+ "45": "Gila monster, Heloderma suspectum",
74
+ "46": "green lizard, Lacerta viridis",
75
+ "47": "African chameleon, Chamaeleo chamaeleon",
76
+ "48": "Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis",
77
+ "49": "African crocodile, Nile crocodile, Crocodylus niloticus",
78
+ "50": "American alligator, Alligator mississipiensis",
79
+ "51": "triceratops",
80
+ "52": "thunder snake, worm snake, Carphophis amoenus",
81
+ "53": "ringneck snake, ring-necked snake, ring snake",
82
+ "54": "hognose snake, puff adder, sand viper",
83
+ "55": "green snake, grass snake",
84
+ "56": "king snake, kingsnake",
85
+ "57": "garter snake, grass snake",
86
+ "58": "water snake",
87
+ "59": "vine snake",
88
+ "60": "night snake, Hypsiglena torquata",
89
+ "61": "boa constrictor, Constrictor constrictor",
90
+ "62": "rock python, rock snake, Python sebae",
91
+ "63": "Indian cobra, Naja naja",
92
+ "64": "green mamba",
93
+ "65": "sea snake",
94
+ "66": "horned viper, cerastes, sand viper, horned asp, Cerastes cornutus",
95
+ "67": "diamondback, diamondback rattlesnake, Crotalus adamanteus",
96
+ "68": "sidewinder, horned rattlesnake, Crotalus cerastes",
97
+ "69": "trilobite",
98
+ "70": "harvestman, daddy longlegs, Phalangium opilio",
99
+ "71": "scorpion",
100
+ "72": "black and gold garden spider, Argiope aurantia",
101
+ "73": "barn spider, Araneus cavaticus",
102
+ "74": "garden spider, Aranea diademata",
103
+ "75": "black widow, Latrodectus mactans",
104
+ "76": "tarantula",
105
+ "77": "wolf spider, hunting spider",
106
+ "78": "tick",
107
+ "79": "centipede",
108
+ "80": "black grouse",
109
+ "81": "ptarmigan",
110
+ "82": "ruffed grouse, partridge, Bonasa umbellus",
111
+ "83": "prairie chicken, prairie grouse, prairie fowl",
112
+ "84": "peacock",
113
+ "85": "quail",
114
+ "86": "partridge",
115
+ "87": "African grey, African gray, Psittacus erithacus",
116
+ "88": "macaw",
117
+ "89": "sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita",
118
+ "90": "lorikeet",
119
+ "91": "coucal",
120
+ "92": "bee eater",
121
+ "93": "hornbill",
122
+ "94": "hummingbird",
123
+ "95": "jacamar",
124
+ "96": "toucan",
125
+ "97": "drake",
126
+ "98": "red-breasted merganser, Mergus serrator",
127
+ "99": "goose",
128
+ "100": "black swan, Cygnus atratus",
129
+ "101": "tusker",
130
+ "102": "echidna, spiny anteater, anteater",
131
+ "103": "platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus",
132
+ "104": "wallaby, brush kangaroo",
133
+ "105": "koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus",
134
+ "106": "wombat",
135
+ "107": "jellyfish",
136
+ "108": "sea anemone, anemone",
137
+ "109": "brain coral",
138
+ "110": "flatworm, platyhelminth",
139
+ "111": "nematode, nematode worm, roundworm",
140
+ "112": "conch",
141
+ "113": "snail",
142
+ "114": "slug",
143
+ "115": "sea slug, nudibranch",
144
+ "116": "chiton, coat-of-mail shell, sea cradle, polyplacophore",
145
+ "117": "chambered nautilus, pearly nautilus, nautilus",
146
+ "118": "Dungeness crab, Cancer magister",
147
+ "119": "rock crab, Cancer irroratus",
148
+ "120": "fiddler crab",
149
+ "121": "king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica",
150
+ "122": "American lobster, Northern lobster, Maine lobster, Homarus americanus",
151
+ "123": "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish",
152
+ "124": "crayfish, crawfish, crawdad, crawdaddy",
153
+ "125": "hermit crab",
154
+ "126": "isopod",
155
+ "127": "white stork, Ciconia ciconia",
156
+ "128": "black stork, Ciconia nigra",
157
+ "129": "spoonbill",
158
+ "130": "flamingo",
159
+ "131": "little blue heron, Egretta caerulea",
160
+ "132": "American egret, great white heron, Egretta albus",
161
+ "133": "bittern",
162
+ "134": "crane",
163
+ "135": "limpkin, Aramus pictus",
164
+ "136": "European gallinule, Porphyrio porphyrio",
165
+ "137": "American coot, marsh hen, mud hen, water hen, Fulica americana",
166
+ "138": "bustard",
167
+ "139": "ruddy turnstone, Arenaria interpres",
168
+ "140": "red-backed sandpiper, dunlin, Erolia alpina",
169
+ "141": "redshank, Tringa totanus",
170
+ "142": "dowitcher",
171
+ "143": "oystercatcher, oyster catcher",
172
+ "144": "pelican",
173
+ "145": "king penguin, Aptenodytes patagonica",
174
+ "146": "albatross, mollymawk",
175
+ "147": "grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus",
176
+ "148": "killer whale, killer, orca, grampus, sea wolf, Orcinus orca",
177
+ "149": "dugong, Dugong dugon",
178
+ "150": "sea lion",
179
+ "151": "Chihuahua",
180
+ "152": "Japanese spaniel",
181
+ "153": "Maltese dog, Maltese terrier, Maltese",
182
+ "154": "Pekinese, Pekingese, Peke",
183
+ "155": "Shih-Tzu",
184
+ "156": "Blenheim spaniel",
185
+ "157": "papillon",
186
+ "158": "toy terrier",
187
+ "159": "Rhodesian ridgeback",
188
+ "160": "Afghan hound, Afghan",
189
+ "161": "basset, basset hound",
190
+ "162": "beagle",
191
+ "163": "bloodhound, sleuthhound",
192
+ "164": "bluetick",
193
+ "165": "black-and-tan coonhound",
194
+ "166": "Walker hound, Walker foxhound",
195
+ "167": "English foxhound",
196
+ "168": "redbone",
197
+ "169": "borzoi, Russian wolfhound",
198
+ "170": "Irish wolfhound",
199
+ "171": "Italian greyhound",
200
+ "172": "whippet",
201
+ "173": "Ibizan hound, Ibizan Podenco",
202
+ "174": "Norwegian elkhound, elkhound",
203
+ "175": "otterhound, otter hound",
204
+ "176": "Saluki, gazelle hound",
205
+ "177": "Scottish deerhound, deerhound",
206
+ "178": "Weimaraner",
207
+ "179": "Staffordshire bullterrier, Staffordshire bull terrier",
208
+ "180": "American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier",
209
+ "181": "Bedlington terrier",
210
+ "182": "Border terrier",
211
+ "183": "Kerry blue terrier",
212
+ "184": "Irish terrier",
213
+ "185": "Norfolk terrier",
214
+ "186": "Norwich terrier",
215
+ "187": "Yorkshire terrier",
216
+ "188": "wire-haired fox terrier",
217
+ "189": "Lakeland terrier",
218
+ "190": "Sealyham terrier, Sealyham",
219
+ "191": "Airedale, Airedale terrier",
220
+ "192": "cairn, cairn terrier",
221
+ "193": "Australian terrier",
222
+ "194": "Dandie Dinmont, Dandie Dinmont terrier",
223
+ "195": "Boston bull, Boston terrier",
224
+ "196": "miniature schnauzer",
225
+ "197": "giant schnauzer",
226
+ "198": "standard schnauzer",
227
+ "199": "Scotch terrier, Scottish terrier, Scottie",
228
+ "200": "Tibetan terrier, chrysanthemum dog",
229
+ "201": "silky terrier, Sydney silky",
230
+ "202": "soft-coated wheaten terrier",
231
+ "203": "West Highland white terrier",
232
+ "204": "Lhasa, Lhasa apso",
233
+ "205": "flat-coated retriever",
234
+ "206": "curly-coated retriever",
235
+ "207": "golden retriever",
236
+ "208": "Labrador retriever",
237
+ "209": "Chesapeake Bay retriever",
238
+ "210": "German short-haired pointer",
239
+ "211": "vizsla, Hungarian pointer",
240
+ "212": "English setter",
241
+ "213": "Irish setter, red setter",
242
+ "214": "Gordon setter",
243
+ "215": "Brittany spaniel",
244
+ "216": "clumber, clumber spaniel",
245
+ "217": "English springer, English springer spaniel",
246
+ "218": "Welsh springer spaniel",
247
+ "219": "cocker spaniel, English cocker spaniel, cocker",
248
+ "220": "Sussex spaniel",
249
+ "221": "Irish water spaniel",
250
+ "222": "kuvasz",
251
+ "223": "schipperke",
252
+ "224": "groenendael",
253
+ "225": "malinois",
254
+ "226": "briard",
255
+ "227": "kelpie",
256
+ "228": "komondor",
257
+ "229": "Old English sheepdog, bobtail",
258
+ "230": "Shetland sheepdog, Shetland sheep dog, Shetland",
259
+ "231": "collie",
260
+ "232": "Border collie",
261
+ "233": "Bouvier des Flandres, Bouviers des Flandres",
262
+ "234": "Rottweiler",
263
+ "235": "German shepherd, German shepherd dog, German police dog, alsatian",
264
+ "236": "Doberman, Doberman pinscher",
265
+ "237": "miniature pinscher",
266
+ "238": "Greater Swiss Mountain dog",
267
+ "239": "Bernese mountain dog",
268
+ "240": "Appenzeller",
269
+ "241": "EntleBucher",
270
+ "242": "boxer",
271
+ "243": "bull mastiff",
272
+ "244": "Tibetan mastiff",
273
+ "245": "French bulldog",
274
+ "246": "Great Dane",
275
+ "247": "Saint Bernard, St Bernard",
276
+ "248": "Eskimo dog, husky",
277
+ "249": "malamute, malemute, Alaskan malamute",
278
+ "250": "Siberian husky",
279
+ "251": "dalmatian, coach dog, carriage dog",
280
+ "252": "affenpinscher, monkey pinscher, monkey dog",
281
+ "253": "basenji",
282
+ "254": "pug, pug-dog",
283
+ "255": "Leonberg",
284
+ "256": "Newfoundland, Newfoundland dog",
285
+ "257": "Great Pyrenees",
286
+ "258": "Samoyed, Samoyede",
287
+ "259": "Pomeranian",
288
+ "260": "chow, chow chow",
289
+ "261": "keeshond",
290
+ "262": "Brabancon griffon",
291
+ "263": "Pembroke, Pembroke Welsh corgi",
292
+ "264": "Cardigan, Cardigan Welsh corgi",
293
+ "265": "toy poodle",
294
+ "266": "miniature poodle",
295
+ "267": "standard poodle",
296
+ "268": "Mexican hairless",
297
+ "269": "timber wolf, grey wolf, gray wolf, Canis lupus",
298
+ "270": "white wolf, Arctic wolf, Canis lupus tundrarum",
299
+ "271": "red wolf, maned wolf, Canis rufus, Canis niger",
300
+ "272": "coyote, prairie wolf, brush wolf, Canis latrans",
301
+ "273": "dingo, warrigal, warragal, Canis dingo",
302
+ "274": "dhole, Cuon alpinus",
303
+ "275": "African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus",
304
+ "276": "hyena, hyaena",
305
+ "277": "red fox, Vulpes vulpes",
306
+ "278": "kit fox, Vulpes macrotis",
307
+ "279": "Arctic fox, white fox, Alopex lagopus",
308
+ "280": "grey fox, gray fox, Urocyon cinereoargenteus",
309
+ "281": "tabby, tabby cat",
310
+ "282": "tiger cat",
311
+ "283": "Persian cat",
312
+ "284": "Siamese cat, Siamese",
313
+ "285": "Egyptian cat",
314
+ "286": "cougar, puma, catamount, mountain lion, painter, panther, Felis concolor",
315
+ "287": "lynx, catamount",
316
+ "288": "leopard, Panthera pardus",
317
+ "289": "snow leopard, ounce, Panthera uncia",
318
+ "290": "jaguar, panther, Panthera onca, Felis onca",
319
+ "291": "lion, king of beasts, Panthera leo",
320
+ "292": "tiger, Panthera tigris",
321
+ "293": "cheetah, chetah, Acinonyx jubatus",
322
+ "294": "brown bear, bruin, Ursus arctos",
323
+ "295": "American black bear, black bear, Ursus americanus, Euarctos americanus",
324
+ "296": "ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus",
325
+ "297": "sloth bear, Melursus ursinus, Ursus ursinus",
326
+ "298": "mongoose",
327
+ "299": "meerkat, mierkat",
328
+ "300": "tiger beetle",
329
+ "301": "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle",
330
+ "302": "ground beetle, carabid beetle",
331
+ "303": "long-horned beetle, longicorn, longicorn beetle",
332
+ "304": "leaf beetle, chrysomelid",
333
+ "305": "dung beetle",
334
+ "306": "rhinoceros beetle",
335
+ "307": "weevil",
336
+ "308": "fly",
337
+ "309": "bee",
338
+ "310": "ant, emmet, pismire",
339
+ "311": "grasshopper, hopper",
340
+ "312": "cricket",
341
+ "313": "walking stick, walkingstick, stick insect",
342
+ "314": "cockroach, roach",
343
+ "315": "mantis, mantid",
344
+ "316": "cicada, cicala",
345
+ "317": "leafhopper",
346
+ "318": "lacewing, lacewing fly",
347
+ "319": "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk",
348
+ "320": "damselfly",
349
+ "321": "admiral",
350
+ "322": "ringlet, ringlet butterfly",
351
+ "323": "monarch, monarch butterfly, milkweed butterfly, Danaus plexippus",
352
+ "324": "cabbage butterfly",
353
+ "325": "sulphur butterfly, sulfur butterfly",
354
+ "326": "lycaenid, lycaenid butterfly",
355
+ "327": "starfish, sea star",
356
+ "328": "sea urchin",
357
+ "329": "sea cucumber, holothurian",
358
+ "330": "wood rabbit, cottontail, cottontail rabbit",
359
+ "331": "hare",
360
+ "332": "Angora, Angora rabbit",
361
+ "333": "hamster",
362
+ "334": "porcupine, hedgehog",
363
+ "335": "fox squirrel, eastern fox squirrel, Sciurus niger",
364
+ "336": "marmot",
365
+ "337": "beaver",
366
+ "338": "guinea pig, Cavia cobaya",
367
+ "339": "sorrel",
368
+ "340": "zebra",
369
+ "341": "hog, pig, grunter, squealer, Sus scrofa",
370
+ "342": "wild boar, boar, Sus scrofa",
371
+ "343": "warthog",
372
+ "344": "hippopotamus, hippo, river horse, Hippopotamus amphibius",
373
+ "345": "ox",
374
+ "346": "water buffalo, water ox, Asiatic buffalo, Bubalus bubalis",
375
+ "347": "bison",
376
+ "348": "ram, tup",
377
+ "349": "bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis",
378
+ "350": "ibex, Capra ibex",
379
+ "351": "hartebeest",
380
+ "352": "impala, Aepyceros melampus",
381
+ "353": "gazelle",
382
+ "354": "Arabian camel, dromedary, Camelus dromedarius",
383
+ "355": "llama",
384
+ "356": "weasel",
385
+ "357": "mink",
386
+ "358": "polecat, fitch, foulmart, foumart, Mustela putorius",
387
+ "359": "black-footed ferret, ferret, Mustela nigripes",
388
+ "360": "otter",
389
+ "361": "skunk, polecat, wood pussy",
390
+ "362": "badger",
391
+ "363": "armadillo",
392
+ "364": "three-toed sloth, ai, Bradypus tridactylus",
393
+ "365": "orangutan, orang, orangutang, Pongo pygmaeus",
394
+ "366": "gorilla, Gorilla gorilla",
395
+ "367": "chimpanzee, chimp, Pan troglodytes",
396
+ "368": "gibbon, Hylobates lar",
397
+ "369": "siamang, Hylobates syndactylus, Symphalangus syndactylus",
398
+ "370": "guenon, guenon monkey",
399
+ "371": "patas, hussar monkey, Erythrocebus patas",
400
+ "372": "baboon",
401
+ "373": "macaque",
402
+ "374": "langur",
403
+ "375": "colobus, colobus monkey",
404
+ "376": "proboscis monkey, Nasalis larvatus",
405
+ "377": "marmoset",
406
+ "378": "capuchin, ringtail, Cebus capucinus",
407
+ "379": "howler monkey, howler",
408
+ "380": "titi, titi monkey",
409
+ "381": "spider monkey, Ateles geoffroyi",
410
+ "382": "squirrel monkey, Saimiri sciureus",
411
+ "383": "Madagascar cat, ring-tailed lemur, Lemur catta",
412
+ "384": "indri, indris, Indri indri, Indri brevicaudatus",
413
+ "385": "Indian elephant, Elephas maximus",
414
+ "386": "African elephant, Loxodonta africana",
415
+ "387": "lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens",
416
+ "388": "giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca",
417
+ "389": "barracouta, snoek",
418
+ "390": "eel",
419
+ "391": "coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch",
420
+ "392": "rock beauty, Holocanthus tricolor",
421
+ "393": "anemone fish",
422
+ "394": "sturgeon",
423
+ "395": "gar, garfish, garpike, billfish, Lepisosteus osseus",
424
+ "396": "lionfish",
425
+ "397": "puffer, pufferfish, blowfish, globefish",
426
+ "398": "abacus",
427
+ "399": "abaya",
428
+ "400": "academic gown, academic robe, judge's robe",
429
+ "401": "accordion, piano accordion, squeeze box",
430
+ "402": "acoustic guitar",
431
+ "403": "aircraft carrier, carrier, flattop, attack aircraft carrier",
432
+ "404": "airliner",
433
+ "405": "airship, dirigible",
434
+ "406": "altar",
435
+ "407": "ambulance",
436
+ "408": "amphibian, amphibious vehicle",
437
+ "409": "analog clock",
438
+ "410": "apiary, bee house",
439
+ "411": "apron",
440
+ "412": "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin",
441
+ "413": "assault rifle, assault gun",
442
+ "414": "backpack, back pack, knapsack, packsack, rucksack, haversack",
443
+ "415": "bakery, bakeshop, bakehouse",
444
+ "416": "balance beam, beam",
445
+ "417": "balloon",
446
+ "418": "ballpoint, ballpoint pen, ballpen, Biro",
447
+ "419": "Band Aid",
448
+ "420": "banjo",
449
+ "421": "bannister, banister, balustrade, balusters, handrail",
450
+ "422": "barbell",
451
+ "423": "barber chair",
452
+ "424": "barbershop",
453
+ "425": "barn",
454
+ "426": "barometer",
455
+ "427": "barrel, cask",
456
+ "428": "barrow, garden cart, lawn cart, wheelbarrow",
457
+ "429": "baseball",
458
+ "430": "basketball",
459
+ "431": "bassinet",
460
+ "432": "bassoon",
461
+ "433": "bathing cap, swimming cap",
462
+ "434": "bath towel",
463
+ "435": "bathtub, bathing tub, bath, tub",
464
+ "436": "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon",
465
+ "437": "beacon, lighthouse, beacon light, pharos",
466
+ "438": "beaker",
467
+ "439": "bearskin, busby, shako",
468
+ "440": "beer bottle",
469
+ "441": "beer glass",
470
+ "442": "bell cote, bell cot",
471
+ "443": "bib",
472
+ "444": "bicycle-built-for-two, tandem bicycle, tandem",
473
+ "445": "bikini, two-piece",
474
+ "446": "binder, ring-binder",
475
+ "447": "binoculars, field glasses, opera glasses",
476
+ "448": "birdhouse",
477
+ "449": "boathouse",
478
+ "450": "bobsled, bobsleigh, bob",
479
+ "451": "bolo tie, bolo, bola tie, bola",
480
+ "452": "bonnet, poke bonnet",
481
+ "453": "bookcase",
482
+ "454": "bookshop, bookstore, bookstall",
483
+ "455": "bottlecap",
484
+ "456": "bow",
485
+ "457": "bow tie, bow-tie, bowtie",
486
+ "458": "brass, memorial tablet, plaque",
487
+ "459": "brassiere, bra, bandeau",
488
+ "460": "breakwater, groin, groyne, mole, bulwark, seawall, jetty",
489
+ "461": "breastplate, aegis, egis",
490
+ "462": "broom",
491
+ "463": "bucket, pail",
492
+ "464": "buckle",
493
+ "465": "bulletproof vest",
494
+ "466": "bullet train, bullet",
495
+ "467": "butcher shop, meat market",
496
+ "468": "cab, hack, taxi, taxicab",
497
+ "469": "caldron, cauldron",
498
+ "470": "candle, taper, wax light",
499
+ "471": "cannon",
500
+ "472": "canoe",
501
+ "473": "can opener, tin opener",
502
+ "474": "cardigan",
503
+ "475": "car mirror",
504
+ "476": "carousel, carrousel, merry-go-round, roundabout, whirligig",
505
+ "477": "carpenter's kit, tool kit",
506
+ "478": "carton",
507
+ "479": "car wheel",
508
+ "480": "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM",
509
+ "481": "cassette",
510
+ "482": "cassette player",
511
+ "483": "castle",
512
+ "484": "catamaran",
513
+ "485": "CD player",
514
+ "486": "cello, violoncello",
515
+ "487": "cellular telephone, cellular phone, cellphone, cell, mobile phone",
516
+ "488": "chain",
517
+ "489": "chainlink fence",
518
+ "490": "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour",
519
+ "491": "chain saw, chainsaw",
520
+ "492": "chest",
521
+ "493": "chiffonier, commode",
522
+ "494": "chime, bell, gong",
523
+ "495": "china cabinet, china closet",
524
+ "496": "Christmas stocking",
525
+ "497": "church, church building",
526
+ "498": "cinema, movie theater, movie theatre, movie house, picture palace",
527
+ "499": "cleaver, meat cleaver, chopper",
528
+ "500": "cliff dwelling",
529
+ "501": "cloak",
530
+ "502": "clog, geta, patten, sabot",
531
+ "503": "cocktail shaker",
532
+ "504": "coffee mug",
533
+ "505": "coffeepot",
534
+ "506": "coil, spiral, volute, whorl, helix",
535
+ "507": "combination lock",
536
+ "508": "computer keyboard, keypad",
537
+ "509": "confectionery, confectionary, candy store",
538
+ "510": "container ship, containership, container vessel",
539
+ "511": "convertible",
540
+ "512": "corkscrew, bottle screw",
541
+ "513": "cornet, horn, trumpet, trump",
542
+ "514": "cowboy boot",
543
+ "515": "cowboy hat, ten-gallon hat",
544
+ "516": "cradle",
545
+ "517": "crane",
546
+ "518": "crash helmet",
547
+ "519": "crate",
548
+ "520": "crib, cot",
549
+ "521": "Crock Pot",
550
+ "522": "croquet ball",
551
+ "523": "crutch",
552
+ "524": "cuirass",
553
+ "525": "dam, dike, dyke",
554
+ "526": "desk",
555
+ "527": "desktop computer",
556
+ "528": "dial telephone, dial phone",
557
+ "529": "diaper, nappy, napkin",
558
+ "530": "digital clock",
559
+ "531": "digital watch",
560
+ "532": "dining table, board",
561
+ "533": "dishrag, dishcloth",
562
+ "534": "dishwasher, dish washer, dishwashing machine",
563
+ "535": "disk brake, disc brake",
564
+ "536": "dock, dockage, docking facility",
565
+ "537": "dogsled, dog sled, dog sleigh",
566
+ "538": "dome",
567
+ "539": "doormat, welcome mat",
568
+ "540": "drilling platform, offshore rig",
569
+ "541": "drum, membranophone, tympan",
570
+ "542": "drumstick",
571
+ "543": "dumbbell",
572
+ "544": "Dutch oven",
573
+ "545": "electric fan, blower",
574
+ "546": "electric guitar",
575
+ "547": "electric locomotive",
576
+ "548": "entertainment center",
577
+ "549": "envelope",
578
+ "550": "espresso maker",
579
+ "551": "face powder",
580
+ "552": "feather boa, boa",
581
+ "553": "file, file cabinet, filing cabinet",
582
+ "554": "fireboat",
583
+ "555": "fire engine, fire truck",
584
+ "556": "fire screen, fireguard",
585
+ "557": "flagpole, flagstaff",
586
+ "558": "flute, transverse flute",
587
+ "559": "folding chair",
588
+ "560": "football helmet",
589
+ "561": "forklift",
590
+ "562": "fountain",
591
+ "563": "fountain pen",
592
+ "564": "four-poster",
593
+ "565": "freight car",
594
+ "566": "French horn, horn",
595
+ "567": "frying pan, frypan, skillet",
596
+ "568": "fur coat",
597
+ "569": "garbage truck, dustcart",
598
+ "570": "gasmask, respirator, gas helmet",
599
+ "571": "gas pump, gasoline pump, petrol pump, island dispenser",
600
+ "572": "goblet",
601
+ "573": "go-kart",
602
+ "574": "golf ball",
603
+ "575": "golfcart, golf cart",
604
+ "576": "gondola",
605
+ "577": "gong, tam-tam",
606
+ "578": "gown",
607
+ "579": "grand piano, grand",
608
+ "580": "greenhouse, nursery, glasshouse",
609
+ "581": "grille, radiator grille",
610
+ "582": "grocery store, grocery, food market, market",
611
+ "583": "guillotine",
612
+ "584": "hair slide",
613
+ "585": "hair spray",
614
+ "586": "half track",
615
+ "587": "hammer",
616
+ "588": "hamper",
617
+ "589": "hand blower, blow dryer, blow drier, hair dryer, hair drier",
618
+ "590": "hand-held computer, hand-held microcomputer",
619
+ "591": "handkerchief, hankie, hanky, hankey",
620
+ "592": "hard disc, hard disk, fixed disk",
621
+ "593": "harmonica, mouth organ, harp, mouth harp",
622
+ "594": "harp",
623
+ "595": "harvester, reaper",
624
+ "596": "hatchet",
625
+ "597": "holster",
626
+ "598": "home theater, home theatre",
627
+ "599": "honeycomb",
628
+ "600": "hook, claw",
629
+ "601": "hoopskirt, crinoline",
630
+ "602": "horizontal bar, high bar",
631
+ "603": "horse cart, horse-cart",
632
+ "604": "hourglass",
633
+ "605": "iPod",
634
+ "606": "iron, smoothing iron",
635
+ "607": "jack-o'-lantern",
636
+ "608": "jean, blue jean, denim",
637
+ "609": "jeep, landrover",
638
+ "610": "jersey, T-shirt, tee shirt",
639
+ "611": "jigsaw puzzle",
640
+ "612": "jinrikisha, ricksha, rickshaw",
641
+ "613": "joystick",
642
+ "614": "kimono",
643
+ "615": "knee pad",
644
+ "616": "knot",
645
+ "617": "lab coat, laboratory coat",
646
+ "618": "ladle",
647
+ "619": "lampshade, lamp shade",
648
+ "620": "laptop, laptop computer",
649
+ "621": "lawn mower, mower",
650
+ "622": "lens cap, lens cover",
651
+ "623": "letter opener, paper knife, paperknife",
652
+ "624": "library",
653
+ "625": "lifeboat",
654
+ "626": "lighter, light, igniter, ignitor",
655
+ "627": "limousine, limo",
656
+ "628": "liner, ocean liner",
657
+ "629": "lipstick, lip rouge",
658
+ "630": "Loafer",
659
+ "631": "lotion",
660
+ "632": "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system",
661
+ "633": "loupe, jeweler's loupe",
662
+ "634": "lumbermill, sawmill",
663
+ "635": "magnetic compass",
664
+ "636": "mailbag, postbag",
665
+ "637": "mailbox, letter box",
666
+ "638": "maillot",
667
+ "639": "maillot, tank suit",
668
+ "640": "manhole cover",
669
+ "641": "maraca",
670
+ "642": "marimba, xylophone",
671
+ "643": "mask",
672
+ "644": "matchstick",
673
+ "645": "maypole",
674
+ "646": "maze, labyrinth",
675
+ "647": "measuring cup",
676
+ "648": "medicine chest, medicine cabinet",
677
+ "649": "megalith, megalithic structure",
678
+ "650": "microphone, mike",
679
+ "651": "microwave, microwave oven",
680
+ "652": "military uniform",
681
+ "653": "milk can",
682
+ "654": "minibus",
683
+ "655": "miniskirt, mini",
684
+ "656": "minivan",
685
+ "657": "missile",
686
+ "658": "mitten",
687
+ "659": "mixing bowl",
688
+ "660": "mobile home, manufactured home",
689
+ "661": "Model T",
690
+ "662": "modem",
691
+ "663": "monastery",
692
+ "664": "monitor",
693
+ "665": "moped",
694
+ "666": "mortar",
695
+ "667": "mortarboard",
696
+ "668": "mosque",
697
+ "669": "mosquito net",
698
+ "670": "motor scooter, scooter",
699
+ "671": "mountain bike, all-terrain bike, off-roader",
700
+ "672": "mountain tent",
701
+ "673": "mouse, computer mouse",
702
+ "674": "mousetrap",
703
+ "675": "moving van",
704
+ "676": "muzzle",
705
+ "677": "nail",
706
+ "678": "neck brace",
707
+ "679": "necklace",
708
+ "680": "nipple",
709
+ "681": "notebook, notebook computer",
710
+ "682": "obelisk",
711
+ "683": "oboe, hautboy, hautbois",
712
+ "684": "ocarina, sweet potato",
713
+ "685": "odometer, hodometer, mileometer, milometer",
714
+ "686": "oil filter",
715
+ "687": "organ, pipe organ",
716
+ "688": "oscilloscope, scope, cathode-ray oscilloscope, CRO",
717
+ "689": "overskirt",
718
+ "690": "oxcart",
719
+ "691": "oxygen mask",
720
+ "692": "packet",
721
+ "693": "paddle, boat paddle",
722
+ "694": "paddlewheel, paddle wheel",
723
+ "695": "padlock",
724
+ "696": "paintbrush",
725
+ "697": "pajama, pyjama, pj's, jammies",
726
+ "698": "palace",
727
+ "699": "panpipe, pandean pipe, syrinx",
728
+ "700": "paper towel",
729
+ "701": "parachute, chute",
730
+ "702": "parallel bars, bars",
731
+ "703": "park bench",
732
+ "704": "parking meter",
733
+ "705": "passenger car, coach, carriage",
734
+ "706": "patio, terrace",
735
+ "707": "pay-phone, pay-station",
736
+ "708": "pedestal, plinth, footstall",
737
+ "709": "pencil box, pencil case",
738
+ "710": "pencil sharpener",
739
+ "711": "perfume, essence",
740
+ "712": "Petri dish",
741
+ "713": "photocopier",
742
+ "714": "pick, plectrum, plectron",
743
+ "715": "pickelhaube",
744
+ "716": "picket fence, paling",
745
+ "717": "pickup, pickup truck",
746
+ "718": "pier",
747
+ "719": "piggy bank, penny bank",
748
+ "720": "pill bottle",
749
+ "721": "pillow",
750
+ "722": "ping-pong ball",
751
+ "723": "pinwheel",
752
+ "724": "pirate, pirate ship",
753
+ "725": "pitcher, ewer",
754
+ "726": "plane, carpenter's plane, woodworking plane",
755
+ "727": "planetarium",
756
+ "728": "plastic bag",
757
+ "729": "plate rack",
758
+ "730": "plow, plough",
759
+ "731": "plunger, plumber's helper",
760
+ "732": "Polaroid camera, Polaroid Land camera",
761
+ "733": "pole",
762
+ "734": "police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria",
763
+ "735": "poncho",
764
+ "736": "pool table, billiard table, snooker table",
765
+ "737": "pop bottle, soda bottle",
766
+ "738": "pot, flowerpot",
767
+ "739": "potter's wheel",
768
+ "740": "power drill",
769
+ "741": "prayer rug, prayer mat",
770
+ "742": "printer",
771
+ "743": "prison, prison house",
772
+ "744": "projectile, missile",
773
+ "745": "projector",
774
+ "746": "puck, hockey puck",
775
+ "747": "punching bag, punch bag, punching ball, punchball",
776
+ "748": "purse",
777
+ "749": "quill, quill pen",
778
+ "750": "quilt, comforter, comfort, puff",
779
+ "751": "racer, race car, racing car",
780
+ "752": "racket, racquet",
781
+ "753": "radiator",
782
+ "754": "radio, wireless",
783
+ "755": "radio telescope, radio reflector",
784
+ "756": "rain barrel",
785
+ "757": "recreational vehicle, RV, R.V.",
786
+ "758": "reel",
787
+ "759": "reflex camera",
788
+ "760": "refrigerator, icebox",
789
+ "761": "remote control, remote",
790
+ "762": "restaurant, eating house, eating place, eatery",
791
+ "763": "revolver, six-gun, six-shooter",
792
+ "764": "rifle",
793
+ "765": "rocking chair, rocker",
794
+ "766": "rotisserie",
795
+ "767": "rubber eraser, rubber, pencil eraser",
796
+ "768": "rugby ball",
797
+ "769": "rule, ruler",
798
+ "770": "running shoe",
799
+ "771": "safe",
800
+ "772": "safety pin",
801
+ "773": "saltshaker, salt shaker",
802
+ "774": "sandal",
803
+ "775": "sarong",
804
+ "776": "sax, saxophone",
805
+ "777": "scabbard",
806
+ "778": "scale, weighing machine",
807
+ "779": "school bus",
808
+ "780": "schooner",
809
+ "781": "scoreboard",
810
+ "782": "screen, CRT screen",
811
+ "783": "screw",
812
+ "784": "screwdriver",
813
+ "785": "seat belt, seatbelt",
814
+ "786": "sewing machine",
815
+ "787": "shield, buckler",
816
+ "788": "shoe shop, shoe-shop, shoe store",
817
+ "789": "shoji",
818
+ "790": "shopping basket",
819
+ "791": "shopping cart",
820
+ "792": "shovel",
821
+ "793": "shower cap",
822
+ "794": "shower curtain",
823
+ "795": "ski",
824
+ "796": "ski mask",
825
+ "797": "sleeping bag",
826
+ "798": "slide rule, slipstick",
827
+ "799": "sliding door",
828
+ "800": "slot, one-armed bandit",
829
+ "801": "snorkel",
830
+ "802": "snowmobile",
831
+ "803": "snowplow, snowplough",
832
+ "804": "soap dispenser",
833
+ "805": "soccer ball",
834
+ "806": "sock",
835
+ "807": "solar dish, solar collector, solar furnace",
836
+ "808": "sombrero",
837
+ "809": "soup bowl",
838
+ "810": "space bar",
839
+ "811": "space heater",
840
+ "812": "space shuttle",
841
+ "813": "spatula",
842
+ "814": "speedboat",
843
+ "815": "spider web, spider's web",
844
+ "816": "spindle",
845
+ "817": "sports car, sport car",
846
+ "818": "spotlight, spot",
847
+ "819": "stage",
848
+ "820": "steam locomotive",
849
+ "821": "steel arch bridge",
850
+ "822": "steel drum",
851
+ "823": "stethoscope",
852
+ "824": "stole",
853
+ "825": "stone wall",
854
+ "826": "stopwatch, stop watch",
855
+ "827": "stove",
856
+ "828": "strainer",
857
+ "829": "streetcar, tram, tramcar, trolley, trolley car",
858
+ "830": "stretcher",
859
+ "831": "studio couch, day bed",
860
+ "832": "stupa, tope",
861
+ "833": "submarine, pigboat, sub, U-boat",
862
+ "834": "suit, suit of clothes",
863
+ "835": "sundial",
864
+ "836": "sunglass",
865
+ "837": "sunglasses, dark glasses, shades",
866
+ "838": "sunscreen, sunblock, sun blocker",
867
+ "839": "suspension bridge",
868
+ "840": "swab, swob, mop",
869
+ "841": "sweatshirt",
870
+ "842": "swimming trunks, bathing trunks",
871
+ "843": "swing",
872
+ "844": "switch, electric switch, electrical switch",
873
+ "845": "syringe",
874
+ "846": "table lamp",
875
+ "847": "tank, army tank, armored combat vehicle, armoured combat vehicle",
876
+ "848": "tape player",
877
+ "849": "teapot",
878
+ "850": "teddy, teddy bear",
879
+ "851": "television, television system",
880
+ "852": "tennis ball",
881
+ "853": "thatch, thatched roof",
882
+ "854": "theater curtain, theatre curtain",
883
+ "855": "thimble",
884
+ "856": "thresher, thrasher, threshing machine",
885
+ "857": "throne",
886
+ "858": "tile roof",
887
+ "859": "toaster",
888
+ "860": "tobacco shop, tobacconist shop, tobacconist",
889
+ "861": "toilet seat",
890
+ "862": "torch",
891
+ "863": "totem pole",
892
+ "864": "tow truck, tow car, wrecker",
893
+ "865": "toyshop",
894
+ "866": "tractor",
895
+ "867": "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi",
896
+ "868": "tray",
897
+ "869": "trench coat",
898
+ "870": "tricycle, trike, velocipede",
899
+ "871": "trimaran",
900
+ "872": "tripod",
901
+ "873": "triumphal arch",
902
+ "874": "trolleybus, trolley coach, trackless trolley",
903
+ "875": "trombone",
904
+ "876": "tub, vat",
905
+ "877": "turnstile",
906
+ "878": "typewriter keyboard",
907
+ "879": "umbrella",
908
+ "880": "unicycle, monocycle",
909
+ "881": "upright, upright piano",
910
+ "882": "vacuum, vacuum cleaner",
911
+ "883": "vase",
912
+ "884": "vault",
913
+ "885": "velvet",
914
+ "886": "vending machine",
915
+ "887": "vestment",
916
+ "888": "viaduct",
917
+ "889": "violin, fiddle",
918
+ "890": "volleyball",
919
+ "891": "waffle iron",
920
+ "892": "wall clock",
921
+ "893": "wallet, billfold, notecase, pocketbook",
922
+ "894": "wardrobe, closet, press",
923
+ "895": "warplane, military plane",
924
+ "896": "washbasin, handbasin, washbowl, lavabo, wash-hand basin",
925
+ "897": "washer, automatic washer, washing machine",
926
+ "898": "water bottle",
927
+ "899": "water jug",
928
+ "900": "water tower",
929
+ "901": "whiskey jug",
930
+ "902": "whistle",
931
+ "903": "wig",
932
+ "904": "window screen",
933
+ "905": "window shade",
934
+ "906": "Windsor tie",
935
+ "907": "wine bottle",
936
+ "908": "wing",
937
+ "909": "wok",
938
+ "910": "wooden spoon",
939
+ "911": "wool, woolen, woollen",
940
+ "912": "worm fence, snake fence, snake-rail fence, Virginia fence",
941
+ "913": "wreck",
942
+ "914": "yawl",
943
+ "915": "yurt",
944
+ "916": "web site, website, internet site, site",
945
+ "917": "comic book",
946
+ "918": "crossword puzzle, crossword",
947
+ "919": "street sign",
948
+ "920": "traffic light, traffic signal, stoplight",
949
+ "921": "book jacket, dust cover, dust jacket, dust wrapper",
950
+ "922": "menu",
951
+ "923": "plate",
952
+ "924": "guacamole",
953
+ "925": "consomme",
954
+ "926": "hot pot, hotpot",
955
+ "927": "trifle",
956
+ "928": "ice cream, icecream",
957
+ "929": "ice lolly, lolly, lollipop, popsicle",
958
+ "930": "French loaf",
959
+ "931": "bagel, beigel",
960
+ "932": "pretzel",
961
+ "933": "cheeseburger",
962
+ "934": "hotdog, hot dog, red hot",
963
+ "935": "mashed potato",
964
+ "936": "head cabbage",
965
+ "937": "broccoli",
966
+ "938": "cauliflower",
967
+ "939": "zucchini, courgette",
968
+ "940": "spaghetti squash",
969
+ "941": "acorn squash",
970
+ "942": "butternut squash",
971
+ "943": "cucumber, cuke",
972
+ "944": "artichoke, globe artichoke",
973
+ "945": "bell pepper",
974
+ "946": "cardoon",
975
+ "947": "mushroom",
976
+ "948": "Granny Smith",
977
+ "949": "strawberry",
978
+ "950": "orange",
979
+ "951": "lemon",
980
+ "952": "fig",
981
+ "953": "pineapple, ananas",
982
+ "954": "banana",
983
+ "955": "jackfruit, jak, jack",
984
+ "956": "custard apple",
985
+ "957": "pomegranate",
986
+ "958": "hay",
987
+ "959": "carbonara",
988
+ "960": "chocolate sauce, chocolate syrup",
989
+ "961": "dough",
990
+ "962": "meat loaf, meatloaf",
991
+ "963": "pizza, pizza pie",
992
+ "964": "potpie",
993
+ "965": "burrito",
994
+ "966": "red wine",
995
+ "967": "espresso",
996
+ "968": "cup",
997
+ "969": "eggnog",
998
+ "970": "alp",
999
+ "971": "bubble",
1000
+ "972": "cliff, drop, drop-off",
1001
+ "973": "coral reef",
1002
+ "974": "geyser",
1003
+ "975": "lakeside, lakeshore",
1004
+ "976": "promontory, headland, head, foreland",
1005
+ "977": "sandbar, sand bar",
1006
+ "978": "seashore, coast, seacoast, sea-coast",
1007
+ "979": "valley, vale",
1008
+ "980": "volcano",
1009
+ "981": "ballplayer, baseball player",
1010
+ "982": "groom, bridegroom",
1011
+ "983": "scuba diver",
1012
+ "984": "rapeseed",
1013
+ "985": "daisy",
1014
+ "986": "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum",
1015
+ "987": "corn",
1016
+ "988": "acorn",
1017
+ "989": "hip, rose hip, rosehip",
1018
+ "990": "buckeye, horse chestnut, conker",
1019
+ "991": "coral fungus",
1020
+ "992": "agaric",
1021
+ "993": "gyromitra",
1022
+ "994": "stinkhorn, carrion fungus",
1023
+ "995": "earthstar",
1024
+ "996": "hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa",
1025
+ "997": "bolete",
1026
+ "998": "ear, spike, capitulum",
1027
+ "999": "toilet tissue, toilet paper, bathroom tissue"
1028
+ },
1029
+ "image_size": 256,
1030
+ "initializer_range": 0.02,
1031
+ "label2id": {
1032
+ "Afghan hound, Afghan": 160,
1033
+ "African chameleon, Chamaeleo chamaeleon": 47,
1034
+ "African crocodile, Nile crocodile, Crocodylus niloticus": 49,
1035
+ "African elephant, Loxodonta africana": 386,
1036
+ "African grey, African gray, Psittacus erithacus": 87,
1037
+ "African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus": 275,
1038
+ "Airedale, Airedale terrier": 191,
1039
+ "American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier": 180,
1040
+ "American alligator, Alligator mississipiensis": 50,
1041
+ "American black bear, black bear, Ursus americanus, Euarctos americanus": 295,
1042
+ "American chameleon, anole, Anolis carolinensis": 40,
1043
+ "American coot, marsh hen, mud hen, water hen, Fulica americana": 137,
1044
+ "American egret, great white heron, Egretta albus": 132,
1045
+ "American lobster, Northern lobster, Maine lobster, Homarus americanus": 122,
1046
+ "Angora, Angora rabbit": 332,
1047
+ "Appenzeller": 240,
1048
+ "Arabian camel, dromedary, Camelus dromedarius": 354,
1049
+ "Arctic fox, white fox, Alopex lagopus": 279,
1050
+ "Australian terrier": 193,
1051
+ "Band Aid": 419,
1052
+ "Bedlington terrier": 181,
1053
+ "Bernese mountain dog": 239,
1054
+ "Blenheim spaniel": 156,
1055
+ "Border collie": 232,
1056
+ "Border terrier": 182,
1057
+ "Boston bull, Boston terrier": 195,
1058
+ "Bouvier des Flandres, Bouviers des Flandres": 233,
1059
+ "Brabancon griffon": 262,
1060
+ "Brittany spaniel": 215,
1061
+ "CD player": 485,
1062
+ "Cardigan, Cardigan Welsh corgi": 264,
1063
+ "Chesapeake Bay retriever": 209,
1064
+ "Chihuahua": 151,
1065
+ "Christmas stocking": 496,
1066
+ "Crock Pot": 521,
1067
+ "Dandie Dinmont, Dandie Dinmont terrier": 194,
1068
+ "Doberman, Doberman pinscher": 236,
1069
+ "Dungeness crab, Cancer magister": 118,
1070
+ "Dutch oven": 544,
1071
+ "Egyptian cat": 285,
1072
+ "English foxhound": 167,
1073
+ "English setter": 212,
1074
+ "English springer, English springer spaniel": 217,
1075
+ "EntleBucher": 241,
1076
+ "Eskimo dog, husky": 248,
1077
+ "European fire salamander, Salamandra salamandra": 25,
1078
+ "European gallinule, Porphyrio porphyrio": 136,
1079
+ "French bulldog": 245,
1080
+ "French horn, horn": 566,
1081
+ "French loaf": 930,
1082
+ "German shepherd, German shepherd dog, German police dog, alsatian": 235,
1083
+ "German short-haired pointer": 210,
1084
+ "Gila monster, Heloderma suspectum": 45,
1085
+ "Gordon setter": 214,
1086
+ "Granny Smith": 948,
1087
+ "Great Dane": 246,
1088
+ "Great Pyrenees": 257,
1089
+ "Greater Swiss Mountain dog": 238,
1090
+ "Ibizan hound, Ibizan Podenco": 173,
1091
+ "Indian cobra, Naja naja": 63,
1092
+ "Indian elephant, Elephas maximus": 385,
1093
+ "Irish setter, red setter": 213,
1094
+ "Irish terrier": 184,
1095
+ "Irish water spaniel": 221,
1096
+ "Irish wolfhound": 170,
1097
+ "Italian greyhound": 171,
1098
+ "Japanese spaniel": 152,
1099
+ "Kerry blue terrier": 183,
1100
+ "Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis": 48,
1101
+ "Labrador retriever": 208,
1102
+ "Lakeland terrier": 189,
1103
+ "Leonberg": 255,
1104
+ "Lhasa, Lhasa apso": 204,
1105
+ "Loafer": 630,
1106
+ "Madagascar cat, ring-tailed lemur, Lemur catta": 383,
1107
+ "Maltese dog, Maltese terrier, Maltese": 153,
1108
+ "Mexican hairless": 268,
1109
+ "Model T": 661,
1110
+ "Newfoundland, Newfoundland dog": 256,
1111
+ "Norfolk terrier": 185,
1112
+ "Norwegian elkhound, elkhound": 174,
1113
+ "Norwich terrier": 186,
1114
+ "Old English sheepdog, bobtail": 229,
1115
+ "Pekinese, Pekingese, Peke": 154,
1116
+ "Pembroke, Pembroke Welsh corgi": 263,
1117
+ "Persian cat": 283,
1118
+ "Petri dish": 712,
1119
+ "Polaroid camera, Polaroid Land camera": 732,
1120
+ "Pomeranian": 259,
1121
+ "Rhodesian ridgeback": 159,
1122
+ "Rottweiler": 234,
1123
+ "Saint Bernard, St Bernard": 247,
1124
+ "Saluki, gazelle hound": 176,
1125
+ "Samoyed, Samoyede": 258,
1126
+ "Scotch terrier, Scottish terrier, Scottie": 199,
1127
+ "Scottish deerhound, deerhound": 177,
1128
+ "Sealyham terrier, Sealyham": 190,
1129
+ "Shetland sheepdog, Shetland sheep dog, Shetland": 230,
1130
+ "Shih-Tzu": 155,
1131
+ "Siamese cat, Siamese": 284,
1132
+ "Siberian husky": 250,
1133
+ "Staffordshire bullterrier, Staffordshire bull terrier": 179,
1134
+ "Sussex spaniel": 220,
1135
+ "Tibetan mastiff": 244,
1136
+ "Tibetan terrier, chrysanthemum dog": 200,
1137
+ "Walker hound, Walker foxhound": 166,
1138
+ "Weimaraner": 178,
1139
+ "Welsh springer spaniel": 218,
1140
+ "West Highland white terrier": 203,
1141
+ "Windsor tie": 906,
1142
+ "Yorkshire terrier": 187,
1143
+ "abacus": 398,
1144
+ "abaya": 399,
1145
+ "academic gown, academic robe, judge's robe": 400,
1146
+ "accordion, piano accordion, squeeze box": 401,
1147
+ "acorn": 988,
1148
+ "acorn squash": 941,
1149
+ "acoustic guitar": 402,
1150
+ "admiral": 321,
1151
+ "affenpinscher, monkey pinscher, monkey dog": 252,
1152
+ "agama": 42,
1153
+ "agaric": 992,
1154
+ "aircraft carrier, carrier, flattop, attack aircraft carrier": 403,
1155
+ "airliner": 404,
1156
+ "airship, dirigible": 405,
1157
+ "albatross, mollymawk": 146,
1158
+ "alligator lizard": 44,
1159
+ "alp": 970,
1160
+ "altar": 406,
1161
+ "ambulance": 407,
1162
+ "amphibian, amphibious vehicle": 408,
1163
+ "analog clock": 409,
1164
+ "anemone fish": 393,
1165
+ "ant, emmet, pismire": 310,
1166
+ "apiary, bee house": 410,
1167
+ "apron": 411,
1168
+ "armadillo": 363,
1169
+ "artichoke, globe artichoke": 944,
1170
+ "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin": 412,
1171
+ "assault rifle, assault gun": 413,
1172
+ "axolotl, mud puppy, Ambystoma mexicanum": 29,
1173
+ "baboon": 372,
1174
+ "backpack, back pack, knapsack, packsack, rucksack, haversack": 414,
1175
+ "badger": 362,
1176
+ "bagel, beigel": 931,
1177
+ "bakery, bakeshop, bakehouse": 415,
1178
+ "balance beam, beam": 416,
1179
+ "bald eagle, American eagle, Haliaeetus leucocephalus": 22,
1180
+ "balloon": 417,
1181
+ "ballplayer, baseball player": 981,
1182
+ "ballpoint, ballpoint pen, ballpen, Biro": 418,
1183
+ "banana": 954,
1184
+ "banded gecko": 38,
1185
+ "banjo": 420,
1186
+ "bannister, banister, balustrade, balusters, handrail": 421,
1187
+ "barbell": 422,
1188
+ "barber chair": 423,
1189
+ "barbershop": 424,
1190
+ "barn": 425,
1191
+ "barn spider, Araneus cavaticus": 73,
1192
+ "barometer": 426,
1193
+ "barracouta, snoek": 389,
1194
+ "barrel, cask": 427,
1195
+ "barrow, garden cart, lawn cart, wheelbarrow": 428,
1196
+ "baseball": 429,
1197
+ "basenji": 253,
1198
+ "basketball": 430,
1199
+ "basset, basset hound": 161,
1200
+ "bassinet": 431,
1201
+ "bassoon": 432,
1202
+ "bath towel": 434,
1203
+ "bathing cap, swimming cap": 433,
1204
+ "bathtub, bathing tub, bath, tub": 435,
1205
+ "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon": 436,
1206
+ "beacon, lighthouse, beacon light, pharos": 437,
1207
+ "beagle": 162,
1208
+ "beaker": 438,
1209
+ "bearskin, busby, shako": 439,
1210
+ "beaver": 337,
1211
+ "bee": 309,
1212
+ "bee eater": 92,
1213
+ "beer bottle": 440,
1214
+ "beer glass": 441,
1215
+ "bell cote, bell cot": 442,
1216
+ "bell pepper": 945,
1217
+ "bib": 443,
1218
+ "bicycle-built-for-two, tandem bicycle, tandem": 444,
1219
+ "bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis": 349,
1220
+ "bikini, two-piece": 445,
1221
+ "binder, ring-binder": 446,
1222
+ "binoculars, field glasses, opera glasses": 447,
1223
+ "birdhouse": 448,
1224
+ "bison": 347,
1225
+ "bittern": 133,
1226
+ "black and gold garden spider, Argiope aurantia": 72,
1227
+ "black grouse": 80,
1228
+ "black stork, Ciconia nigra": 128,
1229
+ "black swan, Cygnus atratus": 100,
1230
+ "black widow, Latrodectus mactans": 75,
1231
+ "black-and-tan coonhound": 165,
1232
+ "black-footed ferret, ferret, Mustela nigripes": 359,
1233
+ "bloodhound, sleuthhound": 163,
1234
+ "bluetick": 164,
1235
+ "boa constrictor, Constrictor constrictor": 61,
1236
+ "boathouse": 449,
1237
+ "bobsled, bobsleigh, bob": 450,
1238
+ "bolete": 997,
1239
+ "bolo tie, bolo, bola tie, bola": 451,
1240
+ "bonnet, poke bonnet": 452,
1241
+ "book jacket, dust cover, dust jacket, dust wrapper": 921,
1242
+ "bookcase": 453,
1243
+ "bookshop, bookstore, bookstall": 454,
1244
+ "borzoi, Russian wolfhound": 169,
1245
+ "bottlecap": 455,
1246
+ "bow": 456,
1247
+ "bow tie, bow-tie, bowtie": 457,
1248
+ "box turtle, box tortoise": 37,
1249
+ "boxer": 242,
1250
+ "brain coral": 109,
1251
+ "brambling, Fringilla montifringilla": 10,
1252
+ "brass, memorial tablet, plaque": 458,
1253
+ "brassiere, bra, bandeau": 459,
1254
+ "breakwater, groin, groyne, mole, bulwark, seawall, jetty": 460,
1255
+ "breastplate, aegis, egis": 461,
1256
+ "briard": 226,
1257
+ "broccoli": 937,
1258
+ "broom": 462,
1259
+ "brown bear, bruin, Ursus arctos": 294,
1260
+ "bubble": 971,
1261
+ "bucket, pail": 463,
1262
+ "buckeye, horse chestnut, conker": 990,
1263
+ "buckle": 464,
1264
+ "bulbul": 16,
1265
+ "bull mastiff": 243,
1266
+ "bullet train, bullet": 466,
1267
+ "bulletproof vest": 465,
1268
+ "bullfrog, Rana catesbeiana": 30,
1269
+ "burrito": 965,
1270
+ "bustard": 138,
1271
+ "butcher shop, meat market": 467,
1272
+ "butternut squash": 942,
1273
+ "cab, hack, taxi, taxicab": 468,
1274
+ "cabbage butterfly": 324,
1275
+ "cairn, cairn terrier": 192,
1276
+ "caldron, cauldron": 469,
1277
+ "can opener, tin opener": 473,
1278
+ "candle, taper, wax light": 470,
1279
+ "cannon": 471,
1280
+ "canoe": 472,
1281
+ "capuchin, ringtail, Cebus capucinus": 378,
1282
+ "car mirror": 475,
1283
+ "car wheel": 479,
1284
+ "carbonara": 959,
1285
+ "cardigan": 474,
1286
+ "cardoon": 946,
1287
+ "carousel, carrousel, merry-go-round, roundabout, whirligig": 476,
1288
+ "carpenter's kit, tool kit": 477,
1289
+ "carton": 478,
1290
+ "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM": 480,
1291
+ "cassette": 481,
1292
+ "cassette player": 482,
1293
+ "castle": 483,
1294
+ "catamaran": 484,
1295
+ "cauliflower": 938,
1296
+ "cello, violoncello": 486,
1297
+ "cellular telephone, cellular phone, cellphone, cell, mobile phone": 487,
1298
+ "centipede": 79,
1299
+ "chain": 488,
1300
+ "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour": 490,
1301
+ "chain saw, chainsaw": 491,
1302
+ "chainlink fence": 489,
1303
+ "chambered nautilus, pearly nautilus, nautilus": 117,
1304
+ "cheeseburger": 933,
1305
+ "cheetah, chetah, Acinonyx jubatus": 293,
1306
+ "chest": 492,
1307
+ "chickadee": 19,
1308
+ "chiffonier, commode": 493,
1309
+ "chime, bell, gong": 494,
1310
+ "chimpanzee, chimp, Pan troglodytes": 367,
1311
+ "china cabinet, china closet": 495,
1312
+ "chiton, coat-of-mail shell, sea cradle, polyplacophore": 116,
1313
+ "chocolate sauce, chocolate syrup": 960,
1314
+ "chow, chow chow": 260,
1315
+ "church, church building": 497,
1316
+ "cicada, cicala": 316,
1317
+ "cinema, movie theater, movie theatre, movie house, picture palace": 498,
1318
+ "cleaver, meat cleaver, chopper": 499,
1319
+ "cliff dwelling": 500,
1320
+ "cliff, drop, drop-off": 972,
1321
+ "cloak": 501,
1322
+ "clog, geta, patten, sabot": 502,
1323
+ "clumber, clumber spaniel": 216,
1324
+ "cock": 7,
1325
+ "cocker spaniel, English cocker spaniel, cocker": 219,
1326
+ "cockroach, roach": 314,
1327
+ "cocktail shaker": 503,
1328
+ "coffee mug": 504,
1329
+ "coffeepot": 505,
1330
+ "coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch": 391,
1331
+ "coil, spiral, volute, whorl, helix": 506,
1332
+ "collie": 231,
1333
+ "colobus, colobus monkey": 375,
1334
+ "combination lock": 507,
1335
+ "comic book": 917,
1336
+ "common iguana, iguana, Iguana iguana": 39,
1337
+ "common newt, Triturus vulgaris": 26,
1338
+ "computer keyboard, keypad": 508,
1339
+ "conch": 112,
1340
+ "confectionery, confectionary, candy store": 509,
1341
+ "consomme": 925,
1342
+ "container ship, containership, container vessel": 510,
1343
+ "convertible": 511,
1344
+ "coral fungus": 991,
1345
+ "coral reef": 973,
1346
+ "corkscrew, bottle screw": 512,
1347
+ "corn": 987,
1348
+ "cornet, horn, trumpet, trump": 513,
1349
+ "coucal": 91,
1350
+ "cougar, puma, catamount, mountain lion, painter, panther, Felis concolor": 286,
1351
+ "cowboy boot": 514,
1352
+ "cowboy hat, ten-gallon hat": 515,
1353
+ "coyote, prairie wolf, brush wolf, Canis latrans": 272,
1354
+ "cradle": 516,
1355
+ "crane": 517,
1356
+ "crash helmet": 518,
1357
+ "crate": 519,
1358
+ "crayfish, crawfish, crawdad, crawdaddy": 124,
1359
+ "crib, cot": 520,
1360
+ "cricket": 312,
1361
+ "croquet ball": 522,
1362
+ "crossword puzzle, crossword": 918,
1363
+ "crutch": 523,
1364
+ "cucumber, cuke": 943,
1365
+ "cuirass": 524,
1366
+ "cup": 968,
1367
+ "curly-coated retriever": 206,
1368
+ "custard apple": 956,
1369
+ "daisy": 985,
1370
+ "dalmatian, coach dog, carriage dog": 251,
1371
+ "dam, dike, dyke": 525,
1372
+ "damselfly": 320,
1373
+ "desk": 526,
1374
+ "desktop computer": 527,
1375
+ "dhole, Cuon alpinus": 274,
1376
+ "dial telephone, dial phone": 528,
1377
+ "diamondback, diamondback rattlesnake, Crotalus adamanteus": 67,
1378
+ "diaper, nappy, napkin": 529,
1379
+ "digital clock": 530,
1380
+ "digital watch": 531,
1381
+ "dingo, warrigal, warragal, Canis dingo": 273,
1382
+ "dining table, board": 532,
1383
+ "dishrag, dishcloth": 533,
1384
+ "dishwasher, dish washer, dishwashing machine": 534,
1385
+ "disk brake, disc brake": 535,
1386
+ "dock, dockage, docking facility": 536,
1387
+ "dogsled, dog sled, dog sleigh": 537,
1388
+ "dome": 538,
1389
+ "doormat, welcome mat": 539,
1390
+ "dough": 961,
1391
+ "dowitcher": 142,
1392
+ "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk": 319,
1393
+ "drake": 97,
1394
+ "drilling platform, offshore rig": 540,
1395
+ "drum, membranophone, tympan": 541,
1396
+ "drumstick": 542,
1397
+ "dugong, Dugong dugon": 149,
1398
+ "dumbbell": 543,
1399
+ "dung beetle": 305,
1400
+ "ear, spike, capitulum": 998,
1401
+ "earthstar": 995,
1402
+ "echidna, spiny anteater, anteater": 102,
1403
+ "eel": 390,
1404
+ "eft": 27,
1405
+ "eggnog": 969,
1406
+ "electric fan, blower": 545,
1407
+ "electric guitar": 546,
1408
+ "electric locomotive": 547,
1409
+ "electric ray, crampfish, numbfish, torpedo": 5,
1410
+ "entertainment center": 548,
1411
+ "envelope": 549,
1412
+ "espresso": 967,
1413
+ "espresso maker": 550,
1414
+ "face powder": 551,
1415
+ "feather boa, boa": 552,
1416
+ "fiddler crab": 120,
1417
+ "fig": 952,
1418
+ "file, file cabinet, filing cabinet": 553,
1419
+ "fire engine, fire truck": 555,
1420
+ "fire screen, fireguard": 556,
1421
+ "fireboat": 554,
1422
+ "flagpole, flagstaff": 557,
1423
+ "flamingo": 130,
1424
+ "flat-coated retriever": 205,
1425
+ "flatworm, platyhelminth": 110,
1426
+ "flute, transverse flute": 558,
1427
+ "fly": 308,
1428
+ "folding chair": 559,
1429
+ "football helmet": 560,
1430
+ "forklift": 561,
1431
+ "fountain": 562,
1432
+ "fountain pen": 563,
1433
+ "four-poster": 564,
1434
+ "fox squirrel, eastern fox squirrel, Sciurus niger": 335,
1435
+ "freight car": 565,
1436
+ "frilled lizard, Chlamydosaurus kingi": 43,
1437
+ "frying pan, frypan, skillet": 567,
1438
+ "fur coat": 568,
1439
+ "gar, garfish, garpike, billfish, Lepisosteus osseus": 395,
1440
+ "garbage truck, dustcart": 569,
1441
+ "garden spider, Aranea diademata": 74,
1442
+ "garter snake, grass snake": 57,
1443
+ "gas pump, gasoline pump, petrol pump, island dispenser": 571,
1444
+ "gasmask, respirator, gas helmet": 570,
1445
+ "gazelle": 353,
1446
+ "geyser": 974,
1447
+ "giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca": 388,
1448
+ "giant schnauzer": 197,
1449
+ "gibbon, Hylobates lar": 368,
1450
+ "go-kart": 573,
1451
+ "goblet": 572,
1452
+ "golden retriever": 207,
1453
+ "goldfinch, Carduelis carduelis": 11,
1454
+ "goldfish, Carassius auratus": 1,
1455
+ "golf ball": 574,
1456
+ "golfcart, golf cart": 575,
1457
+ "gondola": 576,
1458
+ "gong, tam-tam": 577,
1459
+ "goose": 99,
1460
+ "gorilla, Gorilla gorilla": 366,
1461
+ "gown": 578,
1462
+ "grand piano, grand": 579,
1463
+ "grasshopper, hopper": 311,
1464
+ "great grey owl, great gray owl, Strix nebulosa": 24,
1465
+ "great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias": 2,
1466
+ "green lizard, Lacerta viridis": 46,
1467
+ "green mamba": 64,
1468
+ "green snake, grass snake": 55,
1469
+ "greenhouse, nursery, glasshouse": 580,
1470
+ "grey fox, gray fox, Urocyon cinereoargenteus": 280,
1471
+ "grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus": 147,
1472
+ "grille, radiator grille": 581,
1473
+ "grocery store, grocery, food market, market": 582,
1474
+ "groenendael": 224,
1475
+ "groom, bridegroom": 982,
1476
+ "ground beetle, carabid beetle": 302,
1477
+ "guacamole": 924,
1478
+ "guenon, guenon monkey": 370,
1479
+ "guillotine": 583,
1480
+ "guinea pig, Cavia cobaya": 338,
1481
+ "gyromitra": 993,
1482
+ "hair slide": 584,
1483
+ "hair spray": 585,
1484
+ "half track": 586,
1485
+ "hammer": 587,
1486
+ "hammerhead, hammerhead shark": 4,
1487
+ "hamper": 588,
1488
+ "hamster": 333,
1489
+ "hand blower, blow dryer, blow drier, hair dryer, hair drier": 589,
1490
+ "hand-held computer, hand-held microcomputer": 590,
1491
+ "handkerchief, hankie, hanky, hankey": 591,
1492
+ "hard disc, hard disk, fixed disk": 592,
1493
+ "hare": 331,
1494
+ "harmonica, mouth organ, harp, mouth harp": 593,
1495
+ "harp": 594,
1496
+ "hartebeest": 351,
1497
+ "harvester, reaper": 595,
1498
+ "harvestman, daddy longlegs, Phalangium opilio": 70,
1499
+ "hatchet": 596,
1500
+ "hay": 958,
1501
+ "head cabbage": 936,
1502
+ "hen": 8,
1503
+ "hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa": 996,
1504
+ "hermit crab": 125,
1505
+ "hip, rose hip, rosehip": 989,
1506
+ "hippopotamus, hippo, river horse, Hippopotamus amphibius": 344,
1507
+ "hog, pig, grunter, squealer, Sus scrofa": 341,
1508
+ "hognose snake, puff adder, sand viper": 54,
1509
+ "holster": 597,
1510
+ "home theater, home theatre": 598,
1511
+ "honeycomb": 599,
1512
+ "hook, claw": 600,
1513
+ "hoopskirt, crinoline": 601,
1514
+ "horizontal bar, high bar": 602,
1515
+ "hornbill": 93,
1516
+ "horned viper, cerastes, sand viper, horned asp, Cerastes cornutus": 66,
1517
+ "horse cart, horse-cart": 603,
1518
+ "hot pot, hotpot": 926,
1519
+ "hotdog, hot dog, red hot": 934,
1520
+ "hourglass": 604,
1521
+ "house finch, linnet, Carpodacus mexicanus": 12,
1522
+ "howler monkey, howler": 379,
1523
+ "hummingbird": 94,
1524
+ "hyena, hyaena": 276,
1525
+ "iPod": 605,
1526
+ "ibex, Capra ibex": 350,
1527
+ "ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus": 296,
1528
+ "ice cream, icecream": 928,
1529
+ "ice lolly, lolly, lollipop, popsicle": 929,
1530
+ "impala, Aepyceros melampus": 352,
1531
+ "indigo bunting, indigo finch, indigo bird, Passerina cyanea": 14,
1532
+ "indri, indris, Indri indri, Indri brevicaudatus": 384,
1533
+ "iron, smoothing iron": 606,
1534
+ "isopod": 126,
1535
+ "jacamar": 95,
1536
+ "jack-o'-lantern": 607,
1537
+ "jackfruit, jak, jack": 955,
1538
+ "jaguar, panther, Panthera onca, Felis onca": 290,
1539
+ "jay": 17,
1540
+ "jean, blue jean, denim": 608,
1541
+ "jeep, landrover": 609,
1542
+ "jellyfish": 107,
1543
+ "jersey, T-shirt, tee shirt": 610,
1544
+ "jigsaw puzzle": 611,
1545
+ "jinrikisha, ricksha, rickshaw": 612,
1546
+ "joystick": 613,
1547
+ "junco, snowbird": 13,
1548
+ "keeshond": 261,
1549
+ "kelpie": 227,
1550
+ "killer whale, killer, orca, grampus, sea wolf, Orcinus orca": 148,
1551
+ "kimono": 614,
1552
+ "king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica": 121,
1553
+ "king penguin, Aptenodytes patagonica": 145,
1554
+ "king snake, kingsnake": 56,
1555
+ "kit fox, Vulpes macrotis": 278,
1556
+ "kite": 21,
1557
+ "knee pad": 615,
1558
+ "knot": 616,
1559
+ "koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus": 105,
1560
+ "komondor": 228,
1561
+ "kuvasz": 222,
1562
+ "lab coat, laboratory coat": 617,
1563
+ "lacewing, lacewing fly": 318,
1564
+ "ladle": 618,
1565
+ "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle": 301,
1566
+ "lakeside, lakeshore": 975,
1567
+ "lampshade, lamp shade": 619,
1568
+ "langur": 374,
1569
+ "laptop, laptop computer": 620,
1570
+ "lawn mower, mower": 621,
1571
+ "leaf beetle, chrysomelid": 304,
1572
+ "leafhopper": 317,
1573
+ "leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea": 34,
1574
+ "lemon": 951,
1575
+ "lens cap, lens cover": 622,
1576
+ "leopard, Panthera pardus": 288,
1577
+ "lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens": 387,
1578
+ "letter opener, paper knife, paperknife": 623,
1579
+ "library": 624,
1580
+ "lifeboat": 625,
1581
+ "lighter, light, igniter, ignitor": 626,
1582
+ "limousine, limo": 627,
1583
+ "limpkin, Aramus pictus": 135,
1584
+ "liner, ocean liner": 628,
1585
+ "lion, king of beasts, Panthera leo": 291,
1586
+ "lionfish": 396,
1587
+ "lipstick, lip rouge": 629,
1588
+ "little blue heron, Egretta caerulea": 131,
1589
+ "llama": 355,
1590
+ "loggerhead, loggerhead turtle, Caretta caretta": 33,
1591
+ "long-horned beetle, longicorn, longicorn beetle": 303,
1592
+ "lorikeet": 90,
1593
+ "lotion": 631,
1594
+ "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system": 632,
1595
+ "loupe, jeweler's loupe": 633,
1596
+ "lumbermill, sawmill": 634,
1597
+ "lycaenid, lycaenid butterfly": 326,
1598
+ "lynx, catamount": 287,
1599
+ "macaque": 373,
1600
+ "macaw": 88,
1601
+ "magnetic compass": 635,
1602
+ "magpie": 18,
1603
+ "mailbag, postbag": 636,
1604
+ "mailbox, letter box": 637,
1605
+ "maillot": 638,
1606
+ "maillot, tank suit": 639,
1607
+ "malamute, malemute, Alaskan malamute": 249,
1608
+ "malinois": 225,
1609
+ "manhole cover": 640,
1610
+ "mantis, mantid": 315,
1611
+ "maraca": 641,
1612
+ "marimba, xylophone": 642,
1613
+ "marmoset": 377,
1614
+ "marmot": 336,
1615
+ "mashed potato": 935,
1616
+ "mask": 643,
1617
+ "matchstick": 644,
1618
+ "maypole": 645,
1619
+ "maze, labyrinth": 646,
1620
+ "measuring cup": 647,
1621
+ "meat loaf, meatloaf": 962,
1622
+ "medicine chest, medicine cabinet": 648,
1623
+ "meerkat, mierkat": 299,
1624
+ "megalith, megalithic structure": 649,
1625
+ "menu": 922,
1626
+ "microphone, mike": 650,
1627
+ "microwave, microwave oven": 651,
1628
+ "military uniform": 652,
1629
+ "milk can": 653,
1630
+ "miniature pinscher": 237,
1631
+ "miniature poodle": 266,
1632
+ "miniature schnauzer": 196,
1633
+ "minibus": 654,
1634
+ "miniskirt, mini": 655,
1635
+ "minivan": 656,
1636
+ "mink": 357,
1637
+ "missile": 657,
1638
+ "mitten": 658,
1639
+ "mixing bowl": 659,
1640
+ "mobile home, manufactured home": 660,
1641
+ "modem": 662,
1642
+ "monarch, monarch butterfly, milkweed butterfly, Danaus plexippus": 323,
1643
+ "monastery": 663,
1644
+ "mongoose": 298,
1645
+ "monitor": 664,
1646
+ "moped": 665,
1647
+ "mortar": 666,
1648
+ "mortarboard": 667,
1649
+ "mosque": 668,
1650
+ "mosquito net": 669,
1651
+ "motor scooter, scooter": 670,
1652
+ "mountain bike, all-terrain bike, off-roader": 671,
1653
+ "mountain tent": 672,
1654
+ "mouse, computer mouse": 673,
1655
+ "mousetrap": 674,
1656
+ "moving van": 675,
1657
+ "mud turtle": 35,
1658
+ "mushroom": 947,
1659
+ "muzzle": 676,
1660
+ "nail": 677,
1661
+ "neck brace": 678,
1662
+ "necklace": 679,
1663
+ "nematode, nematode worm, roundworm": 111,
1664
+ "night snake, Hypsiglena torquata": 60,
1665
+ "nipple": 680,
1666
+ "notebook, notebook computer": 681,
1667
+ "obelisk": 682,
1668
+ "oboe, hautboy, hautbois": 683,
1669
+ "ocarina, sweet potato": 684,
1670
+ "odometer, hodometer, mileometer, milometer": 685,
1671
+ "oil filter": 686,
1672
+ "orange": 950,
1673
+ "orangutan, orang, orangutang, Pongo pygmaeus": 365,
1674
+ "organ, pipe organ": 687,
1675
+ "oscilloscope, scope, cathode-ray oscilloscope, CRO": 688,
1676
+ "ostrich, Struthio camelus": 9,
1677
+ "otter": 360,
1678
+ "otterhound, otter hound": 175,
1679
+ "overskirt": 689,
1680
+ "ox": 345,
1681
+ "oxcart": 690,
1682
+ "oxygen mask": 691,
1683
+ "oystercatcher, oyster catcher": 143,
1684
+ "packet": 692,
1685
+ "paddle, boat paddle": 693,
1686
+ "paddlewheel, paddle wheel": 694,
1687
+ "padlock": 695,
1688
+ "paintbrush": 696,
1689
+ "pajama, pyjama, pj's, jammies": 697,
1690
+ "palace": 698,
1691
+ "panpipe, pandean pipe, syrinx": 699,
1692
+ "paper towel": 700,
1693
+ "papillon": 157,
1694
+ "parachute, chute": 701,
1695
+ "parallel bars, bars": 702,
1696
+ "park bench": 703,
1697
+ "parking meter": 704,
1698
+ "partridge": 86,
1699
+ "passenger car, coach, carriage": 705,
1700
+ "patas, hussar monkey, Erythrocebus patas": 371,
1701
+ "patio, terrace": 706,
1702
+ "pay-phone, pay-station": 707,
1703
+ "peacock": 84,
1704
+ "pedestal, plinth, footstall": 708,
1705
+ "pelican": 144,
1706
+ "pencil box, pencil case": 709,
1707
+ "pencil sharpener": 710,
1708
+ "perfume, essence": 711,
1709
+ "photocopier": 713,
1710
+ "pick, plectrum, plectron": 714,
1711
+ "pickelhaube": 715,
1712
+ "picket fence, paling": 716,
1713
+ "pickup, pickup truck": 717,
1714
+ "pier": 718,
1715
+ "piggy bank, penny bank": 719,
1716
+ "pill bottle": 720,
1717
+ "pillow": 721,
1718
+ "pineapple, ananas": 953,
1719
+ "ping-pong ball": 722,
1720
+ "pinwheel": 723,
1721
+ "pirate, pirate ship": 724,
1722
+ "pitcher, ewer": 725,
1723
+ "pizza, pizza pie": 963,
1724
+ "plane, carpenter's plane, woodworking plane": 726,
1725
+ "planetarium": 727,
1726
+ "plastic bag": 728,
1727
+ "plate": 923,
1728
+ "plate rack": 729,
1729
+ "platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus": 103,
1730
+ "plow, plough": 730,
1731
+ "plunger, plumber's helper": 731,
1732
+ "pole": 733,
1733
+ "polecat, fitch, foulmart, foumart, Mustela putorius": 358,
1734
+ "police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria": 734,
1735
+ "pomegranate": 957,
1736
+ "poncho": 735,
1737
+ "pool table, billiard table, snooker table": 736,
1738
+ "pop bottle, soda bottle": 737,
1739
+ "porcupine, hedgehog": 334,
1740
+ "pot, flowerpot": 738,
1741
+ "potpie": 964,
1742
+ "potter's wheel": 739,
1743
+ "power drill": 740,
1744
+ "prairie chicken, prairie grouse, prairie fowl": 83,
1745
+ "prayer rug, prayer mat": 741,
1746
+ "pretzel": 932,
1747
+ "printer": 742,
1748
+ "prison, prison house": 743,
1749
+ "proboscis monkey, Nasalis larvatus": 376,
1750
+ "projectile, missile": 744,
1751
+ "projector": 745,
1752
+ "promontory, headland, head, foreland": 976,
1753
+ "ptarmigan": 81,
1754
+ "puck, hockey puck": 746,
1755
+ "puffer, pufferfish, blowfish, globefish": 397,
1756
+ "pug, pug-dog": 254,
1757
+ "punching bag, punch bag, punching ball, punchball": 747,
1758
+ "purse": 748,
1759
+ "quail": 85,
1760
+ "quill, quill pen": 749,
1761
+ "quilt, comforter, comfort, puff": 750,
1762
+ "racer, race car, racing car": 751,
1763
+ "racket, racquet": 752,
1764
+ "radiator": 753,
1765
+ "radio telescope, radio reflector": 755,
1766
+ "radio, wireless": 754,
1767
+ "rain barrel": 756,
1768
+ "ram, tup": 348,
1769
+ "rapeseed": 984,
1770
+ "recreational vehicle, RV, R.V.": 757,
1771
+ "red fox, Vulpes vulpes": 277,
1772
+ "red wine": 966,
1773
+ "red wolf, maned wolf, Canis rufus, Canis niger": 271,
1774
+ "red-backed sandpiper, dunlin, Erolia alpina": 140,
1775
+ "red-breasted merganser, Mergus serrator": 98,
1776
+ "redbone": 168,
1777
+ "redshank, Tringa totanus": 141,
1778
+ "reel": 758,
1779
+ "reflex camera": 759,
1780
+ "refrigerator, icebox": 760,
1781
+ "remote control, remote": 761,
1782
+ "restaurant, eating house, eating place, eatery": 762,
1783
+ "revolver, six-gun, six-shooter": 763,
1784
+ "rhinoceros beetle": 306,
1785
+ "rifle": 764,
1786
+ "ringlet, ringlet butterfly": 322,
1787
+ "ringneck snake, ring-necked snake, ring snake": 53,
1788
+ "robin, American robin, Turdus migratorius": 15,
1789
+ "rock beauty, Holocanthus tricolor": 392,
1790
+ "rock crab, Cancer irroratus": 119,
1791
+ "rock python, rock snake, Python sebae": 62,
1792
+ "rocking chair, rocker": 765,
1793
+ "rotisserie": 766,
1794
+ "rubber eraser, rubber, pencil eraser": 767,
1795
+ "ruddy turnstone, Arenaria interpres": 139,
1796
+ "ruffed grouse, partridge, Bonasa umbellus": 82,
1797
+ "rugby ball": 768,
1798
+ "rule, ruler": 769,
1799
+ "running shoe": 770,
1800
+ "safe": 771,
1801
+ "safety pin": 772,
1802
+ "saltshaker, salt shaker": 773,
1803
+ "sandal": 774,
1804
+ "sandbar, sand bar": 977,
1805
+ "sarong": 775,
1806
+ "sax, saxophone": 776,
1807
+ "scabbard": 777,
1808
+ "scale, weighing machine": 778,
1809
+ "schipperke": 223,
1810
+ "school bus": 779,
1811
+ "schooner": 780,
1812
+ "scoreboard": 781,
1813
+ "scorpion": 71,
1814
+ "screen, CRT screen": 782,
1815
+ "screw": 783,
1816
+ "screwdriver": 784,
1817
+ "scuba diver": 983,
1818
+ "sea anemone, anemone": 108,
1819
+ "sea cucumber, holothurian": 329,
1820
+ "sea lion": 150,
1821
+ "sea slug, nudibranch": 115,
1822
+ "sea snake": 65,
1823
+ "sea urchin": 328,
1824
+ "seashore, coast, seacoast, sea-coast": 978,
1825
+ "seat belt, seatbelt": 785,
1826
+ "sewing machine": 786,
1827
+ "shield, buckler": 787,
1828
+ "shoe shop, shoe-shop, shoe store": 788,
1829
+ "shoji": 789,
1830
+ "shopping basket": 790,
1831
+ "shopping cart": 791,
1832
+ "shovel": 792,
1833
+ "shower cap": 793,
1834
+ "shower curtain": 794,
1835
+ "siamang, Hylobates syndactylus, Symphalangus syndactylus": 369,
1836
+ "sidewinder, horned rattlesnake, Crotalus cerastes": 68,
1837
+ "silky terrier, Sydney silky": 201,
1838
+ "ski": 795,
1839
+ "ski mask": 796,
1840
+ "skunk, polecat, wood pussy": 361,
1841
+ "sleeping bag": 797,
1842
+ "slide rule, slipstick": 798,
1843
+ "sliding door": 799,
1844
+ "slot, one-armed bandit": 800,
1845
+ "sloth bear, Melursus ursinus, Ursus ursinus": 297,
1846
+ "slug": 114,
1847
+ "snail": 113,
1848
+ "snorkel": 801,
1849
+ "snow leopard, ounce, Panthera uncia": 289,
1850
+ "snowmobile": 802,
1851
+ "snowplow, snowplough": 803,
1852
+ "soap dispenser": 804,
1853
+ "soccer ball": 805,
1854
+ "sock": 806,
1855
+ "soft-coated wheaten terrier": 202,
1856
+ "solar dish, solar collector, solar furnace": 807,
1857
+ "sombrero": 808,
1858
+ "sorrel": 339,
1859
+ "soup bowl": 809,
1860
+ "space bar": 810,
1861
+ "space heater": 811,
1862
+ "space shuttle": 812,
1863
+ "spaghetti squash": 940,
1864
+ "spatula": 813,
1865
+ "speedboat": 814,
1866
+ "spider monkey, Ateles geoffroyi": 381,
1867
+ "spider web, spider's web": 815,
1868
+ "spindle": 816,
1869
+ "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish": 123,
1870
+ "spoonbill": 129,
1871
+ "sports car, sport car": 817,
1872
+ "spotlight, spot": 818,
1873
+ "spotted salamander, Ambystoma maculatum": 28,
1874
+ "squirrel monkey, Saimiri sciureus": 382,
1875
+ "stage": 819,
1876
+ "standard poodle": 267,
1877
+ "standard schnauzer": 198,
1878
+ "starfish, sea star": 327,
1879
+ "steam locomotive": 820,
1880
+ "steel arch bridge": 821,
1881
+ "steel drum": 822,
1882
+ "stethoscope": 823,
1883
+ "stingray": 6,
1884
+ "stinkhorn, carrion fungus": 994,
1885
+ "stole": 824,
1886
+ "stone wall": 825,
1887
+ "stopwatch, stop watch": 826,
1888
+ "stove": 827,
1889
+ "strainer": 828,
1890
+ "strawberry": 949,
1891
+ "street sign": 919,
1892
+ "streetcar, tram, tramcar, trolley, trolley car": 829,
1893
+ "stretcher": 830,
1894
+ "studio couch, day bed": 831,
1895
+ "stupa, tope": 832,
1896
+ "sturgeon": 394,
1897
+ "submarine, pigboat, sub, U-boat": 833,
1898
+ "suit, suit of clothes": 834,
1899
+ "sulphur butterfly, sulfur butterfly": 325,
1900
+ "sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita": 89,
1901
+ "sundial": 835,
1902
+ "sunglass": 836,
1903
+ "sunglasses, dark glasses, shades": 837,
1904
+ "sunscreen, sunblock, sun blocker": 838,
1905
+ "suspension bridge": 839,
1906
+ "swab, swob, mop": 840,
1907
+ "sweatshirt": 841,
1908
+ "swimming trunks, bathing trunks": 842,
1909
+ "swing": 843,
1910
+ "switch, electric switch, electrical switch": 844,
1911
+ "syringe": 845,
1912
+ "tabby, tabby cat": 281,
1913
+ "table lamp": 846,
1914
+ "tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui": 32,
1915
+ "tank, army tank, armored combat vehicle, armoured combat vehicle": 847,
1916
+ "tape player": 848,
1917
+ "tarantula": 76,
1918
+ "teapot": 849,
1919
+ "teddy, teddy bear": 850,
1920
+ "television, television system": 851,
1921
+ "tench, Tinca tinca": 0,
1922
+ "tennis ball": 852,
1923
+ "terrapin": 36,
1924
+ "thatch, thatched roof": 853,
1925
+ "theater curtain, theatre curtain": 854,
1926
+ "thimble": 855,
1927
+ "three-toed sloth, ai, Bradypus tridactylus": 364,
1928
+ "thresher, thrasher, threshing machine": 856,
1929
+ "throne": 857,
1930
+ "thunder snake, worm snake, Carphophis amoenus": 52,
1931
+ "tick": 78,
1932
+ "tiger beetle": 300,
1933
+ "tiger cat": 282,
1934
+ "tiger shark, Galeocerdo cuvieri": 3,
1935
+ "tiger, Panthera tigris": 292,
1936
+ "tile roof": 858,
1937
+ "timber wolf, grey wolf, gray wolf, Canis lupus": 269,
1938
+ "titi, titi monkey": 380,
1939
+ "toaster": 859,
1940
+ "tobacco shop, tobacconist shop, tobacconist": 860,
1941
+ "toilet seat": 861,
1942
+ "toilet tissue, toilet paper, bathroom tissue": 999,
1943
+ "torch": 862,
1944
+ "totem pole": 863,
1945
+ "toucan": 96,
1946
+ "tow truck, tow car, wrecker": 864,
1947
+ "toy poodle": 265,
1948
+ "toy terrier": 158,
1949
+ "toyshop": 865,
1950
+ "tractor": 866,
1951
+ "traffic light, traffic signal, stoplight": 920,
1952
+ "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi": 867,
1953
+ "tray": 868,
1954
+ "tree frog, tree-frog": 31,
1955
+ "trench coat": 869,
1956
+ "triceratops": 51,
1957
+ "tricycle, trike, velocipede": 870,
1958
+ "trifle": 927,
1959
+ "trilobite": 69,
1960
+ "trimaran": 871,
1961
+ "tripod": 872,
1962
+ "triumphal arch": 873,
1963
+ "trolleybus, trolley coach, trackless trolley": 874,
1964
+ "trombone": 875,
1965
+ "tub, vat": 876,
1966
+ "turnstile": 877,
1967
+ "tusker": 101,
1968
+ "typewriter keyboard": 878,
1969
+ "umbrella": 879,
1970
+ "unicycle, monocycle": 880,
1971
+ "upright, upright piano": 881,
1972
+ "vacuum, vacuum cleaner": 882,
1973
+ "valley, vale": 979,
1974
+ "vase": 883,
1975
+ "vault": 884,
1976
+ "velvet": 885,
1977
+ "vending machine": 886,
1978
+ "vestment": 887,
1979
+ "viaduct": 888,
1980
+ "vine snake": 59,
1981
+ "violin, fiddle": 889,
1982
+ "vizsla, Hungarian pointer": 211,
1983
+ "volcano": 980,
1984
+ "volleyball": 890,
1985
+ "vulture": 23,
1986
+ "waffle iron": 891,
1987
+ "walking stick, walkingstick, stick insect": 313,
1988
+ "wall clock": 892,
1989
+ "wallaby, brush kangaroo": 104,
1990
+ "wallet, billfold, notecase, pocketbook": 893,
1991
+ "wardrobe, closet, press": 894,
1992
+ "warplane, military plane": 895,
1993
+ "warthog": 343,
1994
+ "washbasin, handbasin, washbowl, lavabo, wash-hand basin": 896,
1995
+ "washer, automatic washer, washing machine": 897,
1996
+ "water bottle": 898,
1997
+ "water buffalo, water ox, Asiatic buffalo, Bubalus bubalis": 346,
1998
+ "water jug": 899,
1999
+ "water ouzel, dipper": 20,
2000
+ "water snake": 58,
2001
+ "water tower": 900,
2002
+ "weasel": 356,
2003
+ "web site, website, internet site, site": 916,
2004
+ "weevil": 307,
2005
+ "whippet": 172,
2006
+ "whiptail, whiptail lizard": 41,
2007
+ "whiskey jug": 901,
2008
+ "whistle": 902,
2009
+ "white stork, Ciconia ciconia": 127,
2010
+ "white wolf, Arctic wolf, Canis lupus tundrarum": 270,
2011
+ "wig": 903,
2012
+ "wild boar, boar, Sus scrofa": 342,
2013
+ "window screen": 904,
2014
+ "window shade": 905,
2015
+ "wine bottle": 907,
2016
+ "wing": 908,
2017
+ "wire-haired fox terrier": 188,
2018
+ "wok": 909,
2019
+ "wolf spider, hunting spider": 77,
2020
+ "wombat": 106,
2021
+ "wood rabbit, cottontail, cottontail rabbit": 330,
2022
+ "wooden spoon": 910,
2023
+ "wool, woolen, woollen": 911,
2024
+ "worm fence, snake fence, snake-rail fence, Virginia fence": 912,
2025
+ "wreck": 913,
2026
+ "yawl": 914,
2027
+ "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum": 986,
2028
+ "yurt": 915,
2029
+ "zebra": 340,
2030
+ "zucchini, courgette": 939
2031
+ },
2032
+ "layer_norm_eps": 1e-05,
2033
+ "mlp_ratio": 2.0,
2034
+ "model_type": "mobilevit",
2035
+ "neck_hidden_sizes": [
2036
+ 4,
2037
+ 8,
2038
+ 16,
2039
+ 24,
2040
+ 32,
2041
+ 40,
2042
+ 160
2043
+ ],
2044
+ "neuron": {
2045
+ "auto_cast": null,
2046
+ "auto_cast_type": null,
2047
+ "compiler_type": "neuronx-cc",
2048
+ "compiler_version": "2.21.18209.0+043b1bf7",
2049
+ "disable_fallback": false,
2050
+ "disable_fast_relayout": false,
2051
+ "dynamic_batch_size": false,
2052
+ "float_dtype": "fp32",
2053
+ "inline_weights_to_neff": true,
2054
+ "instance_type": "trn1",
2055
+ "int_dtype": "int64",
2056
+ "model_type": "mobilevit",
2057
+ "optlevel": "2",
2058
+ "output_attentions": false,
2059
+ "output_hidden_states": false,
2060
+ "static_batch_size": 1,
2061
+ "task": "image-classification",
2062
+ "tensor_parallel_size": 1
2063
+ },
2064
+ "num_attention_heads": 2,
2065
+ "num_channels": 3,
2066
+ "output_stride": 32,
2067
+ "patch_size": 2,
2068
+ "qkv_bias": true,
2069
+ "semantic_loss_ignore_index": 255
2070
+ }
neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/swin/hf-internal-testing/tiny-random-SwinModel/13333b86135b1bc6e70e.json ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_entry_class": "SingleModelCacheEntry",
3
+ "_model_id": "hf-internal-testing/tiny-random-SwinModel",
4
+ "_task": "image-classification",
5
+ "architectures": [
6
+ "SwinModel"
7
+ ],
8
+ "attention_probs_dropout_prob": 0.0,
9
+ "depths": [
10
+ 1,
11
+ 2,
12
+ 1
13
+ ],
14
+ "drop_path_rate": 0.1,
15
+ "dtype": "float32",
16
+ "embed_dim": 16,
17
+ "encoder_stride": 8,
18
+ "hidden_act": "gelu",
19
+ "hidden_dropout_prob": 0.0,
20
+ "hidden_size": 64,
21
+ "image_size": 32,
22
+ "initializer_range": 0.02,
23
+ "layer_norm_eps": 1e-05,
24
+ "mlp_ratio": 2.0,
25
+ "model_type": "swin",
26
+ "neuron": {
27
+ "auto_cast": null,
28
+ "auto_cast_type": null,
29
+ "compiler_type": "neuronx-cc",
30
+ "compiler_version": "2.21.18209.0+043b1bf7",
31
+ "disable_fallback": false,
32
+ "disable_fast_relayout": false,
33
+ "dynamic_batch_size": false,
34
+ "float_dtype": "fp32",
35
+ "inline_weights_to_neff": true,
36
+ "instance_type": "trn1",
37
+ "int_dtype": "int64",
38
+ "model_type": "swin",
39
+ "optlevel": "2",
40
+ "output_attentions": false,
41
+ "output_hidden_states": false,
42
+ "static_batch_size": 1,
43
+ "task": "image-classification",
44
+ "tensor_parallel_size": 1
45
+ },
46
+ "num_channels": 3,
47
+ "num_heads": [
48
+ 2,
49
+ 2,
50
+ 4
51
+ ],
52
+ "num_layers": 3,
53
+ "out_features": [
54
+ "stage3"
55
+ ],
56
+ "out_indices": [
57
+ 3
58
+ ],
59
+ "patch_size": 2,
60
+ "path_norm": true,
61
+ "qkv_bias": true,
62
+ "stage_names": [
63
+ "stem",
64
+ "stage1",
65
+ "stage2",
66
+ "stage3"
67
+ ],
68
+ "use_absolute_embeddings": false,
69
+ "window_size": 2
70
+ }
neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/t5/hf-internal-testing/tiny-random-t5/23aee9198ab24878d3c0.json ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_entry_class": "MultiModelCacheEntry",
3
+ "_model_id": "hf-internal-testing/tiny-random-t5",
4
+ "_task": null,
5
+ "decoder": {
6
+ "classifier_dropout": 0.0,
7
+ "d_ff": 37,
8
+ "d_kv": 8,
9
+ "d_model": 32,
10
+ "decoder_start_token_id": 0,
11
+ "dense_act_fn": "relu",
12
+ "dropout_rate": 0.1,
13
+ "dtype": "float32",
14
+ "feed_forward_proj": "relu",
15
+ "gradient_checkpointing": false,
16
+ "initializer_factor": 0.002,
17
+ "is_encoder_decoder": true,
18
+ "is_gated_act": false,
19
+ "layer_norm_epsilon": 1e-06,
20
+ "model_type": "t5",
21
+ "neuron": {
22
+ "auto_cast": "matmul",
23
+ "auto_cast_type": "bf16",
24
+ "compiler_type": "neuronx-cc",
25
+ "compiler_version": "2.21.18209.0+043b1bf7",
26
+ "dynamic_batch_size": false,
27
+ "float_dtype": "fp32",
28
+ "inline_weights_to_neff": false,
29
+ "instance_type": null,
30
+ "int_dtype": "int64",
31
+ "optlevel": "2",
32
+ "output_attentions": true,
33
+ "output_hidden_states": true,
34
+ "static_batch_size": 1,
35
+ "static_num_beams": 4,
36
+ "static_sequence_length": 18,
37
+ "task": "text2text-generation",
38
+ "tensor_parallel_size": 1
39
+ },
40
+ "num_decoder_layers": 5,
41
+ "num_heads": 4,
42
+ "num_layers": 5,
43
+ "relative_attention_max_distance": 128,
44
+ "relative_attention_num_buckets": 8,
45
+ "use_cache": true,
46
+ "vocab_size": 1103
47
+ },
48
+ "encoder": {
49
+ "classifier_dropout": 0.0,
50
+ "d_ff": 37,
51
+ "d_kv": 8,
52
+ "d_model": 32,
53
+ "decoder_start_token_id": 0,
54
+ "dense_act_fn": "relu",
55
+ "dropout_rate": 0.1,
56
+ "dtype": "float32",
57
+ "feed_forward_proj": "relu",
58
+ "gradient_checkpointing": false,
59
+ "initializer_factor": 0.002,
60
+ "is_encoder_decoder": true,
61
+ "is_gated_act": false,
62
+ "layer_norm_epsilon": 1e-06,
63
+ "model_type": "t5",
64
+ "neuron": {
65
+ "auto_cast": "matmul",
66
+ "auto_cast_type": "bf16",
67
+ "compiler_type": "neuronx-cc",
68
+ "compiler_version": "2.21.18209.0+043b1bf7",
69
+ "dynamic_batch_size": false,
70
+ "float_dtype": "fp32",
71
+ "inline_weights_to_neff": false,
72
+ "instance_type": null,
73
+ "int_dtype": "int64",
74
+ "optlevel": "2",
75
+ "output_attentions": true,
76
+ "output_hidden_states": true,
77
+ "static_batch_size": 1,
78
+ "static_num_beams": 4,
79
+ "static_sequence_length": 18,
80
+ "task": "text2text-generation",
81
+ "tensor_parallel_size": 1
82
+ },
83
+ "num_decoder_layers": 5,
84
+ "num_heads": 4,
85
+ "num_layers": 5,
86
+ "relative_attention_max_distance": 128,
87
+ "relative_attention_num_buckets": 8,
88
+ "use_cache": true,
89
+ "vocab_size": 1103
90
+ }
91
+ }
neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/t5/hf-internal-testing/tiny-random-t5/4b4e8d0856ec3f8d566b.json ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_entry_class": "MultiModelCacheEntry",
3
+ "_model_id": "hf-internal-testing/tiny-random-t5",
4
+ "_task": null,
5
+ "decoder": {
6
+ "classifier_dropout": 0.0,
7
+ "d_ff": 37,
8
+ "d_kv": 8,
9
+ "d_model": 32,
10
+ "decoder_start_token_id": 0,
11
+ "dense_act_fn": "relu",
12
+ "dropout_rate": 0.1,
13
+ "dtype": "float32",
14
+ "feed_forward_proj": "relu",
15
+ "gradient_checkpointing": false,
16
+ "initializer_factor": 0.002,
17
+ "is_encoder_decoder": true,
18
+ "is_gated_act": false,
19
+ "layer_norm_epsilon": 1e-06,
20
+ "model_type": "t5",
21
+ "neuron": {
22
+ "auto_cast": "matmul",
23
+ "auto_cast_type": "bf16",
24
+ "compiler_type": "neuronx-cc",
25
+ "compiler_version": "2.21.18209.0+043b1bf7",
26
+ "dynamic_batch_size": false,
27
+ "float_dtype": "fp32",
28
+ "inline_weights_to_neff": false,
29
+ "instance_type": null,
30
+ "int_dtype": "int64",
31
+ "optlevel": "2",
32
+ "output_attentions": false,
33
+ "output_hidden_states": false,
34
+ "static_batch_size": 1,
35
+ "static_num_beams": 4,
36
+ "static_sequence_length": 18,
37
+ "task": "text2text-generation",
38
+ "tensor_parallel_size": 1
39
+ },
40
+ "num_decoder_layers": 5,
41
+ "num_heads": 4,
42
+ "num_layers": 5,
43
+ "relative_attention_max_distance": 128,
44
+ "relative_attention_num_buckets": 8,
45
+ "use_cache": true,
46
+ "vocab_size": 1103
47
+ },
48
+ "encoder": {
49
+ "classifier_dropout": 0.0,
50
+ "d_ff": 37,
51
+ "d_kv": 8,
52
+ "d_model": 32,
53
+ "decoder_start_token_id": 0,
54
+ "dense_act_fn": "relu",
55
+ "dropout_rate": 0.1,
56
+ "dtype": "float32",
57
+ "feed_forward_proj": "relu",
58
+ "gradient_checkpointing": false,
59
+ "initializer_factor": 0.002,
60
+ "is_encoder_decoder": true,
61
+ "is_gated_act": false,
62
+ "layer_norm_epsilon": 1e-06,
63
+ "model_type": "t5",
64
+ "neuron": {
65
+ "auto_cast": "matmul",
66
+ "auto_cast_type": "bf16",
67
+ "compiler_type": "neuronx-cc",
68
+ "compiler_version": "2.21.18209.0+043b1bf7",
69
+ "dynamic_batch_size": false,
70
+ "float_dtype": "fp32",
71
+ "inline_weights_to_neff": false,
72
+ "instance_type": null,
73
+ "int_dtype": "int64",
74
+ "optlevel": "2",
75
+ "output_attentions": false,
76
+ "output_hidden_states": false,
77
+ "static_batch_size": 1,
78
+ "static_num_beams": 4,
79
+ "static_sequence_length": 18,
80
+ "task": "text2text-generation",
81
+ "tensor_parallel_size": 1
82
+ },
83
+ "num_decoder_layers": 5,
84
+ "num_heads": 4,
85
+ "num_layers": 5,
86
+ "relative_attention_max_distance": 128,
87
+ "relative_attention_num_buckets": 8,
88
+ "use_cache": true,
89
+ "vocab_size": 1103
90
+ }
91
+ }
neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/t5/michaelbenayoun/t5-tiny-random/73a4cdf09236341bfef2.json ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_entry_class": "MultiModelCacheEntry",
3
+ "_model_id": "michaelbenayoun/t5-tiny-random",
4
+ "_task": null,
5
+ "decoder": {
6
+ "architectures": [
7
+ "T5ForConditionalGeneration"
8
+ ],
9
+ "classifier_dropout": 0.0,
10
+ "d_ff": 128,
11
+ "d_kv": 8,
12
+ "d_model": 64,
13
+ "decoder_start_token_id": 0,
14
+ "dense_act_fn": "relu",
15
+ "dropout_rate": 0.1,
16
+ "dtype": "float32",
17
+ "feed_forward_proj": "relu",
18
+ "initializer_factor": 0.2,
19
+ "is_encoder_decoder": true,
20
+ "is_gated_act": false,
21
+ "layer_norm_epsilon": 1e-06,
22
+ "model_type": "t5",
23
+ "neuron": {
24
+ "auto_cast": "matmul",
25
+ "auto_cast_type": "bf16",
26
+ "compiler_type": "neuronx-cc",
27
+ "compiler_version": "2.21.18209.0+043b1bf7",
28
+ "dynamic_batch_size": false,
29
+ "float_dtype": "fp32",
30
+ "inline_weights_to_neff": false,
31
+ "instance_type": null,
32
+ "int_dtype": "int64",
33
+ "optlevel": "2",
34
+ "output_attentions": false,
35
+ "output_hidden_states": false,
36
+ "static_batch_size": 1,
37
+ "static_num_beams": 4,
38
+ "static_sequence_length": 18,
39
+ "task": "text2text-generation",
40
+ "tensor_parallel_size": 2
41
+ },
42
+ "num_decoder_layers": 5,
43
+ "num_heads": 32,
44
+ "num_layers": 2,
45
+ "relative_attention_max_distance": 128,
46
+ "relative_attention_num_buckets": 8,
47
+ "use_cache": true,
48
+ "vocab_size": 32128
49
+ },
50
+ "encoder": {
51
+ "architectures": [
52
+ "T5ForConditionalGeneration"
53
+ ],
54
+ "classifier_dropout": 0.0,
55
+ "d_ff": 128,
56
+ "d_kv": 8,
57
+ "d_model": 64,
58
+ "decoder_start_token_id": 0,
59
+ "dense_act_fn": "relu",
60
+ "dropout_rate": 0.1,
61
+ "dtype": "float32",
62
+ "feed_forward_proj": "relu",
63
+ "initializer_factor": 0.2,
64
+ "is_encoder_decoder": true,
65
+ "is_gated_act": false,
66
+ "layer_norm_epsilon": 1e-06,
67
+ "model_type": "t5",
68
+ "neuron": {
69
+ "auto_cast": "matmul",
70
+ "auto_cast_type": "bf16",
71
+ "compiler_type": "neuronx-cc",
72
+ "compiler_version": "2.21.18209.0+043b1bf7",
73
+ "dynamic_batch_size": false,
74
+ "float_dtype": "fp32",
75
+ "inline_weights_to_neff": false,
76
+ "instance_type": null,
77
+ "int_dtype": "int64",
78
+ "optlevel": "2",
79
+ "output_attentions": false,
80
+ "output_hidden_states": false,
81
+ "static_batch_size": 1,
82
+ "static_num_beams": 4,
83
+ "static_sequence_length": 18,
84
+ "task": "text2text-generation",
85
+ "tensor_parallel_size": 2
86
+ },
87
+ "num_decoder_layers": 5,
88
+ "num_heads": 32,
89
+ "num_layers": 2,
90
+ "relative_attention_max_distance": 128,
91
+ "relative_attention_num_buckets": 8,
92
+ "use_cache": true,
93
+ "vocab_size": 32128
94
+ }
95
+ }
neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/vit/hf-internal-testing/tiny-random-vit/7b5b9664cc7a73d09e94.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_entry_class": "SingleModelCacheEntry",
3
+ "_model_id": "hf-internal-testing/tiny-random-vit",
4
+ "_task": "image-classification",
5
+ "architectures": [
6
+ "ViTForImageClassification"
7
+ ],
8
+ "attention_probs_dropout_prob": 0.1,
9
+ "dtype": "float32",
10
+ "encoder_stride": 16,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 32,
14
+ "image_size": 30,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 37,
17
+ "layer_norm_eps": 1e-12,
18
+ "model_type": "vit",
19
+ "neuron": {
20
+ "auto_cast": null,
21
+ "auto_cast_type": null,
22
+ "compiler_type": "neuronx-cc",
23
+ "compiler_version": "2.21.18209.0+043b1bf7",
24
+ "disable_fallback": false,
25
+ "disable_fast_relayout": false,
26
+ "dynamic_batch_size": false,
27
+ "float_dtype": "fp32",
28
+ "inline_weights_to_neff": true,
29
+ "instance_type": "trn1",
30
+ "int_dtype": "int64",
31
+ "model_type": "vit",
32
+ "optlevel": "2",
33
+ "output_attentions": false,
34
+ "output_hidden_states": false,
35
+ "static_batch_size": 1,
36
+ "task": "image-classification",
37
+ "tensor_parallel_size": 1
38
+ },
39
+ "num_attention_heads": 4,
40
+ "num_channels": 3,
41
+ "num_hidden_layers": 5,
42
+ "patch_size": 2,
43
+ "pooler_act": "tanh",
44
+ "pooler_output_size": 32,
45
+ "qkv_bias": true,
46
+ "vocab_size": {}
47
+ }
neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/vit/hf-internal-testing/tiny-random-vit/d7f77d9c87446c23d5cc.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_entry_class": "SingleModelCacheEntry",
3
+ "_model_id": "hf-internal-testing/tiny-random-vit",
4
+ "_task": "image-classification",
5
+ "architectures": [
6
+ "ViTForImageClassification"
7
+ ],
8
+ "attention_probs_dropout_prob": 0.1,
9
+ "dtype": "float32",
10
+ "encoder_stride": 16,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 32,
14
+ "image_size": 30,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 37,
17
+ "layer_norm_eps": 1e-12,
18
+ "model_type": "vit",
19
+ "neuron": {
20
+ "auto_cast": null,
21
+ "auto_cast_type": null,
22
+ "compiler_type": "neuronx-cc",
23
+ "compiler_version": "2.21.18209.0+043b1bf7",
24
+ "disable_fallback": false,
25
+ "disable_fast_relayout": false,
26
+ "dynamic_batch_size": true,
27
+ "float_dtype": "fp32",
28
+ "inline_weights_to_neff": true,
29
+ "instance_type": "trn1",
30
+ "int_dtype": "int64",
31
+ "model_type": "vit",
32
+ "optlevel": "2",
33
+ "output_attentions": false,
34
+ "output_hidden_states": false,
35
+ "static_batch_size": 1,
36
+ "task": "image-classification",
37
+ "tensor_parallel_size": 1
38
+ },
39
+ "num_attention_heads": 4,
40
+ "num_channels": 3,
41
+ "num_hidden_layers": 5,
42
+ "patch_size": 2,
43
+ "pooler_act": "tanh",
44
+ "pooler_output_size": 32,
45
+ "qkv_bias": true,
46
+ "vocab_size": {}
47
+ }
neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/yolos/hf-internal-testing/tiny-random-YolosModel/41e10361d5fb0f0b8464.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_entry_class": "SingleModelCacheEntry",
3
+ "_model_id": "hf-internal-testing/tiny-random-YolosModel",
4
+ "_task": "object-detection",
5
+ "architectures": [
6
+ "YolosModel"
7
+ ],
8
+ "attention_probs_dropout_prob": 0.1,
9
+ "auxiliary_loss": false,
10
+ "bbox_cost": 5,
11
+ "bbox_loss_coefficient": 5,
12
+ "class_cost": 1,
13
+ "dtype": "float32",
14
+ "eos_coefficient": 0.1,
15
+ "giou_cost": 2,
16
+ "giou_loss_coefficient": 2,
17
+ "hidden_act": "gelu",
18
+ "hidden_dropout_prob": 0.1,
19
+ "hidden_size": 32,
20
+ "id2label": {
21
+ "0": "LABEL_0",
22
+ "1": "LABEL_1",
23
+ "2": "LABEL_2"
24
+ },
25
+ "image_size": [
26
+ 30,
27
+ 30
28
+ ],
29
+ "initializer_range": 0.02,
30
+ "intermediate_size": 37,
31
+ "label2id": {
32
+ "LABEL_0": 0,
33
+ "LABEL_1": 1,
34
+ "LABEL_2": 2
35
+ },
36
+ "layer_norm_eps": 1e-12,
37
+ "model_type": "yolos",
38
+ "neuron": {
39
+ "auto_cast": null,
40
+ "auto_cast_type": null,
41
+ "compiler_type": "neuronx-cc",
42
+ "compiler_version": "2.21.18209.0+043b1bf7",
43
+ "disable_fallback": false,
44
+ "disable_fast_relayout": false,
45
+ "dynamic_batch_size": true,
46
+ "float_dtype": "fp32",
47
+ "inline_weights_to_neff": true,
48
+ "instance_type": "trn1",
49
+ "int_dtype": "int64",
50
+ "model_type": "yolos",
51
+ "optlevel": "2",
52
+ "output_attentions": false,
53
+ "output_hidden_states": false,
54
+ "static_batch_size": 1,
55
+ "task": "object-detection",
56
+ "tensor_parallel_size": 1
57
+ },
58
+ "num_attention_heads": 4,
59
+ "num_channels": 3,
60
+ "num_detection_tokens": 10,
61
+ "num_hidden_layers": 5,
62
+ "patch_size": 2,
63
+ "qkv_bias": true,
64
+ "use_mid_position_embeddings": true
65
+ }
neuronxcc-2.21.18209.0+043b1bf7/0_REGISTRY/0.4.2.dev0/yolos/hf-internal-testing/tiny-random-YolosModel/649dbfdadb2821e2753e.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_entry_class": "SingleModelCacheEntry",
3
+ "_model_id": "hf-internal-testing/tiny-random-YolosModel",
4
+ "_task": "object-detection",
5
+ "architectures": [
6
+ "YolosModel"
7
+ ],
8
+ "attention_probs_dropout_prob": 0.1,
9
+ "auxiliary_loss": false,
10
+ "bbox_cost": 5,
11
+ "bbox_loss_coefficient": 5,
12
+ "class_cost": 1,
13
+ "dtype": "float32",
14
+ "eos_coefficient": 0.1,
15
+ "giou_cost": 2,
16
+ "giou_loss_coefficient": 2,
17
+ "hidden_act": "gelu",
18
+ "hidden_dropout_prob": 0.1,
19
+ "hidden_size": 32,
20
+ "id2label": {
21
+ "0": "LABEL_0",
22
+ "1": "LABEL_1",
23
+ "2": "LABEL_2"
24
+ },
25
+ "image_size": [
26
+ 30,
27
+ 30
28
+ ],
29
+ "initializer_range": 0.02,
30
+ "intermediate_size": 37,
31
+ "label2id": {
32
+ "LABEL_0": 0,
33
+ "LABEL_1": 1,
34
+ "LABEL_2": 2
35
+ },
36
+ "layer_norm_eps": 1e-12,
37
+ "model_type": "yolos",
38
+ "neuron": {
39
+ "auto_cast": null,
40
+ "auto_cast_type": null,
41
+ "compiler_type": "neuronx-cc",
42
+ "compiler_version": "2.21.18209.0+043b1bf7",
43
+ "disable_fallback": false,
44
+ "disable_fast_relayout": false,
45
+ "dynamic_batch_size": false,
46
+ "float_dtype": "fp32",
47
+ "inline_weights_to_neff": true,
48
+ "instance_type": "trn1",
49
+ "int_dtype": "int64",
50
+ "model_type": "yolos",
51
+ "optlevel": "2",
52
+ "output_attentions": false,
53
+ "output_hidden_states": false,
54
+ "static_batch_size": 1,
55
+ "task": "object-detection",
56
+ "tensor_parallel_size": 1
57
+ },
58
+ "num_attention_heads": 4,
59
+ "num_channels": 3,
60
+ "num_detection_tokens": 10,
61
+ "num_hidden_layers": 5,
62
+ "patch_size": 2,
63
+ "qkv_bias": true,
64
+ "use_mid_position_embeddings": true
65
+ }
neuronxcc-2.21.18209.0+043b1bf7/MODULE_1065964367471922642+e30acd3a/compile_flags.json ADDED
@@ -0,0 +1 @@
 
 
1
+ ["--target=trn1"]
neuronxcc-2.21.18209.0+043b1bf7/MODULE_1065964367471922642+e30acd3a/model.done ADDED
File without changes
neuronxcc-2.21.18209.0+043b1bf7/MODULE_1065964367471922642+e30acd3a/model.hlo_module.pb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de98e1dbbbf10583f6f2623d356ed1032388fb2374172e78dab426fca378ec4b
3
+ size 1449
neuronxcc-2.21.18209.0+043b1bf7/MODULE_1065964367471922642+e30acd3a/model.neff ADDED
Binary file (31.7 kB). View file
 
neuronxcc-2.21.18209.0+043b1bf7/MODULE_11118848953388650737+e30acd3a/compile_flags.json ADDED
@@ -0,0 +1 @@
 
 
1
+ ["--target=trn1"]
neuronxcc-2.21.18209.0+043b1bf7/MODULE_11118848953388650737+e30acd3a/model.done ADDED
File without changes
neuronxcc-2.21.18209.0+043b1bf7/MODULE_11118848953388650737+e30acd3a/model.hlo_module.pb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b87751474bf0a1c7cfde97d3f18ea45d760b08d409dd39419a3a5aa4b34830c
3
+ size 678
neuronxcc-2.21.18209.0+043b1bf7/MODULE_11118848953388650737+e30acd3a/model.neff ADDED
Binary file (31.7 kB). View file
 
neuronxcc-2.21.18209.0+043b1bf7/MODULE_13333b86135b1bc6e70e/config.json ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "SwinModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.0,
6
+ "depths": [
7
+ 1,
8
+ 2,
9
+ 1
10
+ ],
11
+ "drop_path_rate": 0.1,
12
+ "dtype": "float32",
13
+ "embed_dim": 16,
14
+ "encoder_stride": 8,
15
+ "hidden_act": "gelu",
16
+ "hidden_dropout_prob": 0.0,
17
+ "hidden_size": 64,
18
+ "image_size": 32,
19
+ "initializer_range": 0.02,
20
+ "layer_norm_eps": 1e-05,
21
+ "mlp_ratio": 2.0,
22
+ "model_type": "swin",
23
+ "neuron": {
24
+ "auto_cast": null,
25
+ "auto_cast_type": null,
26
+ "compiler_type": "neuronx-cc",
27
+ "compiler_version": "2.21.18209.0+043b1bf7",
28
+ "disable_fallback": false,
29
+ "disable_fast_relayout": false,
30
+ "dynamic_batch_size": false,
31
+ "float_dtype": "fp32",
32
+ "inline_weights_to_neff": true,
33
+ "instance_type": "trn1",
34
+ "int_dtype": "int64",
35
+ "model_type": "swin",
36
+ "optlevel": "2",
37
+ "output_attentions": false,
38
+ "output_hidden_states": false,
39
+ "static_batch_size": 1,
40
+ "task": "image-classification",
41
+ "tensor_parallel_size": 1
42
+ },
43
+ "num_channels": 3,
44
+ "num_heads": [
45
+ 2,
46
+ 2,
47
+ 4
48
+ ],
49
+ "num_layers": 3,
50
+ "out_features": [
51
+ "stage3"
52
+ ],
53
+ "out_indices": [
54
+ 3
55
+ ],
56
+ "patch_size": 2,
57
+ "path_norm": true,
58
+ "qkv_bias": true,
59
+ "stage_names": [
60
+ "stem",
61
+ "stage1",
62
+ "stage2",
63
+ "stage3"
64
+ ],
65
+ "torchscript": true,
66
+ "transformers_version": "4.57.1",
67
+ "use_absolute_embeddings": false,
68
+ "window_size": 2
69
+ }
neuronxcc-2.21.18209.0+043b1bf7/MODULE_13333b86135b1bc6e70e/model.neuron ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df1a16356f34c72bc8612950c8cb7deedb1b6d85a49dec25a4e3c24d097bcb73
3
+ size 466419
neuronxcc-2.21.18209.0+043b1bf7/MODULE_13333b86135b1bc6e70e/preprocessor_config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": 32,
3
+ "do_convert_rgb": null,
4
+ "do_normalize": true,
5
+ "do_rescale": true,
6
+ "do_resize": true,
7
+ "image_mean": [
8
+ 0.5,
9
+ 0.5,
10
+ 0.5
11
+ ],
12
+ "image_processor_type": "ViTFeatureExtractor",
13
+ "image_std": [
14
+ 0.5,
15
+ 0.5,
16
+ 0.5
17
+ ],
18
+ "resample": 2,
19
+ "rescale_factor": 0.00392156862745098,
20
+ "size": {
21
+ "height": 32,
22
+ "width": 32
23
+ }
24
+ }
neuronxcc-2.21.18209.0+043b1bf7/MODULE_1afd90e8017356415fb8/config.json ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "CvtModel"
4
+ ],
5
+ "attention_drop_rate": [
6
+ 0.0,
7
+ 0.0,
8
+ 0.0
9
+ ],
10
+ "cls_token": [
11
+ false,
12
+ false,
13
+ true
14
+ ],
15
+ "depth": [
16
+ 1,
17
+ 2,
18
+ 10
19
+ ],
20
+ "drop_path_rate": [
21
+ 0.0,
22
+ 0.0,
23
+ 0.1
24
+ ],
25
+ "drop_rate": [
26
+ 0.0,
27
+ 0.0,
28
+ 0.0
29
+ ],
30
+ "dtype": "float32",
31
+ "embed_dim": [
32
+ 16,
33
+ 48,
34
+ 96
35
+ ],
36
+ "image_size": 64,
37
+ "initializer_range": 0.02,
38
+ "kernel_qkv": [
39
+ 3,
40
+ 3,
41
+ 3
42
+ ],
43
+ "layer_norm_eps": 1e-12,
44
+ "mlp_ratio": [
45
+ 4.0,
46
+ 4.0,
47
+ 4.0
48
+ ],
49
+ "model_type": "cvt",
50
+ "neuron": {
51
+ "auto_cast": null,
52
+ "auto_cast_type": null,
53
+ "compiler_type": "neuronx-cc",
54
+ "compiler_version": "2.21.18209.0+043b1bf7",
55
+ "disable_fallback": false,
56
+ "disable_fast_relayout": false,
57
+ "dynamic_batch_size": false,
58
+ "float_dtype": "fp32",
59
+ "inline_weights_to_neff": true,
60
+ "instance_type": "trn1",
61
+ "int_dtype": "int64",
62
+ "model_type": "cvt",
63
+ "optlevel": "2",
64
+ "output_attentions": false,
65
+ "output_hidden_states": false,
66
+ "static_batch_size": 1,
67
+ "task": "image-classification",
68
+ "tensor_parallel_size": 1
69
+ },
70
+ "num_channels": 3,
71
+ "num_heads": [
72
+ 1,
73
+ 3,
74
+ 6
75
+ ],
76
+ "padding_kv": [
77
+ 1,
78
+ 1,
79
+ 1
80
+ ],
81
+ "padding_q": [
82
+ 1,
83
+ 1,
84
+ 1
85
+ ],
86
+ "patch_padding": [
87
+ 2,
88
+ 1,
89
+ 1
90
+ ],
91
+ "patch_sizes": [
92
+ 7,
93
+ 3,
94
+ 3
95
+ ],
96
+ "patch_stride": [
97
+ 4,
98
+ 2,
99
+ 2
100
+ ],
101
+ "qkv_bias": [
102
+ true,
103
+ true,
104
+ true
105
+ ],
106
+ "qkv_projection_method": [
107
+ "dw_bn",
108
+ "dw_bn",
109
+ "dw_bn"
110
+ ],
111
+ "stride_kv": [
112
+ 2,
113
+ 2,
114
+ 2
115
+ ],
116
+ "stride_q": [
117
+ 1,
118
+ 1,
119
+ 1
120
+ ],
121
+ "torchscript": true,
122
+ "transformers_version": "4.57.1"
123
+ }
neuronxcc-2.21.18209.0+043b1bf7/MODULE_1afd90e8017356415fb8/model.neuron ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ad49324417b9637f718717879b9fe718786408944535e1f57844be1830188fe
3
+ size 5078131
neuronxcc-2.21.18209.0+043b1bf7/MODULE_1afd90e8017356415fb8/preprocessor_config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_pct": 0.875,
3
+ "crop_size": 64,
4
+ "do_normalize": true,
5
+ "do_rescale": true,
6
+ "do_resize": true,
7
+ "image_mean": [
8
+ 0.5,
9
+ 0.5,
10
+ 0.5
11
+ ],
12
+ "image_processor_type": "ConvNextFeatureExtractor",
13
+ "image_std": [
14
+ 0.5,
15
+ 0.5,
16
+ 0.5
17
+ ],
18
+ "resample": 2,
19
+ "rescale_factor": 0.00392156862745098,
20
+ "size": {
21
+ "shortest_edge": 64
22
+ }
23
+ }
neuronxcc-2.21.18209.0+043b1bf7/MODULE_23aee9198ab24878d3c0/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 0,
3
+ "classifier_dropout": 0.0,
4
+ "d_ff": 37,
5
+ "d_kv": 8,
6
+ "d_model": 32,
7
+ "decoder_start_token_id": 0,
8
+ "dense_act_fn": "relu",
9
+ "dropout_rate": 0.1,
10
+ "dtype": "float32",
11
+ "eos_token_id": 1,
12
+ "feed_forward_proj": "relu",
13
+ "gradient_checkpointing": false,
14
+ "initializer_factor": 0.002,
15
+ "is_encoder_decoder": true,
16
+ "is_gated_act": false,
17
+ "layer_norm_epsilon": 1e-06,
18
+ "model_type": "t5",
19
+ "num_decoder_layers": 5,
20
+ "num_heads": 4,
21
+ "num_layers": 5,
22
+ "pad_token_id": 0,
23
+ "relative_attention_max_distance": 128,
24
+ "relative_attention_num_buckets": 8,
25
+ "transformers_version": "4.57.1",
26
+ "use_cache": true,
27
+ "vocab_size": 1103
28
+ }
neuronxcc-2.21.18209.0+043b1bf7/MODULE_23aee9198ab24878d3c0/decoder/config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 0,
3
+ "classifier_dropout": 0.0,
4
+ "d_ff": 37,
5
+ "d_kv": 8,
6
+ "d_model": 32,
7
+ "decoder_start_token_id": 0,
8
+ "dense_act_fn": "relu",
9
+ "dropout_rate": 0.1,
10
+ "dtype": "float32",
11
+ "eos_token_id": 1,
12
+ "feed_forward_proj": "relu",
13
+ "gradient_checkpointing": false,
14
+ "initializer_factor": 0.002,
15
+ "is_encoder_decoder": true,
16
+ "is_gated_act": false,
17
+ "layer_norm_epsilon": 1e-06,
18
+ "model_type": "t5",
19
+ "neuron": {
20
+ "auto_cast": "matmul",
21
+ "auto_cast_type": "bf16",
22
+ "compiler_type": "neuronx-cc",
23
+ "compiler_version": "2.21.18209.0+043b1bf7",
24
+ "dynamic_batch_size": false,
25
+ "float_dtype": "fp32",
26
+ "inline_weights_to_neff": false,
27
+ "instance_type": null,
28
+ "int_dtype": "int64",
29
+ "model_type": "t5-decoder",
30
+ "optlevel": "2",
31
+ "output_attentions": true,
32
+ "output_hidden_states": true,
33
+ "static_batch_size": 1,
34
+ "static_num_beams": 4,
35
+ "static_sequence_length": 18,
36
+ "task": "text2text-generation",
37
+ "tensor_parallel_size": 1
38
+ },
39
+ "num_decoder_layers": 5,
40
+ "num_heads": 4,
41
+ "num_layers": 5,
42
+ "pad_token_id": 0,
43
+ "relative_attention_max_distance": 128,
44
+ "relative_attention_num_buckets": 8,
45
+ "torchscript": true,
46
+ "transformers_version": "4.57.1",
47
+ "use_cache": true,
48
+ "vocab_size": 1103
49
+ }
neuronxcc-2.21.18209.0+043b1bf7/MODULE_23aee9198ab24878d3c0/decoder/model.neuron ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bfa6f719c40d2d90040251e91567d1564a3a20fbc2515652ad452c9761a041e
3
+ size 950439
neuronxcc-2.21.18209.0+043b1bf7/MODULE_23aee9198ab24878d3c0/encoder/config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 0,
3
+ "classifier_dropout": 0.0,
4
+ "d_ff": 37,
5
+ "d_kv": 8,
6
+ "d_model": 32,
7
+ "decoder_start_token_id": 0,
8
+ "dense_act_fn": "relu",
9
+ "dropout_rate": 0.1,
10
+ "dtype": "float32",
11
+ "eos_token_id": 1,
12
+ "feed_forward_proj": "relu",
13
+ "gradient_checkpointing": false,
14
+ "initializer_factor": 0.002,
15
+ "is_encoder_decoder": true,
16
+ "is_gated_act": false,
17
+ "layer_norm_epsilon": 1e-06,
18
+ "model_type": "t5",
19
+ "neuron": {
20
+ "auto_cast": "matmul",
21
+ "auto_cast_type": "bf16",
22
+ "compiler_type": "neuronx-cc",
23
+ "compiler_version": "2.21.18209.0+043b1bf7",
24
+ "dynamic_batch_size": false,
25
+ "float_dtype": "fp32",
26
+ "inline_weights_to_neff": false,
27
+ "instance_type": null,
28
+ "int_dtype": "int64",
29
+ "model_type": "t5-encoder",
30
+ "optlevel": "2",
31
+ "output_attentions": false,
32
+ "output_hidden_states": false,
33
+ "static_batch_size": 1,
34
+ "static_num_beams": 4,
35
+ "static_sequence_length": 18,
36
+ "task": "text2text-generation",
37
+ "tensor_parallel_size": 1
38
+ },
39
+ "num_decoder_layers": 5,
40
+ "num_heads": 4,
41
+ "num_layers": 5,
42
+ "pad_token_id": 0,
43
+ "relative_attention_max_distance": 128,
44
+ "relative_attention_num_buckets": 8,
45
+ "torchscript": true,
46
+ "transformers_version": "4.57.1",
47
+ "use_cache": true,
48
+ "vocab_size": 1103
49
+ }
neuronxcc-2.21.18209.0+043b1bf7/MODULE_23aee9198ab24878d3c0/encoder/model.neuron ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ff81b793577ae1a46d8e538b24db8a683cf567f862deb2957b887161fbf14a2
3
+ size 495719
neuronxcc-2.21.18209.0+043b1bf7/MODULE_23aee9198ab24878d3c0/generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "decoder_start_token_id": 0,
5
+ "eos_token_id": 1,
6
+ "pad_token_id": 0,
7
+ "transformers_version": "4.57.1"
8
+ }
neuronxcc-2.21.18209.0+043b1bf7/MODULE_23aee9198ab24878d3c0/special_tokens_map.json ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<extra_id_0>",
4
+ "<extra_id_1>",
5
+ "<extra_id_2>",
6
+ "<extra_id_3>",
7
+ "<extra_id_4>",
8
+ "<extra_id_5>",
9
+ "<extra_id_6>",
10
+ "<extra_id_7>",
11
+ "<extra_id_8>",
12
+ "<extra_id_9>",
13
+ "<extra_id_10>",
14
+ "<extra_id_11>",
15
+ "<extra_id_12>",
16
+ "<extra_id_13>",
17
+ "<extra_id_14>",
18
+ "<extra_id_15>",
19
+ "<extra_id_16>",
20
+ "<extra_id_17>",
21
+ "<extra_id_18>",
22
+ "<extra_id_19>",
23
+ "<extra_id_20>",
24
+ "<extra_id_21>",
25
+ "<extra_id_22>",
26
+ "<extra_id_23>",
27
+ "<extra_id_24>",
28
+ "<extra_id_25>",
29
+ "<extra_id_26>",
30
+ "<extra_id_27>",
31
+ "<extra_id_28>",
32
+ "<extra_id_29>",
33
+ "<extra_id_30>",
34
+ "<extra_id_31>",
35
+ "<extra_id_32>",
36
+ "<extra_id_33>",
37
+ "<extra_id_34>",
38
+ "<extra_id_35>",
39
+ "<extra_id_36>",
40
+ "<extra_id_37>",
41
+ "<extra_id_38>",
42
+ "<extra_id_39>",
43
+ "<extra_id_40>",
44
+ "<extra_id_41>",
45
+ "<extra_id_42>",
46
+ "<extra_id_43>",
47
+ "<extra_id_44>",
48
+ "<extra_id_45>",
49
+ "<extra_id_46>",
50
+ "<extra_id_47>",
51
+ "<extra_id_48>",
52
+ "<extra_id_49>",
53
+ "<extra_id_50>",
54
+ "<extra_id_51>",
55
+ "<extra_id_52>",
56
+ "<extra_id_53>",
57
+ "<extra_id_54>",
58
+ "<extra_id_55>",
59
+ "<extra_id_56>",
60
+ "<extra_id_57>",
61
+ "<extra_id_58>",
62
+ "<extra_id_59>",
63
+ "<extra_id_60>",
64
+ "<extra_id_61>",
65
+ "<extra_id_62>",
66
+ "<extra_id_63>",
67
+ "<extra_id_64>",
68
+ "<extra_id_65>",
69
+ "<extra_id_66>",
70
+ "<extra_id_67>",
71
+ "<extra_id_68>",
72
+ "<extra_id_69>",
73
+ "<extra_id_70>",
74
+ "<extra_id_71>",
75
+ "<extra_id_72>",
76
+ "<extra_id_73>",
77
+ "<extra_id_74>",
78
+ "<extra_id_75>",
79
+ "<extra_id_76>",
80
+ "<extra_id_77>",
81
+ "<extra_id_78>",
82
+ "<extra_id_79>",
83
+ "<extra_id_80>",
84
+ "<extra_id_81>",
85
+ "<extra_id_82>",
86
+ "<extra_id_83>",
87
+ "<extra_id_84>",
88
+ "<extra_id_85>",
89
+ "<extra_id_86>",
90
+ "<extra_id_87>",
91
+ "<extra_id_88>",
92
+ "<extra_id_89>",
93
+ "<extra_id_90>",
94
+ "<extra_id_91>",
95
+ "<extra_id_92>",
96
+ "<extra_id_93>",
97
+ "<extra_id_94>",
98
+ "<extra_id_95>",
99
+ "<extra_id_96>",
100
+ "<extra_id_97>",
101
+ "<extra_id_98>",
102
+ "<extra_id_99>"
103
+ ],
104
+ "eos_token": {
105
+ "content": "</s>",
106
+ "lstrip": false,
107
+ "normalized": false,
108
+ "rstrip": false,
109
+ "single_word": false
110
+ },
111
+ "pad_token": {
112
+ "content": "<pad>",
113
+ "lstrip": false,
114
+ "normalized": false,
115
+ "rstrip": false,
116
+ "single_word": false
117
+ },
118
+ "unk_token": {
119
+ "content": "<unk>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false
124
+ }
125
+ }
neuronxcc-2.21.18209.0+043b1bf7/MODULE_23aee9198ab24878d3c0/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
neuronxcc-2.21.18209.0+043b1bf7/MODULE_23aee9198ab24878d3c0/tokenizer_config.json ADDED
@@ -0,0 +1,939 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": null,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<pad>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "</s>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "<unk>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<extra_id_99>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "4": {
37
+ "content": "<extra_id_98>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "5": {
45
+ "content": "<extra_id_97>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "6": {
53
+ "content": "<extra_id_96>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "7": {
61
+ "content": "<extra_id_95>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "8": {
69
+ "content": "<extra_id_94>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "9": {
77
+ "content": "<extra_id_93>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "10": {
85
+ "content": "<extra_id_92>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "11": {
93
+ "content": "<extra_id_91>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "12": {
101
+ "content": "<extra_id_90>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "13": {
109
+ "content": "<extra_id_89>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "14": {
117
+ "content": "<extra_id_88>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "15": {
125
+ "content": "<extra_id_87>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "16": {
133
+ "content": "<extra_id_86>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ },
140
+ "17": {
141
+ "content": "<extra_id_85>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": true
147
+ },
148
+ "18": {
149
+ "content": "<extra_id_84>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": true
155
+ },
156
+ "19": {
157
+ "content": "<extra_id_83>",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": true
163
+ },
164
+ "20": {
165
+ "content": "<extra_id_82>",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": true
171
+ },
172
+ "21": {
173
+ "content": "<extra_id_81>",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": true
179
+ },
180
+ "22": {
181
+ "content": "<extra_id_80>",
182
+ "lstrip": false,
183
+ "normalized": false,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": true
187
+ },
188
+ "23": {
189
+ "content": "<extra_id_79>",
190
+ "lstrip": false,
191
+ "normalized": false,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": true
195
+ },
196
+ "24": {
197
+ "content": "<extra_id_78>",
198
+ "lstrip": false,
199
+ "normalized": false,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": true
203
+ },
204
+ "25": {
205
+ "content": "<extra_id_77>",
206
+ "lstrip": false,
207
+ "normalized": false,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": true
211
+ },
212
+ "26": {
213
+ "content": "<extra_id_76>",
214
+ "lstrip": false,
215
+ "normalized": false,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": true
219
+ },
220
+ "27": {
221
+ "content": "<extra_id_75>",
222
+ "lstrip": false,
223
+ "normalized": false,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": true
227
+ },
228
+ "28": {
229
+ "content": "<extra_id_74>",
230
+ "lstrip": false,
231
+ "normalized": false,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": true
235
+ },
236
+ "29": {
237
+ "content": "<extra_id_73>",
238
+ "lstrip": false,
239
+ "normalized": false,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": true
243
+ },
244
+ "30": {
245
+ "content": "<extra_id_72>",
246
+ "lstrip": false,
247
+ "normalized": false,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": true
251
+ },
252
+ "31": {
253
+ "content": "<extra_id_71>",
254
+ "lstrip": false,
255
+ "normalized": false,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": true
259
+ },
260
+ "32": {
261
+ "content": "<extra_id_70>",
262
+ "lstrip": false,
263
+ "normalized": false,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": true
267
+ },
268
+ "33": {
269
+ "content": "<extra_id_69>",
270
+ "lstrip": false,
271
+ "normalized": false,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": true
275
+ },
276
+ "34": {
277
+ "content": "<extra_id_68>",
278
+ "lstrip": false,
279
+ "normalized": false,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": true
283
+ },
284
+ "35": {
285
+ "content": "<extra_id_67>",
286
+ "lstrip": false,
287
+ "normalized": false,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": true
291
+ },
292
+ "36": {
293
+ "content": "<extra_id_66>",
294
+ "lstrip": false,
295
+ "normalized": false,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": true
299
+ },
300
+ "37": {
301
+ "content": "<extra_id_65>",
302
+ "lstrip": false,
303
+ "normalized": false,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": true
307
+ },
308
+ "38": {
309
+ "content": "<extra_id_64>",
310
+ "lstrip": false,
311
+ "normalized": false,
312
+ "rstrip": false,
313
+ "single_word": false,
314
+ "special": true
315
+ },
316
+ "39": {
317
+ "content": "<extra_id_63>",
318
+ "lstrip": false,
319
+ "normalized": false,
320
+ "rstrip": false,
321
+ "single_word": false,
322
+ "special": true
323
+ },
324
+ "40": {
325
+ "content": "<extra_id_62>",
326
+ "lstrip": false,
327
+ "normalized": false,
328
+ "rstrip": false,
329
+ "single_word": false,
330
+ "special": true
331
+ },
332
+ "41": {
333
+ "content": "<extra_id_61>",
334
+ "lstrip": false,
335
+ "normalized": false,
336
+ "rstrip": false,
337
+ "single_word": false,
338
+ "special": true
339
+ },
340
+ "42": {
341
+ "content": "<extra_id_60>",
342
+ "lstrip": false,
343
+ "normalized": false,
344
+ "rstrip": false,
345
+ "single_word": false,
346
+ "special": true
347
+ },
348
+ "43": {
349
+ "content": "<extra_id_59>",
350
+ "lstrip": false,
351
+ "normalized": false,
352
+ "rstrip": false,
353
+ "single_word": false,
354
+ "special": true
355
+ },
356
+ "44": {
357
+ "content": "<extra_id_58>",
358
+ "lstrip": false,
359
+ "normalized": false,
360
+ "rstrip": false,
361
+ "single_word": false,
362
+ "special": true
363
+ },
364
+ "45": {
365
+ "content": "<extra_id_57>",
366
+ "lstrip": false,
367
+ "normalized": false,
368
+ "rstrip": false,
369
+ "single_word": false,
370
+ "special": true
371
+ },
372
+ "46": {
373
+ "content": "<extra_id_56>",
374
+ "lstrip": false,
375
+ "normalized": false,
376
+ "rstrip": false,
377
+ "single_word": false,
378
+ "special": true
379
+ },
380
+ "47": {
381
+ "content": "<extra_id_55>",
382
+ "lstrip": false,
383
+ "normalized": false,
384
+ "rstrip": false,
385
+ "single_word": false,
386
+ "special": true
387
+ },
388
+ "48": {
389
+ "content": "<extra_id_54>",
390
+ "lstrip": false,
391
+ "normalized": false,
392
+ "rstrip": false,
393
+ "single_word": false,
394
+ "special": true
395
+ },
396
+ "49": {
397
+ "content": "<extra_id_53>",
398
+ "lstrip": false,
399
+ "normalized": false,
400
+ "rstrip": false,
401
+ "single_word": false,
402
+ "special": true
403
+ },
404
+ "50": {
405
+ "content": "<extra_id_52>",
406
+ "lstrip": false,
407
+ "normalized": false,
408
+ "rstrip": false,
409
+ "single_word": false,
410
+ "special": true
411
+ },
412
+ "51": {
413
+ "content": "<extra_id_51>",
414
+ "lstrip": false,
415
+ "normalized": false,
416
+ "rstrip": false,
417
+ "single_word": false,
418
+ "special": true
419
+ },
420
+ "52": {
421
+ "content": "<extra_id_50>",
422
+ "lstrip": false,
423
+ "normalized": false,
424
+ "rstrip": false,
425
+ "single_word": false,
426
+ "special": true
427
+ },
428
+ "53": {
429
+ "content": "<extra_id_49>",
430
+ "lstrip": false,
431
+ "normalized": false,
432
+ "rstrip": false,
433
+ "single_word": false,
434
+ "special": true
435
+ },
436
+ "54": {
437
+ "content": "<extra_id_48>",
438
+ "lstrip": false,
439
+ "normalized": false,
440
+ "rstrip": false,
441
+ "single_word": false,
442
+ "special": true
443
+ },
444
+ "55": {
445
+ "content": "<extra_id_47>",
446
+ "lstrip": false,
447
+ "normalized": false,
448
+ "rstrip": false,
449
+ "single_word": false,
450
+ "special": true
451
+ },
452
+ "56": {
453
+ "content": "<extra_id_46>",
454
+ "lstrip": false,
455
+ "normalized": false,
456
+ "rstrip": false,
457
+ "single_word": false,
458
+ "special": true
459
+ },
460
+ "57": {
461
+ "content": "<extra_id_45>",
462
+ "lstrip": false,
463
+ "normalized": false,
464
+ "rstrip": false,
465
+ "single_word": false,
466
+ "special": true
467
+ },
468
+ "58": {
469
+ "content": "<extra_id_44>",
470
+ "lstrip": false,
471
+ "normalized": false,
472
+ "rstrip": false,
473
+ "single_word": false,
474
+ "special": true
475
+ },
476
+ "59": {
477
+ "content": "<extra_id_43>",
478
+ "lstrip": false,
479
+ "normalized": false,
480
+ "rstrip": false,
481
+ "single_word": false,
482
+ "special": true
483
+ },
484
+ "60": {
485
+ "content": "<extra_id_42>",
486
+ "lstrip": false,
487
+ "normalized": false,
488
+ "rstrip": false,
489
+ "single_word": false,
490
+ "special": true
491
+ },
492
+ "61": {
493
+ "content": "<extra_id_41>",
494
+ "lstrip": false,
495
+ "normalized": false,
496
+ "rstrip": false,
497
+ "single_word": false,
498
+ "special": true
499
+ },
500
+ "62": {
501
+ "content": "<extra_id_40>",
502
+ "lstrip": false,
503
+ "normalized": false,
504
+ "rstrip": false,
505
+ "single_word": false,
506
+ "special": true
507
+ },
508
+ "63": {
509
+ "content": "<extra_id_39>",
510
+ "lstrip": false,
511
+ "normalized": false,
512
+ "rstrip": false,
513
+ "single_word": false,
514
+ "special": true
515
+ },
516
+ "64": {
517
+ "content": "<extra_id_38>",
518
+ "lstrip": false,
519
+ "normalized": false,
520
+ "rstrip": false,
521
+ "single_word": false,
522
+ "special": true
523
+ },
524
+ "65": {
525
+ "content": "<extra_id_37>",
526
+ "lstrip": false,
527
+ "normalized": false,
528
+ "rstrip": false,
529
+ "single_word": false,
530
+ "special": true
531
+ },
532
+ "66": {
533
+ "content": "<extra_id_36>",
534
+ "lstrip": false,
535
+ "normalized": false,
536
+ "rstrip": false,
537
+ "single_word": false,
538
+ "special": true
539
+ },
540
+ "67": {
541
+ "content": "<extra_id_35>",
542
+ "lstrip": false,
543
+ "normalized": false,
544
+ "rstrip": false,
545
+ "single_word": false,
546
+ "special": true
547
+ },
548
+ "68": {
549
+ "content": "<extra_id_34>",
550
+ "lstrip": false,
551
+ "normalized": false,
552
+ "rstrip": false,
553
+ "single_word": false,
554
+ "special": true
555
+ },
556
+ "69": {
557
+ "content": "<extra_id_33>",
558
+ "lstrip": false,
559
+ "normalized": false,
560
+ "rstrip": false,
561
+ "single_word": false,
562
+ "special": true
563
+ },
564
+ "70": {
565
+ "content": "<extra_id_32>",
566
+ "lstrip": false,
567
+ "normalized": false,
568
+ "rstrip": false,
569
+ "single_word": false,
570
+ "special": true
571
+ },
572
+ "71": {
573
+ "content": "<extra_id_31>",
574
+ "lstrip": false,
575
+ "normalized": false,
576
+ "rstrip": false,
577
+ "single_word": false,
578
+ "special": true
579
+ },
580
+ "72": {
581
+ "content": "<extra_id_30>",
582
+ "lstrip": false,
583
+ "normalized": false,
584
+ "rstrip": false,
585
+ "single_word": false,
586
+ "special": true
587
+ },
588
+ "73": {
589
+ "content": "<extra_id_29>",
590
+ "lstrip": false,
591
+ "normalized": false,
592
+ "rstrip": false,
593
+ "single_word": false,
594
+ "special": true
595
+ },
596
+ "74": {
597
+ "content": "<extra_id_28>",
598
+ "lstrip": false,
599
+ "normalized": false,
600
+ "rstrip": false,
601
+ "single_word": false,
602
+ "special": true
603
+ },
604
+ "75": {
605
+ "content": "<extra_id_27>",
606
+ "lstrip": false,
607
+ "normalized": false,
608
+ "rstrip": false,
609
+ "single_word": false,
610
+ "special": true
611
+ },
612
+ "76": {
613
+ "content": "<extra_id_26>",
614
+ "lstrip": false,
615
+ "normalized": false,
616
+ "rstrip": false,
617
+ "single_word": false,
618
+ "special": true
619
+ },
620
+ "77": {
621
+ "content": "<extra_id_25>",
622
+ "lstrip": false,
623
+ "normalized": false,
624
+ "rstrip": false,
625
+ "single_word": false,
626
+ "special": true
627
+ },
628
+ "78": {
629
+ "content": "<extra_id_24>",
630
+ "lstrip": false,
631
+ "normalized": false,
632
+ "rstrip": false,
633
+ "single_word": false,
634
+ "special": true
635
+ },
636
+ "79": {
637
+ "content": "<extra_id_23>",
638
+ "lstrip": false,
639
+ "normalized": false,
640
+ "rstrip": false,
641
+ "single_word": false,
642
+ "special": true
643
+ },
644
+ "80": {
645
+ "content": "<extra_id_22>",
646
+ "lstrip": false,
647
+ "normalized": false,
648
+ "rstrip": false,
649
+ "single_word": false,
650
+ "special": true
651
+ },
652
+ "81": {
653
+ "content": "<extra_id_21>",
654
+ "lstrip": false,
655
+ "normalized": false,
656
+ "rstrip": false,
657
+ "single_word": false,
658
+ "special": true
659
+ },
660
+ "82": {
661
+ "content": "<extra_id_20>",
662
+ "lstrip": false,
663
+ "normalized": false,
664
+ "rstrip": false,
665
+ "single_word": false,
666
+ "special": true
667
+ },
668
+ "83": {
669
+ "content": "<extra_id_19>",
670
+ "lstrip": false,
671
+ "normalized": false,
672
+ "rstrip": false,
673
+ "single_word": false,
674
+ "special": true
675
+ },
676
+ "84": {
677
+ "content": "<extra_id_18>",
678
+ "lstrip": false,
679
+ "normalized": false,
680
+ "rstrip": false,
681
+ "single_word": false,
682
+ "special": true
683
+ },
684
+ "85": {
685
+ "content": "<extra_id_17>",
686
+ "lstrip": false,
687
+ "normalized": false,
688
+ "rstrip": false,
689
+ "single_word": false,
690
+ "special": true
691
+ },
692
+ "86": {
693
+ "content": "<extra_id_16>",
694
+ "lstrip": false,
695
+ "normalized": false,
696
+ "rstrip": false,
697
+ "single_word": false,
698
+ "special": true
699
+ },
700
+ "87": {
701
+ "content": "<extra_id_15>",
702
+ "lstrip": false,
703
+ "normalized": false,
704
+ "rstrip": false,
705
+ "single_word": false,
706
+ "special": true
707
+ },
708
+ "88": {
709
+ "content": "<extra_id_14>",
710
+ "lstrip": false,
711
+ "normalized": false,
712
+ "rstrip": false,
713
+ "single_word": false,
714
+ "special": true
715
+ },
716
+ "89": {
717
+ "content": "<extra_id_13>",
718
+ "lstrip": false,
719
+ "normalized": false,
720
+ "rstrip": false,
721
+ "single_word": false,
722
+ "special": true
723
+ },
724
+ "90": {
725
+ "content": "<extra_id_12>",
726
+ "lstrip": false,
727
+ "normalized": false,
728
+ "rstrip": false,
729
+ "single_word": false,
730
+ "special": true
731
+ },
732
+ "91": {
733
+ "content": "<extra_id_11>",
734
+ "lstrip": false,
735
+ "normalized": false,
736
+ "rstrip": false,
737
+ "single_word": false,
738
+ "special": true
739
+ },
740
+ "92": {
741
+ "content": "<extra_id_10>",
742
+ "lstrip": false,
743
+ "normalized": false,
744
+ "rstrip": false,
745
+ "single_word": false,
746
+ "special": true
747
+ },
748
+ "93": {
749
+ "content": "<extra_id_9>",
750
+ "lstrip": false,
751
+ "normalized": false,
752
+ "rstrip": false,
753
+ "single_word": false,
754
+ "special": true
755
+ },
756
+ "94": {
757
+ "content": "<extra_id_8>",
758
+ "lstrip": false,
759
+ "normalized": false,
760
+ "rstrip": false,
761
+ "single_word": false,
762
+ "special": true
763
+ },
764
+ "95": {
765
+ "content": "<extra_id_7>",
766
+ "lstrip": false,
767
+ "normalized": false,
768
+ "rstrip": false,
769
+ "single_word": false,
770
+ "special": true
771
+ },
772
+ "96": {
773
+ "content": "<extra_id_6>",
774
+ "lstrip": false,
775
+ "normalized": false,
776
+ "rstrip": false,
777
+ "single_word": false,
778
+ "special": true
779
+ },
780
+ "97": {
781
+ "content": "<extra_id_5>",
782
+ "lstrip": false,
783
+ "normalized": false,
784
+ "rstrip": false,
785
+ "single_word": false,
786
+ "special": true
787
+ },
788
+ "98": {
789
+ "content": "<extra_id_4>",
790
+ "lstrip": false,
791
+ "normalized": false,
792
+ "rstrip": false,
793
+ "single_word": false,
794
+ "special": true
795
+ },
796
+ "99": {
797
+ "content": "<extra_id_3>",
798
+ "lstrip": false,
799
+ "normalized": false,
800
+ "rstrip": false,
801
+ "single_word": false,
802
+ "special": true
803
+ },
804
+ "100": {
805
+ "content": "<extra_id_2>",
806
+ "lstrip": false,
807
+ "normalized": false,
808
+ "rstrip": false,
809
+ "single_word": false,
810
+ "special": true
811
+ },
812
+ "101": {
813
+ "content": "<extra_id_1>",
814
+ "lstrip": false,
815
+ "normalized": false,
816
+ "rstrip": false,
817
+ "single_word": false,
818
+ "special": true
819
+ },
820
+ "102": {
821
+ "content": "<extra_id_0>",
822
+ "lstrip": false,
823
+ "normalized": false,
824
+ "rstrip": false,
825
+ "single_word": false,
826
+ "special": true
827
+ }
828
+ },
829
+ "additional_special_tokens": [
830
+ "<extra_id_0>",
831
+ "<extra_id_1>",
832
+ "<extra_id_2>",
833
+ "<extra_id_3>",
834
+ "<extra_id_4>",
835
+ "<extra_id_5>",
836
+ "<extra_id_6>",
837
+ "<extra_id_7>",
838
+ "<extra_id_8>",
839
+ "<extra_id_9>",
840
+ "<extra_id_10>",
841
+ "<extra_id_11>",
842
+ "<extra_id_12>",
843
+ "<extra_id_13>",
844
+ "<extra_id_14>",
845
+ "<extra_id_15>",
846
+ "<extra_id_16>",
847
+ "<extra_id_17>",
848
+ "<extra_id_18>",
849
+ "<extra_id_19>",
850
+ "<extra_id_20>",
851
+ "<extra_id_21>",
852
+ "<extra_id_22>",
853
+ "<extra_id_23>",
854
+ "<extra_id_24>",
855
+ "<extra_id_25>",
856
+ "<extra_id_26>",
857
+ "<extra_id_27>",
858
+ "<extra_id_28>",
859
+ "<extra_id_29>",
860
+ "<extra_id_30>",
861
+ "<extra_id_31>",
862
+ "<extra_id_32>",
863
+ "<extra_id_33>",
864
+ "<extra_id_34>",
865
+ "<extra_id_35>",
866
+ "<extra_id_36>",
867
+ "<extra_id_37>",
868
+ "<extra_id_38>",
869
+ "<extra_id_39>",
870
+ "<extra_id_40>",
871
+ "<extra_id_41>",
872
+ "<extra_id_42>",
873
+ "<extra_id_43>",
874
+ "<extra_id_44>",
875
+ "<extra_id_45>",
876
+ "<extra_id_46>",
877
+ "<extra_id_47>",
878
+ "<extra_id_48>",
879
+ "<extra_id_49>",
880
+ "<extra_id_50>",
881
+ "<extra_id_51>",
882
+ "<extra_id_52>",
883
+ "<extra_id_53>",
884
+ "<extra_id_54>",
885
+ "<extra_id_55>",
886
+ "<extra_id_56>",
887
+ "<extra_id_57>",
888
+ "<extra_id_58>",
889
+ "<extra_id_59>",
890
+ "<extra_id_60>",
891
+ "<extra_id_61>",
892
+ "<extra_id_62>",
893
+ "<extra_id_63>",
894
+ "<extra_id_64>",
895
+ "<extra_id_65>",
896
+ "<extra_id_66>",
897
+ "<extra_id_67>",
898
+ "<extra_id_68>",
899
+ "<extra_id_69>",
900
+ "<extra_id_70>",
901
+ "<extra_id_71>",
902
+ "<extra_id_72>",
903
+ "<extra_id_73>",
904
+ "<extra_id_74>",
905
+ "<extra_id_75>",
906
+ "<extra_id_76>",
907
+ "<extra_id_77>",
908
+ "<extra_id_78>",
909
+ "<extra_id_79>",
910
+ "<extra_id_80>",
911
+ "<extra_id_81>",
912
+ "<extra_id_82>",
913
+ "<extra_id_83>",
914
+ "<extra_id_84>",
915
+ "<extra_id_85>",
916
+ "<extra_id_86>",
917
+ "<extra_id_87>",
918
+ "<extra_id_88>",
919
+ "<extra_id_89>",
920
+ "<extra_id_90>",
921
+ "<extra_id_91>",
922
+ "<extra_id_92>",
923
+ "<extra_id_93>",
924
+ "<extra_id_94>",
925
+ "<extra_id_95>",
926
+ "<extra_id_96>",
927
+ "<extra_id_97>",
928
+ "<extra_id_98>",
929
+ "<extra_id_99>"
930
+ ],
931
+ "clean_up_tokenization_spaces": false,
932
+ "eos_token": "</s>",
933
+ "extra_ids": 100,
934
+ "extra_special_tokens": {},
935
+ "model_max_length": 1024,
936
+ "pad_token": "<pad>",
937
+ "tokenizer_class": "T5TokenizerFast",
938
+ "unk_token": "<unk>"
939
+ }
neuronxcc-2.21.18209.0+043b1bf7/MODULE_306829ff9e3811933fe7+a02c3a36/model.neff CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b7c605196e0d8b015ab990546dae23b633f7e81d08ceddcd19366df190f1589a
3
  size 277504
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee3925ecaefa2a512218bd8aaeb7b57692edd64d67ccca3e3fd75c1c19078d05
3
  size 277504
neuronxcc-2.21.18209.0+043b1bf7/MODULE_306829ff9e3811933fe7+a02c3a36/wrapped_neff.hlo CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ad8364c6b31b739b8254554fe4215378d7120fa340f06039910f44bb10d61c2c
3
  size 285854
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9cb94c96f5d354dcba8c0e9992ca608aa51254982514e824d925c6cff83357c3
3
  size 285854
neuronxcc-2.21.18209.0+043b1bf7/MODULE_3198402281722258467+e30acd3a/compile_flags.json ADDED
@@ -0,0 +1 @@
 
 
1
+ ["--target=trn1"]
neuronxcc-2.21.18209.0+043b1bf7/MODULE_3198402281722258467+e30acd3a/model.done ADDED
File without changes
neuronxcc-2.21.18209.0+043b1bf7/MODULE_3198402281722258467+e30acd3a/model.hlo_module.pb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c57365409850cab4f0f2343dbea632a9bf593bcbd422cb6947b22320d300347c
3
+ size 1125
neuronxcc-2.21.18209.0+043b1bf7/MODULE_3198402281722258467+e30acd3a/model.neff ADDED
Binary file (11.3 kB). View file
 
neuronxcc-2.21.18209.0+043b1bf7/MODULE_3e0b621f97b7931a72e0/config.json ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LevitModel"
4
+ ],
5
+ "attention_ratio": [
6
+ 2,
7
+ 2,
8
+ 2
9
+ ],
10
+ "depths": [
11
+ 2,
12
+ 3,
13
+ 4
14
+ ],
15
+ "down_ops": [
16
+ [
17
+ "Subsample",
18
+ 16,
19
+ 8,
20
+ 4,
21
+ 2,
22
+ 2
23
+ ],
24
+ [
25
+ "Subsample",
26
+ 16,
27
+ 16,
28
+ 4,
29
+ 2,
30
+ 2
31
+ ],
32
+ [
33
+ ""
34
+ ]
35
+ ],
36
+ "drop_path_rate": 0,
37
+ "dtype": "float32",
38
+ "hidden_sizes": [
39
+ 128,
40
+ 256,
41
+ 384
42
+ ],
43
+ "image_size": 64,
44
+ "initializer_range": 0.02,
45
+ "kernel_size": 3,
46
+ "key_dim": [
47
+ 16,
48
+ 16,
49
+ 16
50
+ ],
51
+ "mlp_ratio": [
52
+ 2,
53
+ 2,
54
+ 2
55
+ ],
56
+ "model_type": "levit",
57
+ "neuron": {
58
+ "auto_cast": null,
59
+ "auto_cast_type": null,
60
+ "compiler_type": "neuronx-cc",
61
+ "compiler_version": "2.21.18209.0+043b1bf7",
62
+ "disable_fallback": false,
63
+ "disable_fast_relayout": false,
64
+ "dynamic_batch_size": false,
65
+ "float_dtype": "fp32",
66
+ "inline_weights_to_neff": true,
67
+ "instance_type": "trn1",
68
+ "int_dtype": "int64",
69
+ "model_type": "levit",
70
+ "optlevel": "2",
71
+ "output_attentions": false,
72
+ "output_hidden_states": false,
73
+ "static_batch_size": 1,
74
+ "task": "image-classification",
75
+ "tensor_parallel_size": 1
76
+ },
77
+ "num_attention_heads": [
78
+ 4,
79
+ 6,
80
+ 8
81
+ ],
82
+ "num_channels": 3,
83
+ "padding": 1,
84
+ "patch_size": 16,
85
+ "stride": 2,
86
+ "torchscript": true,
87
+ "transformers_version": "4.57.1"
88
+ }