22 Xmodel-VLM: A Simple Baseline for Multimodal Vision Language Model We introduce Xmodel-VLM, a cutting-edge multimodal vision language model. It is designed for efficient deployment on consumer GPU servers. Our work directly confronts a pivotal industry issue by grappling with the prohibitive service costs that hinder the broad adoption of large-scale multimodal systems. Through rigorous training, we have developed a 1B-scale language model from the ground up, employing the LLaVA paradigm for modal alignment. The result, which we call Xmodel-VLM, is a lightweight yet powerful multimodal vision language model. Extensive testing across numerous classic multimodal benchmarks has revealed that despite its smaller size and faster execution, Xmodel-VLM delivers performance comparable to that of larger models. Our model checkpoints and code are publicly available on GitHub at https://github.com/XiaoduoAILab/XmodelVLM. 5 authors · May 15, 2024 1
1 Self-Correcting Code Generation Using Small Language Models Self-correction has demonstrated potential in code generation by allowing language models to revise and improve their outputs through successive refinement. Recent studies have explored prompting-based strategies that incorporate verification or feedback loops using proprietary models, as well as training-based methods that leverage their strong reasoning capabilities. However, whether smaller models possess the capacity to effectively guide their outputs through self-reflection remains unexplored. Our findings reveal that smaller models struggle to exhibit reflective revision behavior across both self-correction paradigms. In response, we introduce CoCoS, an approach designed to enhance the ability of small language models for multi-turn code correction. Specifically, we propose an online reinforcement learning objective that trains the model to confidently maintain correct outputs while progressively correcting incorrect outputs as turns proceed. Our approach features an accumulated reward function that aggregates rewards across the entire trajectory and a fine-grained reward better suited to multi-turn correction scenarios. This facilitates the model in enhancing initial response quality while achieving substantial improvements through self-correction. With 1B-scale models, CoCoS achieves improvements of 35.8% on the MBPP and 27.7% on HumanEval compared to the baselines. 4 authors · May 29
- Stable and low-precision training for large-scale vision-language models We introduce new methods for 1) accelerating and 2) stabilizing training for large language-vision models. 1) For acceleration, we introduce SwitchBack, a linear layer for int8 quantized training which provides a speed-up of 13-25% while matching the performance of bfloat16 training within 0.1 percentage points for the 1B parameter CLIP ViT-Huge -- the largest int8 training to date. Our main focus is int8 as GPU support for float8 is rare, though we also analyze float8 training through simulation. While SwitchBack proves effective for float8, we show that standard techniques are also successful if the network is trained and initialized so that large feature magnitudes are discouraged, which we accomplish via layer-scale initialized with zeros. 2) For stability, we analyze loss spikes and find they consistently occur 1-8 iterations after the squared gradients become under-estimated by their AdamW second moment estimator. As a result, we recommend an AdamW-Adafactor hybrid which avoids loss spikes when training a CLIP ViT-Huge model and outperforms gradient clipping at the scales we test. 6 authors · Apr 25, 2023
- Blu-WERP (Web Extraction and Refinement Pipeline): A Scalable Pipeline for Preprocessing Large Language Model Datasets High-quality training data is fundamental to large language model (LLM) performance, yet existing preprocessing pipelines often struggle to effectively remove noise and unstructured content from web-scale corpora. This paper presents Blu-WERP, a novel data preprocessing pipeline designed to optimize the quality of Common Crawl WARC files for LLM training. We demonstrate that Blu-WERP significantly outperforms established baselines including DCLM across multiple model scales and evaluation benchmarks. Our pipeline processes CC WARC dumps, implementing advanced filtering and quality assessment mechanisms. We conducted comprehensive evaluations using models with 150M, 400M, 530M, 750M, and 1B parameters, testing against nine standard benchmarks categorized as World Knowledge & Reasoning, Language Understanding, and Commonsense Reasoning. Results show Blu-WERP consistently achieved superior performance across all model scales. At the 1B parameter scale, Relatively Blu-WERP demonstrates a 4.0% and 9.5% aggregate improvement over DCLM and Fineweb respectively, while achieving quality-per-token efficiency gain. Categorical analysis reveals 2.4% improvement in World Knowledge & Reasoning, 6.2% improvement in Language Understanding, and 4.2% improvement in Commonsense Reasoning. These results establish Blu-WERP as a state-of-the-art preprocessing pipeline that substantially improves LLM training data quality and downstream model performance with reduced computational cost. Our findings contribute to the growing body of research on data-centric AI, demonstrating that preprocessing pipeline design significantly impacts LLM capabilities. The Blu-WERP pipeline represents a practical advancement in data quality optimization, offering researchers and practitioners an effective solution for improving LLM training efficiency and model performance. 5 authors · Nov 22
- Vid2Seq: Large-Scale Pretraining of a Visual Language Model for Dense Video Captioning In this work, we introduce Vid2Seq, a multi-modal single-stage dense event captioning model pretrained on narrated videos which are readily-available at scale. The Vid2Seq architecture augments a language model with special time tokens, allowing it to seamlessly predict event boundaries and textual descriptions in the same output sequence. Such a unified model requires large-scale training data, which is not available in current annotated datasets. We show that it is possible to leverage unlabeled narrated videos for dense video captioning, by reformulating sentence boundaries of transcribed speech as pseudo event boundaries, and using the transcribed speech sentences as pseudo event captions. The resulting Vid2Seq model pretrained on the YT-Temporal-1B dataset improves the state of the art on a variety of dense video captioning benchmarks including YouCook2, ViTT and ActivityNet Captions. Vid2Seq also generalizes well to the tasks of video paragraph captioning and video clip captioning, and to few-shot settings. Our code is publicly available at https://antoyang.github.io/vid2seq.html. 8 authors · Feb 27, 2023 1
3 SlowFast-LLaVA-1.5: A Family of Token-Efficient Video Large Language Models for Long-Form Video Understanding We introduce SlowFast-LLaVA-1.5 (abbreviated as SF-LLaVA-1.5), a family of video large language models (LLMs) offering a token-efficient solution for long-form video understanding. We incorporate the two-stream SlowFast mechanism into a streamlined training pipeline, and perform joint video-image training on a carefully curated data mixture of only publicly available datasets. Our primary focus is on highly efficient model scales (1B and 3B), demonstrating that even relatively small Video LLMs can achieve state-of-the-art performance on video understanding, meeting the demand for mobile-friendly models. Experimental results demonstrate that SF-LLaVA-1.5 achieves superior performance on a wide range of video and image tasks, with robust results at all model sizes (ranging from 1B to 7B). Notably, SF-LLaVA-1.5 achieves state-of-the-art results in long-form video understanding (e.g., LongVideoBench and MLVU) and excels at small scales across various video benchmarks. 10 authors · Mar 24
- AesthetiQ: Enhancing Graphic Layout Design via Aesthetic-Aware Preference Alignment of Multi-modal Large Language Models Visual layouts are essential in graphic design fields such as advertising, posters, and web interfaces. The application of generative models for content-aware layout generation has recently gained traction. However, these models fail to understand the contextual aesthetic requirements of layout design and do not align with human-like preferences, primarily treating it as a prediction task without considering the final rendered output. To overcome these problems, we offer Aesthetic-Aware Preference Alignment(AAPA), a novel technique to train a Multi-modal Large Language Model (MLLM) for layout prediction that uses MLLM's aesthetic preferences for Direct Preference Optimization over graphic layouts. We propose a data filtering protocol utilizing our layout-quality heuristics for AAPA to ensure training happens on high-quality layouts. Additionally, we introduce a novel evaluation metric that uses another MLLM to compute the win rate of the generated layout against the ground-truth layout based on aesthetics criteria. We also demonstrate the applicability of AAPA for MLLMs of varying scales (1B to 8B parameters) and LLM families (Qwen, Phi, InternLM). By conducting thorough qualitative and quantitative analyses, we verify the efficacy of our approach on two challenging benchmarks - Crello and Webui, showcasing 17%, and 16 improvement over current State-of-The-Art methods, thereby highlighting the potential of MLLMs in aesthetic-aware layout generation. 4 authors · Mar 1
14 Xmodel-1.5: An 1B-scale Multilingual LLM We introduce Xmodel-1.5, a novel 1-billion-parameter multilingual large model pretrained on approximately 2 trillion tokens. The model demonstrates strong performance across several languages, with particularly notable results in Thai, Arabic, and French, alongside its effectiveness in Chinese and English. In addition, we contribute to the research community by releasing a Thai evaluation dataset, which includes hundreds of questions annotated by students from Chulalongkorn University's School of Integrated Innovation. While the results are promising, we acknowledge that there is still room for improvement. We hope this work advances ongoing efforts in multilingual AI research and promotes better cross-linguistic understanding in various natural language processing tasks. Our models and code are publicly available on GitHub at https://github.com/XiaoduoAILab/XmodelLM. 4 authors · Nov 15, 2024 2
- Recycling the Web: A Method to Enhance Pre-training Data Quality and Quantity for Language Models Scaling laws predict that the performance of large language models improves with increasing model size and data size. In practice, pre-training has been relying on massive web crawls, using almost all data sources publicly available on the internet so far. However, this pool of natural data does not grow at the same rate as the compute supply. Furthermore, the availability of high-quality texts is even more limited: data filtering pipelines often remove up to 99% of the initial web scrapes to achieve state-of-the-art. To address the "data wall" of pre-training scaling, our work explores ways to transform and recycle data discarded in existing filtering processes. We propose REWIRE, REcycling the Web with guIded REwrite, a method to enrich low-quality documents so that they could become useful for training. This in turn allows us to increase the representation of synthetic data in the final pre-training set. Experiments at 1B, 3B and 7B scales of the DCLM benchmark show that mixing high-quality raw texts and our rewritten texts lead to 1.0, 1.3 and 2.5 percentage points improvement respectively across 22 diverse tasks, compared to training on only filtered web data. Training on the raw-synthetic data mix is also more effective than having access to 2x web data. Through further analysis, we demonstrate that about 82% of the mixed in texts come from transforming lower-quality documents that would otherwise be discarded. REWIRE also outperforms related approaches of generating synthetic data, including Wikipedia-style paraphrasing, question-answer synthesizing and knowledge extraction. These results suggest that recycling web texts holds the potential for being a simple and effective approach for scaling pre-training data. 7 authors · Jun 5