2 Balanced Multi-Task Attention for Satellite Image Classification: A Systematic Approach to Achieving 97.23% Accuracy on EuroSAT Without Pre-Training This work presents a systematic investigation of custom convolutional neural network architectures for satellite land use classification, achieving 97.23% test accuracy on the EuroSAT dataset without reliance on pre-trained models. Through three progressive architectural iterations (baseline: 94.30%, CBAM-enhanced: 95.98%, and balanced multi-task attention: 97.23%) we identify and address specific failure modes in satellite imagery classification. Our principal contribution is a novel balanced multi-task attention mechanism that combines Coordinate Attention for spatial feature extraction with Squeeze-Excitation blocks for spectral feature extraction, unified through a learnable fusion parameter. Experimental results demonstrate that this learnable parameter autonomously converges to alpha approximately 0.57, indicating near-equal importance of spatial and spectral modalities for satellite imagery. We employ progressive DropBlock regularization (5-20% by network depth) and class-balanced loss weighting to address overfitting and confusion pattern imbalance. The final 12-layer architecture achieves Cohen's Kappa of 0.9692 with all classes exceeding 94.46% accuracy, demonstrating confidence calibration with a 24.25% gap between correct and incorrect predictions. Our approach achieves performance within 1.34% of fine-tuned ResNet-50 (98.57%) while requiring no external data, validating the efficacy of systematic architectural design for domain-specific applications. Complete code, trained models, and evaluation scripts are publicly available. 1 authors · Oct 17, 2025 2
- Medical Image Segmentation Using Advanced Unet: VMSE-Unet and VM-Unet CBAM+ In this paper, we present the VMSE U-Net and VM-Unet CBAM+ model, two cutting-edge deep learning architectures designed to enhance medical image segmentation. Our approach integrates Squeeze-and-Excitation (SE) and Convolutional Block Attention Module (CBAM) techniques into the traditional VM U-Net framework, significantly improving segmentation accuracy, feature localization, and computational efficiency. Both models show superior performance compared to the baseline VM-Unet across multiple datasets. Notably, VMSEUnet achieves the highest accuracy, IoU, precision, and recall while maintaining low loss values. It also exhibits exceptional computational efficiency with faster inference times and lower memory usage on both GPU and CPU. Overall, the study suggests that the enhanced architecture VMSE-Unet is a valuable tool for medical image analysis. These findings highlight its potential for real-world clinical applications, emphasizing the importance of further research to optimize accuracy, robustness, and computational efficiency. 6 authors · Jul 1, 2025
- CBAM: Convolutional Block Attention Module We propose Convolutional Block Attention Module (CBAM), a simple yet effective attention module for feed-forward convolutional neural networks. Given an intermediate feature map, our module sequentially infers attention maps along two separate dimensions, channel and spatial, then the attention maps are multiplied to the input feature map for adaptive feature refinement. Because CBAM is a lightweight and general module, it can be integrated into any CNN architectures seamlessly with negligible overheads and is end-to-end trainable along with base CNNs. We validate our CBAM through extensive experiments on ImageNet-1K, MS~COCO detection, and VOC~2007 detection datasets. Our experiments show consistent improvements in classification and detection performances with various models, demonstrating the wide applicability of CBAM. The code and models will be publicly available. 4 authors · Jul 17, 2018
1 Pick-or-Mix: Dynamic Channel Sampling for ConvNets Channel pruning approaches for convolutional neural networks (ConvNets) deactivate the channels, statically or dynamically, and require special implementation. In addition, channel squeezing in representative ConvNets is carried out via 1x1 convolutions which dominates a large portion of computations and network parameters. Given these challenges, we propose an effective multi-purpose module for dynamic channel sampling, namely Pick-or-Mix (PiX), which does not require special implementation. PiX divides a set of channels into subsets and then picks from them, where the picking decision is dynamically made per each pixel based on the input activations. We plug PiX into prominent ConvNet architectures and verify its multi-purpose utilities. After replacing 1x1 channel squeezing layers in ResNet with PiX, the network becomes 25% faster without losing accuracy. We show that PiX allows ConvNets to learn better data representation than widely adopted approaches to enhance networks' representation power (e.g., SE, CBAM, AFF, SKNet, and DWP). We also show that PiX achieves state-of-the-art performance on network downscaling and dynamic channel pruning applications. 4 authors · Jun 16, 2024