Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRADIANT: Retrieval AugmenteD entIty-context AligNmenT -- Introducing RAG-ability and Entity-Context Divergence
As Large Language Models (LLMs) continue to advance, Retrieval-Augmented Generation (RAG) has emerged as a vital technique to enhance factual accuracy by integrating external knowledge into the generation process. However, LLMs often fail to faithfully integrate retrieved evidence into their generated responses, leading to factual inconsistencies. To quantify this gap, we introduce Entity-Context Divergence (ECD), a metric that measures the extent to which retrieved information is accurately reflected in model outputs. We systematically evaluate contemporary LLMs on their ability to preserve factual consistency in retrieval-augmented settings, a capability we define as RAG-ability. Our empirical analysis reveals that RAG-ability remains low across most LLMs, highlighting significant challenges in entity retention and context fidelity. This paper introduces Radiant (Retrieval AugmenteD entIty-context AligNmenT), a novel framework that merges RAG with alignment designed to optimize the interplay between retrieved evidence and generated content. Radiant extends Direct Preference Optimization (DPO) to teach LLMs how to integrate provided additional information into subsequent generations. As a behavior correction mechanism, Radiant boosts RAG performance across varied retrieval scenarios, such as noisy web contexts, knowledge conflicts, and hallucination reduction. This enables more reliable, contextually grounded, and factually coherent content generation.
PIP-KAG: Mitigating Knowledge Conflicts in Knowledge-Augmented Generation via Parametric Pruning
Knowledge-Augmented Generation (KAG) has shown great promise in updating the internal memory of Large Language Models (LLMs) by integrating external knowledge. However, KAG inevitably faces knowledge conflicts when the internal memory contradicts external information. Current approaches to mitigating these conflicts mainly focus on improving external knowledge utilization. However, these methods have shown only limited effectiveness in mitigating the knowledge conflict problem, as internal knowledge continues to influence the generation process of LLMs. In this paper, we propose a ParametrIc Pruning-based Knowledge-Augmented Generation (PIP-KAG) approach, which prunes internal knowledge of LLMs and incorporates a plug-and-play adaptation module to help LLMs better leverage external sources. Additionally, we construct the CoConflictQA benchmark based on the hallucination of LLMs to better evaluate contextual faithfulness during answering questions. Experimental results on CoConflictQA demonstrate that PIP-KAG significantly reduces knowledge conflicts and improves context fidelity. Notably, PIP-KAG reduces LLM's parameters by 13%, enhancing parameter efficiency in LLMs within the KAG framework. All codes are available at https://github.com/OpenBMB/PIP-KAG.
CannyEdit: Selective Canny Control and Dual-Prompt Guidance for Training-Free Image Editing
Recent advances in text-to-image (T2I) models have enabled training-free regional image editing by leveraging the generative priors of foundation models. However, existing methods struggle to balance text adherence in edited regions, context fidelity in unedited areas, and seamless integration of edits. We introduce CannyEdit, a novel training-free framework that addresses these challenges through two key innovations: (1) Selective Canny Control, which masks the structural guidance of Canny ControlNet in user-specified editable regions while strictly preserving details of the source images in unedited areas via inversion-phase ControlNet information retention. This enables precise, text-driven edits without compromising contextual integrity. (2) Dual-Prompt Guidance, which combines local prompts for object-specific edits with a global target prompt to maintain coherent scene interactions. On real-world image editing tasks (addition, replacement, removal), CannyEdit outperforms prior methods like KV-Edit, achieving a 2.93 to 10.49 percent improvement in the balance of text adherence and context fidelity. In terms of editing seamlessness, user studies reveal only 49.2 percent of general users and 42.0 percent of AIGC experts identified CannyEdit's results as AI-edited when paired with real images without edits, versus 76.08 to 89.09 percent for competitor methods.
Context Canvas: Enhancing Text-to-Image Diffusion Models with Knowledge Graph-Based RAG
We introduce a novel approach to enhance the capabilities of text-to-image models by incorporating a graph-based RAG. Our system dynamically retrieves detailed character information and relational data from the knowledge graph, enabling the generation of visually accurate and contextually rich images. This capability significantly improves upon the limitations of existing T2I models, which often struggle with the accurate depiction of complex or culturally specific subjects due to dataset constraints. Furthermore, we propose a novel self-correcting mechanism for text-to-image models to ensure consistency and fidelity in visual outputs, leveraging the rich context from the graph to guide corrections. Our qualitative and quantitative experiments demonstrate that Context Canvas significantly enhances the capabilities of popular models such as Flux, Stable Diffusion, and DALL-E, and improves the functionality of ControlNet for fine-grained image editing tasks. To our knowledge, Context Canvas represents the first application of graph-based RAG in enhancing T2I models, representing a significant advancement for producing high-fidelity, context-aware multi-faceted images.
Dialogue Without Limits: Constant-Sized KV Caches for Extended Responses in LLMs
Autoregressive Transformers rely on Key-Value (KV) caching to accelerate inference. However, the linear growth of the KV cache with context length leads to excessive memory consumption and bandwidth constraints. This bottleneck is particularly problematic in real-time applications -- such as chatbots and interactive assistants -- where low latency and high memory efficiency are critical. Existing methods drop distant tokens or compress states in a lossy manner, sacrificing accuracy by discarding vital context or introducing bias. We propose MorphKV, an inference-time technique that maintains a constant-sized KV cache while preserving accuracy. MorphKV balances long-range dependencies and local coherence during text generation. It eliminates early-token bias while retaining high-fidelity context by adaptively ranking tokens through correlation-aware selection. Unlike heuristic retention or lossy compression, MorphKV iteratively refines the KV cache via lightweight updates guided by attention patterns of recent tokens. This approach captures inter-token correlation with greater accuracy, crucial for tasks like content creation and code generation. Our studies on long-response tasks show 52.9% memory savings and 18.2% higher accuracy on average compared to state-of-the-art prior works, enabling efficient real-world deployment.
LoRACLR: Contrastive Adaptation for Customization of Diffusion Models
Recent advances in text-to-image customization have enabled high-fidelity, context-rich generation of personalized images, allowing specific concepts to appear in a variety of scenarios. However, current methods struggle with combining multiple personalized models, often leading to attribute entanglement or requiring separate training to preserve concept distinctiveness. We present LoRACLR, a novel approach for multi-concept image generation that merges multiple LoRA models, each fine-tuned for a distinct concept, into a single, unified model without additional individual fine-tuning. LoRACLR uses a contrastive objective to align and merge the weight spaces of these models, ensuring compatibility while minimizing interference. By enforcing distinct yet cohesive representations for each concept, LoRACLR enables efficient, scalable model composition for high-quality, multi-concept image synthesis. Our results highlight the effectiveness of LoRACLR in accurately merging multiple concepts, advancing the capabilities of personalized image generation.
C-DiffDet+: Fusing Global Scene Context with Generative Denoising for High-Fidelity Object Detection
Fine-grained object detection in challenging visual domains, such as vehicle damage assessment, presents a formidable challenge even for human experts to resolve reliably. While DiffusionDet has advanced the state-of-the-art through conditional denoising diffusion, its performance remains limited by local feature conditioning in context-dependent scenarios. We address this fundamental limitation by introducing Context-Aware Fusion (CAF), which leverages cross-attention mechanisms to integrate global scene context with local proposal features directly. The global context is generated using a separate dedicated encoder that captures comprehensive environmental information, enabling each object proposal to attend to scene-level understanding. Our framework significantly enhances the generative detection paradigm by enabling each object proposal to attend to comprehensive environmental information. Experimental results demonstrate an improvement over state-of-the-art models on the CarDD benchmark, establishing new performance benchmarks for context-aware object detection in fine-grained domains
Hummingbird: High Fidelity Image Generation via Multimodal Context Alignment
While diffusion models are powerful in generating high-quality, diverse synthetic data for object-centric tasks, existing methods struggle with scene-aware tasks such as Visual Question Answering (VQA) and Human-Object Interaction (HOI) Reasoning, where it is critical to preserve scene attributes in generated images consistent with a multimodal context, i.e. a reference image with accompanying text guidance query. To address this, we introduce Hummingbird, the first diffusion-based image generator which, given a multimodal context, generates highly diverse images w.r.t. the reference image while ensuring high fidelity by accurately preserving scene attributes, such as object interactions and spatial relationships from the text guidance. Hummingbird employs a novel Multimodal Context Evaluator that simultaneously optimizes our formulated Global Semantic and Fine-grained Consistency Rewards to ensure generated images preserve the scene attributes of reference images in relation to the text guidance while maintaining diversity. As the first model to address the task of maintaining both diversity and fidelity given a multimodal context, we introduce a new benchmark formulation incorporating MME Perception and Bongard HOI datasets. Benchmark experiments show Hummingbird outperforms all existing methods by achieving superior fidelity while maintaining diversity, validating Hummingbird's potential as a robust multimodal context-aligned image generator in complex visual tasks.
MMLongCite: A Benchmark for Evaluating Fidelity of Long-Context Vision-Language Models
The rapid advancement of large vision language models (LVLMs) has led to a significant expansion of their context windows. However, an extended context window does not guarantee the effective utilization of the context, posing a critical challenge for real-world applications. Current evaluations of such long-context faithfulness are predominantly focused on the text-only domain, while multimodal assessments remain limited to short contexts. To bridge this gap, we introduce MMLongCite, a comprehensive benchmark designed to evaluate the fidelity of LVLMs in long-context scenarios. MMLongCite comprises 8 distinct tasks spanning 6 context length intervals and incorporates diverse modalities, including text, images, and videos. Our evaluation of state-of-the-art LVLMs reveals their limited faithfulness in handling long multimodal contexts. Furthermore, we provide an in-depth analysis of how context length and the position of crucial content affect the faithfulness of these models.
LumiTex: Towards High-Fidelity PBR Texture Generation with Illumination Context
Physically-based rendering (PBR) provides a principled standard for realistic material-lighting interactions in computer graphics. Despite recent advances in generating PBR textures, existing methods fail to address two fundamental challenges: 1) materials decomposition from image prompts under limited illumination cues, and 2) seamless and view-consistent texture completion. To this end, we propose LumiTex, an end-to-end framework that comprises three key components: (1) a multi-branch generation scheme that disentangles albedo and metallic-roughness under shared illumination priors for robust material understanding, (2) a lighting-aware material attention mechanism that injects illumination context into the decoding process for physically grounded generation of albedo, metallic, and roughness maps, and (3) a geometry-guided inpainting module based on a large view synthesis model that enriches texture coverage and ensures seamless, view-consistent UV completion. Extensive experiments demonstrate that LumiTex achieves state-of-the-art performance in texture quality, surpassing both existing open-source and commercial methods.
In-Context Sync-LoRA for Portrait Video Editing
Editing portrait videos is a challenging task that requires flexible yet precise control over a wide range of modifications, such as appearance changes, expression edits, or the addition of objects. The key difficulty lies in preserving the subject's original temporal behavior, demanding that every edited frame remains precisely synchronized with the corresponding source frame. We present Sync-LoRA, a method for editing portrait videos that achieves high-quality visual modifications while maintaining frame-accurate synchronization and identity consistency. Our approach uses an image-to-video diffusion model, where the edit is defined by modifying the first frame and then propagated to the entire sequence. To enable accurate synchronization, we train an in-context LoRA using paired videos that depict identical motion trajectories but differ in appearance. These pairs are automatically generated and curated through a synchronization-based filtering process that selects only the most temporally aligned examples for training. This training setup teaches the model to combine motion cues from the source video with the visual changes introduced in the edited first frame. Trained on a compact, highly curated set of synchronized human portraits, Sync-LoRA generalizes to unseen identities and diverse edits (e.g., modifying appearance, adding objects, or changing backgrounds), robustly handling variations in pose and expression. Our results demonstrate high visual fidelity and strong temporal coherence, achieving a robust balance between edit fidelity and precise motion preservation.
Context Diffusion: In-Context Aware Image Generation
We propose Context Diffusion, a diffusion-based framework that enables image generation models to learn from visual examples presented in context. Recent work tackles such in-context learning for image generation, where a query image is provided alongside context examples and text prompts. However, the quality and fidelity of the generated images deteriorate when the prompt is not present, demonstrating that these models are unable to truly learn from the visual context. To address this, we propose a novel framework that separates the encoding of the visual context and preserving the structure of the query images. This results in the ability to learn from the visual context and text prompts, but also from either one of them. Furthermore, we enable our model to handle few-shot settings, to effectively address diverse in-context learning scenarios. Our experiments and user study demonstrate that Context Diffusion excels in both in-domain and out-of-domain tasks, resulting in an overall enhancement in image quality and fidelity compared to counterpart models.
In-Context LoRA for Diffusion Transformers
Recent research arXiv:2410.15027 has explored the use of diffusion transformers (DiTs) for task-agnostic image generation by simply concatenating attention tokens across images. However, despite substantial computational resources, the fidelity of the generated images remains suboptimal. In this study, we reevaluate and streamline this framework by hypothesizing that text-to-image DiTs inherently possess in-context generation capabilities, requiring only minimal tuning to activate them. Through diverse task experiments, we qualitatively demonstrate that existing text-to-image DiTs can effectively perform in-context generation without any tuning. Building on this insight, we propose a remarkably simple pipeline to leverage the in-context abilities of DiTs: (1) concatenate images instead of tokens, (2) perform joint captioning of multiple images, and (3) apply task-specific LoRA tuning using small datasets (e.g., 20sim 100 samples) instead of full-parameter tuning with large datasets. We name our models In-Context LoRA (IC-LoRA). This approach requires no modifications to the original DiT models, only changes to the training data. Remarkably, our pipeline generates high-fidelity image sets that better adhere to prompts. While task-specific in terms of tuning data, our framework remains task-agnostic in architecture and pipeline, offering a powerful tool for the community and providing valuable insights for further research on product-level task-agnostic generation systems. We release our code, data, and models at https://github.com/ali-vilab/In-Context-LoRA
Stencil: Subject-Driven Generation with Context Guidance
Recent text-to-image diffusion models can generate striking visuals from text prompts, but they often fail to maintain subject consistency across generations and contexts. One major limitation of current fine-tuning approaches is the inherent trade-off between quality and efficiency. Fine-tuning large models improves fidelity but is computationally expensive, while fine-tuning lightweight models improves efficiency but compromises image fidelity. Moreover, fine-tuning pre-trained models on a small set of images of the subject can damage the existing priors, resulting in suboptimal results. To this end, we present Stencil, a novel framework that jointly employs two diffusion models during inference. Stencil efficiently fine-tunes a lightweight model on images of the subject, while a large frozen pre-trained model provides contextual guidance during inference, injecting rich priors to enhance generation with minimal overhead. Stencil excels at generating high-fidelity, novel renditions of the subject in less than a minute, delivering state-of-the-art performance and setting a new benchmark in subject-driven generation.
Optical Context Compression Is Just (Bad) Autoencoding
DeepSeek-OCR demonstrates that rendered text can be reconstructed with high fidelity from a small number of vision tokens. This finding has sparked excitement about vision-based context compression for language models. But the evaluation stops at reconstruction; whether these representations help language modeling remains untested. We test two assumptions implicit in the optical-compression narrative: that vision-based compression provides unique advantages for text reconstruction from compressed representations, and that DeepSeek-OCR's reconstruction results are evidence that vision-based compression will be useful for language modeling. Comparing their vision encoder against simple alternatives--parameter-free mean pooling and a learned hierarchical encoder--we find that these simple approaches match or surpass vision for reconstruction at matched compression ratios, and outperform it for language modeling--where vision-based compression fails to beat truncation. The excitement around optical context compression outpaces the evidence. Code and checkpoints are available at https://github.com/ivnle/bad-autoencoding
In-Context Brush: Zero-shot Customized Subject Insertion with Context-Aware Latent Space Manipulation
Recent advances in diffusion models have enhanced multimodal-guided visual generation, enabling customized subject insertion that seamlessly "brushes" user-specified objects into a given image guided by textual prompts. However, existing methods often struggle to insert customized subjects with high fidelity and align results with the user's intent through textual prompts. In this work, we propose "In-Context Brush", a zero-shot framework for customized subject insertion by reformulating the task within the paradigm of in-context learning. Without loss of generality, we formulate the object image and the textual prompts as cross-modal demonstrations, and the target image with the masked region as the query. The goal is to inpaint the target image with the subject aligning textual prompts without model tuning. Building upon a pretrained MMDiT-based inpainting network, we perform test-time enhancement via dual-level latent space manipulation: intra-head "latent feature shifting" within each attention head that dynamically shifts attention outputs to reflect the desired subject semantics and inter-head "attention reweighting" across different heads that amplifies prompt controllability through differential attention prioritization. Extensive experiments and applications demonstrate that our approach achieves superior identity preservation, text alignment, and image quality compared to existing state-of-the-art methods, without requiring dedicated training or additional data collection.
Temporal In-Context Fine-Tuning for Versatile Control of Video Diffusion Models
Recent advances in text-to-video diffusion models have enabled high-quality video synthesis, but controllable generation remains challenging, particularly under limited data and compute. Existing fine-tuning methods for conditional generation often rely on external encoders or architectural modifications, which demand large datasets and are typically restricted to spatially aligned conditioning, limiting flexibility and scalability. In this work, we introduce Temporal In-Context Fine-Tuning (TIC-FT), an efficient and versatile approach for adapting pretrained video diffusion models to diverse conditional generation tasks. Our key idea is to concatenate condition and target frames along the temporal axis and insert intermediate buffer frames with progressively increasing noise levels. These buffer frames enable smooth transitions, aligning the fine-tuning process with the pretrained model's temporal dynamics. TIC-FT requires no architectural changes and achieves strong performance with as few as 10-30 training samples. We validate our method across a range of tasks, including image-to-video and video-to-video generation, using large-scale base models such as CogVideoX-5B and Wan-14B. Extensive experiments show that TIC-FT outperforms existing baselines in both condition fidelity and visual quality, while remaining highly efficient in both training and inference. For additional results, visit https://kinam0252.github.io/TIC-FT/
Visual-Aware CoT: Achieving High-Fidelity Visual Consistency in Unified Models
Recently, the introduction of Chain-of-Thought (CoT) has largely improved the generation ability of unified models. However, it is observed that the current thinking process during generation mainly focuses on the text consistency with the text prompt, ignoring the visual context consistency with the visual reference images during the multi-modal generation, e.g., multi-reference generation. The lack of such consistency results in the failure in maintaining key visual features (like human ID, object attribute, style). To this end, we integrate the visual context consistency into the reasoning of unified models, explicitly motivating the model to sustain such consistency by 1) Adaptive Visual Planning: generating structured visual check list to figure out the visual element of needed consistency keeping, and 2) Iterative Visual Correction: performing self-reflection with the guidance of check lists and refining the generated result in an iterative manner. To achieve this, we use supervised finetuning to teach the model how to plan the visual checking, conduct self-reflection and self-refinement, and use flow-GRPO to further enhance the visual consistency through a customized visual checking reward. The experiments show that our method outperforms both zero-shot unified models and those with text CoTs in multi-modal generation, demonstrating higher visual context consistency.
ContextAnyone: Context-Aware Diffusion for Character-Consistent Text-to-Video Generation
Text-to-video (T2V) generation has advanced rapidly, yet maintaining consistent character identities across scenes remains a major challenge. Existing personalization methods often focus on facial identity but fail to preserve broader contextual cues such as hairstyle, outfit, and body shape, which are critical for visual coherence. We propose ContextAnyone, a context-aware diffusion framework that achieves character-consistent video generation from text and a single reference image. Our method jointly reconstructs the reference image and generates new video frames, enabling the model to fully perceive and utilize reference information. Reference information is effectively integrated into a DiT-based diffusion backbone through a novel Emphasize-Attention module that selectively reinforces reference-aware features and prevents identity drift across frames. A dual-guidance loss combines diffusion and reference reconstruction objectives to enhance appearance fidelity, while the proposed Gap-RoPE positional embedding separates reference and video tokens to stabilize temporal modeling. Experiments demonstrate that ContextAnyone outperforms existing reference-to-video methods in identity consistency and visual quality, generating coherent and context-preserving character videos across diverse motions and scenes. Project page: https://github.com/ziyang1106/ContextAnyone{https://github.com/ziyang1106/ContextAnyone}.
INRetouch: Context Aware Implicit Neural Representation for Photography Retouching
Professional photo editing remains challenging, requiring extensive knowledge of imaging pipelines and significant expertise. With the ubiquity of smartphone photography, there is an increasing demand for accessible yet sophisticated image editing solutions. While recent deep learning approaches, particularly style transfer methods, have attempted to automate this process, they often struggle with output fidelity, editing control, and complex retouching capabilities. We propose a novel retouch transfer approach that learns from professional edits through before-after image pairs, enabling precise replication of complex editing operations. To facilitate this research direction, we introduce a comprehensive Photo Retouching Dataset comprising 100,000 high-quality images edited using over 170 professional Adobe Lightroom presets. We develop a context-aware Implicit Neural Representation that learns to apply edits adaptively based on image content and context, requiring no pretraining and capable of learning from a single example. Our method extracts implicit transformations from reference edits and adaptively applies them to new images. Through extensive evaluation, we demonstrate that our approach not only surpasses existing methods in photo retouching but also enhances performance in related image reconstruction tasks like Gamut Mapping and Raw Reconstruction. By bridging the gap between professional editing capabilities and automated solutions, our work presents a significant step toward making sophisticated photo editing more accessible while maintaining high-fidelity results. Check the Project Page at https://omaralezaby.github.io/inretouch for more Results and information about Code and Dataset availability.
Golden-Retriever: High-Fidelity Agentic Retrieval Augmented Generation for Industrial Knowledge Base
This paper introduces Golden-Retriever, designed to efficiently navigate vast industrial knowledge bases, overcoming challenges in traditional LLM fine-tuning and RAG frameworks with domain-specific jargon and context interpretation. Golden-Retriever incorporates a reflection-based question augmentation step before document retrieval, which involves identifying jargon, clarifying its meaning based on context, and augmenting the question accordingly. Specifically, our method extracts and lists all jargon and abbreviations in the input question, determines the context against a pre-defined list, and queries a jargon dictionary for extended definitions and descriptions. This comprehensive augmentation ensures the RAG framework retrieves the most relevant documents by providing clear context and resolving ambiguities, significantly improving retrieval accuracy. Evaluations using three open-source LLMs on a domain-specific question-answer dataset demonstrate Golden-Retriever's superior performance, providing a robust solution for efficiently integrating and querying industrial knowledge bases.
Unsupervised Deep Learning-based Pansharpening with Jointly-Enhanced Spectral and Spatial Fidelity
In latest years, deep learning has gained a leading role in the pansharpening of multiresolution images. Given the lack of ground truth data, most deep learning-based methods carry out supervised training in a reduced-resolution domain. However, models trained on downsized images tend to perform poorly on high-resolution target images. For this reason, several research groups are now turning to unsupervised training in the full-resolution domain, through the definition of appropriate loss functions and training paradigms. In this context, we have recently proposed a full-resolution training framework which can be applied to many existing architectures. Here, we propose a new deep learning-based pansharpening model that fully exploits the potential of this approach and provides cutting-edge performance. Besides architectural improvements with respect to previous work, such as the use of residual attention modules, the proposed model features a novel loss function that jointly promotes the spectral and spatial quality of the pansharpened data. In addition, thanks to a new fine-tuning strategy, it improves inference-time adaptation to target images. Experiments on a large variety of test images, performed in challenging scenarios, demonstrate that the proposed method compares favorably with the state of the art both in terms of numerical results and visual output. Code is available online at https://github.com/matciotola/Lambda-PNN.
LongWriter-V: Enabling Ultra-Long and High-Fidelity Generation in Vision-Language Models
Existing Large Vision-Language Models (LVLMs) can process inputs with context lengths up to 128k visual and text tokens, yet they struggle to generate coherent outputs beyond 1,000 words. We find that the primary limitation is the absence of long output examples during supervised fine-tuning (SFT). To tackle this issue, we introduce LongWriter-V-22k, a SFT dataset comprising 22,158 examples, each with multiple input images, an instruction, and corresponding outputs ranging from 0 to 10,000 words. Moreover, to achieve long outputs that maintain high-fidelity to the input images, we employ Direct Preference Optimization (DPO) to the SFT model. Given the high cost of collecting human feedback for lengthy outputs (e.g., 3,000 words), we propose IterDPO, which breaks long outputs into segments and uses iterative corrections to form preference pairs with the original outputs. Additionally, we develop MMLongBench-Write, a benchmark featuring six tasks to evaluate the long-generation capabilities of VLMs. Our 7B parameter model, trained with LongWriter-V-22k and IterDPO, achieves impressive performance on this benchmark, outperforming larger proprietary models like GPT-4o. Code and data: https://github.com/THU-KEG/LongWriter-V
Animate Anyone 2: High-Fidelity Character Image Animation with Environment Affordance
Recent character image animation methods based on diffusion models, such as Animate Anyone, have made significant progress in generating consistent and generalizable character animations. However, these approaches fail to produce reasonable associations between characters and their environments. To address this limitation, we introduce Animate Anyone 2, aiming to animate characters with environment affordance. Beyond extracting motion signals from source video, we additionally capture environmental representations as conditional inputs. The environment is formulated as the region with the exclusion of characters and our model generates characters to populate these regions while maintaining coherence with the environmental context. We propose a shape-agnostic mask strategy that more effectively characterizes the relationship between character and environment. Furthermore, to enhance the fidelity of object interactions, we leverage an object guider to extract features of interacting objects and employ spatial blending for feature injection. We also introduce a pose modulation strategy that enables the model to handle more diverse motion patterns. Experimental results demonstrate the superior performance of the proposed method.
Natural language guidance of high-fidelity text-to-speech with synthetic annotations
Text-to-speech models trained on large-scale datasets have demonstrated impressive in-context learning capabilities and naturalness. However, control of speaker identity and style in these models typically requires conditioning on reference speech recordings, limiting creative applications. Alternatively, natural language prompting of speaker identity and style has demonstrated promising results and provides an intuitive method of control. However, reliance on human-labeled descriptions prevents scaling to large datasets. Our work bridges the gap between these two approaches. We propose a scalable method for labeling various aspects of speaker identity, style, and recording conditions. We then apply this method to a 45k hour dataset, which we use to train a speech language model. Furthermore, we propose simple methods for increasing audio fidelity, significantly outperforming recent work despite relying entirely on found data. Our results demonstrate high-fidelity speech generation in a diverse range of accents, prosodic styles, channel conditions, and acoustic conditions, all accomplished with a single model and intuitive natural language conditioning. Audio samples can be heard at https://text-description-to-speech.com/.
High-Fidelity Simultaneous Speech-To-Speech Translation
We introduce Hibiki, a decoder-only model for simultaneous speech translation. Hibiki leverages a multistream language model to synchronously process source and target speech, and jointly produces text and audio tokens to perform speech-to-text and speech-to-speech translation. We furthermore address the fundamental challenge of simultaneous interpretation, which unlike its consecutive counterpart, where one waits for the end of the source utterance to start translating, adapts its flow to accumulate just enough context to produce a correct translation in real-time, chunk by chunk. To do so, we introduce a weakly-supervised method that leverages the perplexity of an off-the-shelf text translation system to identify optimal delays on a per-word basis and create aligned synthetic data. After supervised training, Hibiki performs adaptive, simultaneous speech translation with vanilla temperature sampling. On a French-English simultaneous speech translation task, Hibiki demonstrates state-of-the-art performance in translation quality, speaker fidelity and naturalness. Moreover, the simplicity of its inference process makes it compatible with batched translation and even real-time on-device deployment. We provide examples as well as models and inference code.
MultiCrafter: High-Fidelity Multi-Subject Generation via Spatially Disentangled Attention and Identity-Aware Reinforcement Learning
Multi-subject image generation aims to synthesize user-provided subjects in a single image while preserving subject fidelity, ensuring prompt consistency, and aligning with human aesthetic preferences. However, existing methods, particularly those built on the In-Context-Learning paradigm, are limited by their reliance on simple reconstruction-based objectives, leading to both severe attribute leakage that compromises subject fidelity and failing to align with nuanced human preferences. To address this, we propose MultiCrafter, a framework that ensures high-fidelity, preference-aligned generation. First, we find that the root cause of attribute leakage is a significant entanglement of attention between different subjects during the generation process. Therefore, we introduce explicit positional supervision to explicitly separate attention regions for each subject, effectively mitigating attribute leakage. To enable the model to accurately plan the attention region of different subjects in diverse scenarios, we employ a Mixture-of-Experts architecture to enhance the model's capacity, allowing different experts to focus on different scenarios. Finally, we design a novel online reinforcement learning framework to align the model with human preferences, featuring a scoring mechanism to accurately assess multi-subject fidelity and a more stable training strategy tailored for the MoE architecture. Experiments validate that our framework significantly improves subject fidelity while aligning with human preferences better.
Model Context Protocol for Vision Systems: Audit, Security, and Protocol Extensions
The Model Context Protocol (MCP) defines a schema bound execution model for agent-tool interaction, enabling modular computer vision workflows without retraining. To our knowledge, this is the first protocol level, deployment scale audit of MCP in vision systems, identifying systemic weaknesses in schema semantics, interoperability, and runtime coordination. We analyze 91 publicly registered vision centric MCP servers, annotated along nine dimensions of compositional fidelity, and develop an executable benchmark with validators to detect and categorize protocol violations. The audit reveals high prevalence of schema format divergence, missing runtime schema validation, undeclared coordinate conventions, and reliance on untracked bridging scripts. Validator based testing quantifies these failures, with schema format checks flagging misalignments in 78.0 percent of systems, coordinate convention checks detecting spatial reference errors in 24.6 percent, and memory scope checks issuing an average of 33.8 warnings per 100 executions. Security probes show that dynamic and multi agent workflows exhibit elevated risks of privilege escalation and untyped tool connections. The proposed benchmark and validator suite, implemented in a controlled testbed and to be released on GitHub, establishes a reproducible framework for measuring and improving the reliability and security of compositional vision workflows.
HumanRF: High-Fidelity Neural Radiance Fields for Humans in Motion
Representing human performance at high-fidelity is an essential building block in diverse applications, such as film production, computer games or videoconferencing. To close the gap to production-level quality, we introduce HumanRF, a 4D dynamic neural scene representation that captures full-body appearance in motion from multi-view video input, and enables playback from novel, unseen viewpoints. Our novel representation acts as a dynamic video encoding that captures fine details at high compression rates by factorizing space-time into a temporal matrix-vector decomposition. This allows us to obtain temporally coherent reconstructions of human actors for long sequences, while representing high-resolution details even in the context of challenging motion. While most research focuses on synthesizing at resolutions of 4MP or lower, we address the challenge of operating at 12MP. To this end, we introduce ActorsHQ, a novel multi-view dataset that provides 12MP footage from 160 cameras for 16 sequences with high-fidelity, per-frame mesh reconstructions. We demonstrate challenges that emerge from using such high-resolution data and show that our newly introduced HumanRF effectively leverages this data, making a significant step towards production-level quality novel view synthesis.
Context as a Tool: Context Management for Long-Horizon SWE-Agents
Agents based on large language models have recently shown strong potential on real-world software engineering (SWE) tasks that require long-horizon interaction with repository-scale codebases. However, most existing agents rely on append-only context maintenance or passively triggered compression heuristics, which often lead to context explosion, semantic drift, and degraded reasoning in long-running interactions. We propose CAT, a new context management paradigm that elevates context maintenance to a callable tool integrated into the decision-making process of agents. CAT formalizes a structured context workspace consisting of stable task semantics, condensed long-term memory, and high-fidelity short-term interactions, and enables agents to proactively compress historical trajectories into actionable summaries at appropriate milestones. To support context management for SWE-agents, we propose a trajectory-level supervision framework, CAT-GENERATOR, based on an offline data construction pipeline that injects context-management actions into complete interaction trajectories. Using this framework, we train a context-aware model, SWE-Compressor. Experiments on SWE-Bench-Verified demonstrate that SWE-Compressor reaches a 57.6% solved rate and significantly outperforms ReAct-based agents and static compression baselines, while maintaining stable and scalable long-horizon reasoning under a bounded context budget.
In-Context Learning with Unpaired Clips for Instruction-based Video Editing
Despite the rapid progress of instruction-based image editing, its extension to video remains underexplored, primarily due to the prohibitive cost and complexity of constructing large-scale paired video editing datasets. To address this challenge, we introduce a low-cost pretraining strategy for instruction-based video editing that leverages in-context learning from unpaired video clips. We show that pretraining a foundation video generation model with this strategy endows it with general editing capabilities, such as adding, replacing, or deleting operations, according to input editing instructions. The pretrained model can then be efficiently refined with a small amount of high-quality paired editing data. Built upon HunyuanVideoT2V, our framework first pretrains on approximately 1M real video clips to learn basic editing concepts, and subsequently fine-tunes on fewer than 150k curated editing pairs to extend more editing tasks and improve the editing quality. Comparative experiments show that our method surpasses existing instruction-based video editing approaches in both instruction alignment and visual fidelity, achieving a 12\% improvement in editing instruction following and a 15\% improvement in editing quality.
HunyuanVideo-Foley: Multimodal Diffusion with Representation Alignment for High-Fidelity Foley Audio Generation
Recent advances in video generation produce visually realistic content, yet the absence of synchronized audio severely compromises immersion. To address key challenges in video-to-audio generation, including multimodal data scarcity, modality imbalance and limited audio quality in existing methods, we propose HunyuanVideo-Foley, an end-to-end text-video-to-audio framework that synthesizes high-fidelity audio precisely aligned with visual dynamics and semantic context. Our approach incorporates three core innovations: (1) a scalable data pipeline curating 100k-hour multimodal datasets through automated annotation; (2) a representation alignment strategy using self-supervised audio features to guide latent diffusion training, efficiently improving audio quality and generation stability; (3) a novel multimodal diffusion transformer resolving modal competition, containing dual-stream audio-video fusion through joint attention, and textual semantic injection via cross-attention. Comprehensive evaluations demonstrate that HunyuanVideo-Foley achieves new state-of-the-art performance across audio fidelity, visual-semantic alignment, temporal alignment and distribution matching. The demo page is available at: https://szczesnys.github.io/hunyuanvideo-foley/.
Robust Pronoun Fidelity with English LLMs: Are they Reasoning, Repeating, or Just Biased?
Robust, faithful and harm-free pronoun use for individuals is an important goal for language models as their use increases, but prior work tends to study only one or two of these characteristics at a time. To measure progress towards the combined goal, we introduce the task of pronoun fidelity: given a context introducing a co-referring entity and pronoun, the task is to reuse the correct pronoun later. We present RUFF, a carefully-designed dataset of over 5 million instances to measure robust pronoun fidelity in English, and we evaluate 37 popular large language models across architectures (encoder-only, decoder-only and encoder-decoder) and scales (11M-70B parameters). When an individual is introduced with a pronoun, models can mostly faithfully reuse this pronoun in the next sentence, but they are significantly worse with she/her/her, singular they and neopronouns. Moreover, models are easily distracted by non-adversarial sentences discussing other people; even one additional sentence with a distractor pronoun causes accuracy to drop on average by 34%. Our results show that pronoun fidelity is neither robust, nor due to reasoning, in a simple, naturalistic setting where humans achieve nearly 100% accuracy. We encourage researchers to bridge the gaps we find and to carefully evaluate reasoning in settings where superficial repetition might inflate perceptions of model performance.
Context-aware Talking Face Video Generation
In this paper, we consider a novel and practical case for talking face video generation. Specifically, we focus on the scenarios involving multi-people interactions, where the talking context, such as audience or surroundings, is present. In these situations, the video generation should take the context into consideration in order to generate video content naturally aligned with driving audios and spatially coherent to the context. To achieve this, we provide a two-stage and cross-modal controllable video generation pipeline, taking facial landmarks as an explicit and compact control signal to bridge the driving audio, talking context and generated videos. Inside this pipeline, we devise a 3D video diffusion model, allowing for efficient contort of both spatial conditions (landmarks and context video), as well as audio condition for temporally coherent generation. The experimental results verify the advantage of the proposed method over other baselines in terms of audio-video synchronization, video fidelity and frame consistency.
NeuDA: Neural Deformable Anchor for High-Fidelity Implicit Surface Reconstruction
This paper studies implicit surface reconstruction leveraging differentiable ray casting. Previous works such as IDR and NeuS overlook the spatial context in 3D space when predicting and rendering the surface, thereby may fail to capture sharp local topologies such as small holes and structures. To mitigate the limitation, we propose a flexible neural implicit representation leveraging hierarchical voxel grids, namely Neural Deformable Anchor (NeuDA), for high-fidelity surface reconstruction. NeuDA maintains the hierarchical anchor grids where each vertex stores a 3D position (or anchor) instead of the direct embedding (or feature). We optimize the anchor grids such that different local geometry structures can be adaptively encoded. Besides, we dig into the frequency encoding strategies and introduce a simple hierarchical positional encoding method for the hierarchical anchor structure to flexibly exploit the properties of high-frequency and low-frequency geometry and appearance. Experiments on both the DTU and BlendedMVS datasets demonstrate that NeuDA can produce promising mesh surfaces.
Global Context with Discrete Diffusion in Vector Quantised Modelling for Image Generation
The integration of Vector Quantised Variational AutoEncoder (VQ-VAE) with autoregressive models as generation part has yielded high-quality results on image generation. However, the autoregressive models will strictly follow the progressive scanning order during the sampling phase. This leads the existing VQ series models to hardly escape the trap of lacking global information. Denoising Diffusion Probabilistic Models (DDPM) in the continuous domain have shown a capability to capture the global context, while generating high-quality images. In the discrete state space, some works have demonstrated the potential to perform text generation and low resolution image generation. We show that with the help of a content-rich discrete visual codebook from VQ-VAE, the discrete diffusion model can also generate high fidelity images with global context, which compensates for the deficiency of the classical autoregressive model along pixel space. Meanwhile, the integration of the discrete VAE with the diffusion model resolves the drawback of conventional autoregressive models being oversized, and the diffusion model which demands excessive time in the sampling process when generating images. It is found that the quality of the generated images is heavily dependent on the discrete visual codebook. Extensive experiments demonstrate that the proposed Vector Quantised Discrete Diffusion Model (VQ-DDM) is able to achieve comparable performance to top-tier methods with low complexity. It also demonstrates outstanding advantages over other vectors quantised with autoregressive models in terms of image inpainting tasks without additional training.
Cut2Next: Generating Next Shot via In-Context Tuning
Effective multi-shot generation demands purposeful, film-like transitions and strict cinematic continuity. Current methods, however, often prioritize basic visual consistency, neglecting crucial editing patterns (e.g., shot/reverse shot, cutaways) that drive narrative flow for compelling storytelling. This yields outputs that may be visually coherent but lack narrative sophistication and true cinematic integrity. To bridge this, we introduce Next Shot Generation (NSG): synthesizing a subsequent, high-quality shot that critically conforms to professional editing patterns while upholding rigorous cinematic continuity. Our framework, Cut2Next, leverages a Diffusion Transformer (DiT). It employs in-context tuning guided by a novel Hierarchical Multi-Prompting strategy. This strategy uses Relational Prompts to define overall context and inter-shot editing styles. Individual Prompts then specify per-shot content and cinematographic attributes. Together, these guide Cut2Next to generate cinematically appropriate next shots. Architectural innovations, Context-Aware Condition Injection (CACI) and Hierarchical Attention Mask (HAM), further integrate these diverse signals without introducing new parameters. We construct RawCuts (large-scale) and CuratedCuts (refined) datasets, both with hierarchical prompts, and introduce CutBench for evaluation. Experiments show Cut2Next excels in visual consistency and text fidelity. Crucially, user studies reveal a strong preference for Cut2Next, particularly for its adherence to intended editing patterns and overall cinematic continuity, validating its ability to generate high-quality, narratively expressive, and cinematically coherent subsequent shots.
VideoChat-Flash: Hierarchical Compression for Long-Context Video Modeling
Long-context modeling is a critical capability for multimodal large language models (MLLMs), enabling them to process long-form contents with implicit memorization. Despite its advances, handling extremely long videos remains challenging due to the difficulty in maintaining crucial features over extended sequences. This paper introduces a Hierarchical visual token Compression (HiCo) method designed for high-fidelity representation and a practical context modeling system VideoChat-Flash tailored for multimodal long-sequence processing. HiCo capitalizes on the redundancy of visual information in long videos to compress long video context from the clip-level to the video-level, reducing the compute significantly while preserving essential details. VideoChat-Flash features a multi-stage short-to-long learning scheme, a rich dataset of real-world long videos named LongVid, and an upgraded "Needle-In-A-video-Haystack" (NIAH) for evaluating context capacities. In extensive experiments, VideoChat-Flash shows the leading performance on both mainstream long and short video benchmarks at the 7B model scale. It firstly gets 99.1% accuracy over 10,000 frames in NIAH among open-source models.
Customized Generation Reimagined: Fidelity and Editability Harmonized
Customized generation aims to incorporate a novel concept into a pre-trained text-to-image model, enabling new generations of the concept in novel contexts guided by textual prompts. However, customized generation suffers from an inherent trade-off between concept fidelity and editability, i.e., between precisely modeling the concept and faithfully adhering to the prompts. Previous methods reluctantly seek a compromise and struggle to achieve both high concept fidelity and ideal prompt alignment simultaneously. In this paper, we propose a Divide, Conquer, then Integrate (DCI) framework, which performs a surgical adjustment in the early stage of denoising to liberate the fine-tuned model from the fidelity-editability trade-off at inference. The two conflicting components in the trade-off are decoupled and individually conquered by two collaborative branches, which are then selectively integrated to preserve high concept fidelity while achieving faithful prompt adherence. To obtain a better fine-tuned model, we introduce an Image-specific Context Optimization} (ICO) strategy for model customization. ICO replaces manual prompt templates with learnable image-specific contexts, providing an adaptive and precise fine-tuning direction to promote the overall performance. Extensive experiments demonstrate the effectiveness of our method in reconciling the fidelity-editability trade-off.
VoxCPM: Tokenizer-Free TTS for Context-Aware Speech Generation and True-to-Life Voice Cloning
Generative models for speech synthesis face a fundamental trade-off: discrete tokens ensure stability but sacrifice expressivity, while continuous signals retain acoustic richness but suffer from error accumulation due to task entanglement. This challenge has driven the field towards multi-stage pipelines that rely on pre-trained speech tokenizers, but these create a semantic-acoustic divide, limiting holistic and expressive speech generation. We resolve these dilemma through hierarchical semantic-acoustic modeling with semi-discrete residual representations and present a novel tokenizer-free TTS model VoxCPM. Our framework introduces a differentiable quantization bottleneck that induces natural specialization: a Text-Semantic Language Model (TSLM) generates semantic-prosodic plans, while a Residual Acoustic Model (RALM) recovers fine-grained acoustic details. This hierarchical semantic-acoustic representation guides a local diffusion-based decoder to generate high-fidelity speech latents. Critically, the entire architecture is trained end-to-end under a simple diffusion objective, eliminating dependency on external speech tokenizers. Trained on a massive 1.8 million hours of bilingual corpus, our VoxCPM-0.5B model achieves state-of-the-art zero-shot TTS performance among open-source systems, demonstrating that our approach delivers expressive and stable synthesis. Besides, VoxCPM shows the capability to comprehend text to infer and generate appropriate prosody and style, delivering speech with context-aware expressiveness and natural flow. To facilitate community-driven research and development, VoxCPM is publicly accessible under Apache 2.0.
Hi-Reco: High-Fidelity Real-Time Conversational Digital Humans
High-fidelity digital humans are increasingly used in interactive applications, yet achieving both visual realism and real-time responsiveness remains a major challenge. We present a high-fidelity, real-time conversational digital human system that seamlessly combines a visually realistic 3D avatar, persona-driven expressive speech synthesis, and knowledge-grounded dialogue generation. To support natural and timely interaction, we introduce an asynchronous execution pipeline that coordinates multi-modal components with minimal latency. The system supports advanced features such as wake word detection, emotionally expressive prosody, and highly accurate, context-aware response generation. It leverages novel retrieval-augmented methods, including history augmentation to maintain conversational flow and intent-based routing for efficient knowledge access. Together, these components form an integrated system that enables responsive and believable digital humans, suitable for immersive applications in communication, education, and entertainment.
Light4GS: Lightweight Compact 4D Gaussian Splatting Generation via Context Model
3D Gaussian Splatting (3DGS) has emerged as an efficient and high-fidelity paradigm for novel view synthesis. To adapt 3DGS for dynamic content, deformable 3DGS incorporates temporally deformable primitives with learnable latent embeddings to capture complex motions. Despite its impressive performance, the high-dimensional embeddings and vast number of primitives lead to substantial storage requirements. In this paper, we introduce a Lightweight 4DGS framework, called Light4GS, that employs significance pruning with a deep context model to provide a lightweight storage-efficient dynamic 3DGS representation. The proposed Light4GS is based on 4DGS that is a typical representation of deformable 3DGS. Specifically, our framework is built upon two core components: (1) a spatio-temporal significance pruning strategy that eliminates over 64\% of the deformable primitives, followed by an entropy-constrained spherical harmonics compression applied to the remainder; and (2) a deep context model that integrates intra- and inter-prediction with hyperprior into a coarse-to-fine context structure to enable efficient multiscale latent embedding compression. Our approach achieves over 120x compression and increases rendering FPS up to 20\% compared to the baseline 4DGS, and also superior to frame-wise state-of-the-art 3DGS compression methods, revealing the effectiveness of our Light4GS in terms of both intra- and inter-prediction methods without sacrificing rendering quality.
Learning to Customize Text-to-Image Diffusion In Diverse Context
Most text-to-image customization techniques fine-tune models on a small set of personal concept images captured in minimal contexts. This often results in the model becoming overfitted to these training images and unable to generalize to new contexts in future text prompts. Existing customization methods are built on the success of effectively representing personal concepts as textual embeddings. Thus, in this work, we resort to diversifying the context of these personal concepts solely within the textual space by simply creating a contextually rich set of text prompts, together with a widely used self-supervised learning objective. Surprisingly, this straightforward and cost-effective method significantly improves semantic alignment in the textual space, and this effect further extends to the image space, resulting in higher prompt fidelity for generated images. Additionally, our approach does not require any architectural modifications, making it highly compatible with existing text-to-image customization methods. We demonstrate the broad applicability of our approach by combining it with four different baseline methods, achieving notable CLIP score improvements.
LaMamba-Diff: Linear-Time High-Fidelity Diffusion Models Based on Local Attention and Mamba
Recent Transformer-based diffusion models have shown remarkable performance, largely attributed to the ability of the self-attention mechanism to accurately capture both global and local contexts by computing all-pair interactions among input tokens. However, their quadratic complexity poses significant computational challenges for long-sequence inputs. Conversely, a recent state space model called Mamba offers linear complexity by compressing a filtered global context into a hidden state. Despite its efficiency, compression inevitably leads to information loss of fine-grained local dependencies among tokens, which are crucial for effective visual generative modeling. Motivated by these observations, we introduce Local Attentional Mamba (LaMamba) blocks that combine the strengths of self-attention and Mamba, capturing both global contexts and local details with linear complexity. Leveraging the efficient U-Net architecture, our model exhibits exceptional scalability and surpasses the performance of DiT across various model scales on ImageNet at 256x256 resolution, all while utilizing substantially fewer GFLOPs and a comparable number of parameters. Compared to state-of-the-art diffusion models on ImageNet 256x256 and 512x512, our largest model presents notable advantages, such as a reduction of up to 62\% GFLOPs compared to DiT-XL/2, while achieving superior performance with comparable or fewer parameters.
ConsistDreamer: 3D-Consistent 2D Diffusion for High-Fidelity Scene Editing
This paper proposes ConsistDreamer - a novel framework that lifts 2D diffusion models with 3D awareness and 3D consistency, thus enabling high-fidelity instruction-guided scene editing. To overcome the fundamental limitation of missing 3D consistency in 2D diffusion models, our key insight is to introduce three synergetic strategies that augment the input of the 2D diffusion model to become 3D-aware and to explicitly enforce 3D consistency during the training process. Specifically, we design surrounding views as context-rich input for the 2D diffusion model, and generate 3D-consistent, structured noise instead of image-independent noise. Moreover, we introduce self-supervised consistency-enforcing training within the per-scene editing procedure. Extensive evaluation shows that our ConsistDreamer achieves state-of-the-art performance for instruction-guided scene editing across various scenes and editing instructions, particularly in complicated large-scale indoor scenes from ScanNet++, with significantly improved sharpness and fine-grained textures. Notably, ConsistDreamer stands as the first work capable of successfully editing complex (e.g., plaid/checkered) patterns. Our project page is at immortalco.github.io/ConsistDreamer.
Automatically Generating Numerous Context-Driven SFT Data for LLMs across Diverse Granularity
Constructing high-quality query-response pairs from custom corpus is crucial for supervised fine-tuning (SFT) large language models (LLMs) in many applications, like creating domain-specific AI assistants or roleplaying agents. However, sourcing this data through human annotation is costly, and existing automated methods often fail to capture the diverse range of contextual granularity and tend to produce homogeneous data. To tackle these issues, we introduce a novel method named AugCon, capable of automatically generating context-driven SFT data across multiple levels of granularity with high diversity, quality and fidelity. AugCon begins by generating queries using the Context-Split-Tree (CST), an innovative approach for recursively deriving queries and splitting context to cover full granularity. Then, we train a scorer through contrastive learning to collaborate with CST to rank and refine queries. Finally, a synergistic integration of self-alignment and self-improving is introduced to obtain high-fidelity responses. Extensive experiments are conducted incorporating both human and automatic evaluations, encompassing a test scenario and four widely-used benchmarks in English and Chinese. The results highlight the significant advantages of AugCon in producing high diversity, quality, and fidelity SFT data against several state-of-the-art methods. All of our code, dataset, and fine-tuned model will be available at: https://github.com/quanshr/AugCon.
Plug-and-Play Context Feature Reuse for Efficient Masked Generation
Masked generative models (MGMs) have emerged as a powerful framework for image synthesis, combining parallel decoding with strong bidirectional context modeling. However, generating high-quality samples typically requires many iterative decoding steps, resulting in high inference costs. A straightforward way to speed up generation is by decoding more tokens in each step, thereby reducing the total number of steps. However, when many tokens are decoded simultaneously, the model can only estimate the univariate marginal distributions independently, failing to capture the dependency among them. As a result, reducing the number of steps significantly compromises generation fidelity. In this work, we introduce ReCAP (Reused Context-Aware Prediction), a plug-and-play module that accelerates inference in MGMs by constructing low-cost steps via reusing feature embeddings from previously decoded context tokens. ReCAP interleaves standard full evaluations with lightweight steps that cache and reuse context features, substantially reducing computation while preserving the benefits of fine-grained, iterative generation. We demonstrate its effectiveness on top of three representative MGMs (MaskGIT, MAGE, and MAR), including both discrete and continuous token spaces and covering diverse architectural designs. In particular, on ImageNet256 class-conditional generation, ReCAP achieves up to 2.4x faster inference than the base model with minimal performance drop, and consistently delivers better efficiency-fidelity trade-offs under various generation settings.
Artificial Hippocampus Networks for Efficient Long-Context Modeling
Long-sequence modeling faces a fundamental trade-off between the efficiency of compressive fixed-size memory in RNN-like models and the fidelity of lossless growing memory in attention-based Transformers. Inspired by the Multi-Store Model in cognitive science, we introduce a memory framework of artificial neural networks. Our method maintains a sliding window of the Transformer's KV cache as lossless short-term memory, while a learnable module termed Artificial Hippocampus Network (AHN) recurrently compresses out-of-window information into a fixed-size compact long-term memory. To validate this framework, we instantiate AHNs using modern RNN-like architectures, including Mamba2, DeltaNet, and Gated DeltaNet. Extensive experiments on long-context benchmarks LV-Eval and InfiniteBench demonstrate that AHN-augmented models consistently outperform sliding window baselines and achieve performance comparable or even superior to full-attention models, while substantially reducing computational and memory requirements. For instance, augmenting the Qwen2.5-3B-Instruct with AHNs reduces inference FLOPs by 40.5% and memory cache by 74.0%, while improving its average score on LV-Eval (128k sequence length) from 4.41 to 5.88. Code is available at: https://github.com/ByteDance-Seed/AHN.
ContextFlow: Training-Free Video Object Editing via Adaptive Context Enrichment
Training-free video object editing aims to achieve precise object-level manipulation, including object insertion, swapping, and deletion. However, it faces significant challenges in maintaining fidelity and temporal consistency. Existing methods, often designed for U-Net architectures, suffer from two primary limitations: inaccurate inversion due to first-order solvers, and contextual conflicts caused by crude "hard" feature replacement. These issues are more challenging in Diffusion Transformers (DiTs), where the unsuitability of prior layer-selection heuristics makes effective guidance challenging. To address these limitations, we introduce ContextFlow, a novel training-free framework for DiT-based video object editing. In detail, we first employ a high-order Rectified Flow solver to establish a robust editing foundation. The core of our framework is Adaptive Context Enrichment (for specifying what to edit), a mechanism that addresses contextual conflicts. Instead of replacing features, it enriches the self-attention context by concatenating Key-Value pairs from parallel reconstruction and editing paths, empowering the model to dynamically fuse information. Additionally, to determine where to apply this enrichment (for specifying where to edit), we propose a systematic, data-driven analysis to identify task-specific vital layers. Based on a novel Guidance Responsiveness Metric, our method pinpoints the most influential DiT blocks for different tasks (e.g., insertion, swapping), enabling targeted and highly effective guidance. Extensive experiments show that ContextFlow significantly outperforms existing training-free methods and even surpasses several state-of-the-art training-based approaches, delivering temporally coherent, high-fidelity results.
Forge-and-Quench: Enhancing Image Generation for Higher Fidelity in Unified Multimodal Models
Integrating image generation and understanding into a single framework has become a pivotal goal in the multimodal domain. However, how understanding can effectively assist generation has not been fully explored. Unlike previous works that focus on leveraging reasoning abilities and world knowledge from understanding models, this paper introduces a novel perspective: leveraging understanding to enhance the fidelity and detail richness of generated images. To this end, we propose Forge-and-Quench, a new unified framework that puts this principle into practice. In the generation process of our framework, an MLLM first reasons over the entire conversational context, including text instructions, to produce an enhanced text instruction. This refined instruction is then mapped to a virtual visual representation, termed the Bridge Feature, via a novel Bridge Adapter. This feature acts as a crucial link, forging insights from the understanding model to quench and refine the generation process. It is subsequently injected into the T2I backbone as a visual guidance signal, alongside the enhanced text instruction that replaces the original input. To validate this paradigm, we conduct comprehensive studies on the design of the Bridge Feature and Bridge Adapter. Our framework demonstrates exceptional extensibility and flexibility, enabling efficient migration across different MLLM and T2I models with significant savings in training overhead, all without compromising the MLLM's inherent multimodal understanding capabilities. Experiments show that Forge-and-Quench significantly improves image fidelity and detail across multiple models, while also maintaining instruction-following accuracy and enhancing world knowledge application. Models and codes are available at https://github.com/YanbingZeng/Forge-and-Quench.
Medical Malice: A Dataset for Context-Aware Safety in Healthcare LLMs
The integration of Large Language Models (LLMs) into healthcare demands a safety paradigm rooted in primum non nocere. However, current alignment techniques rely on generic definitions of harm that fail to capture context-dependent violations, such as administrative fraud and clinical discrimination. To address this, we introduce Medical Malice: a dataset of 214,219 adversarial prompts calibrated to the regulatory and ethical complexities of the Brazilian Unified Health System (SUS). Crucially, the dataset includes the reasoning behind each violation, enabling models to internalize ethical boundaries rather than merely memorizing a fixed set of refusals. Using an unaligned agent (Grok-4) within a persona-driven pipeline, we synthesized high-fidelity threats across seven taxonomies, ranging from procurement manipulation and queue-jumping to obstetric violence. We discuss the ethical design of releasing these "vulnerability signatures" to correct the information asymmetry between malicious actors and AI developers. Ultimately, this work advocates for a shift from universal to context-aware safety, providing the necessary resources to immunize healthcare AI against the nuanced, systemic threats inherent to high-stakes medical environments -- vulnerabilities that represent the paramount risk to patient safety and the successful integration of AI in healthcare systems.
PoseGen: In-Context LoRA Finetuning for Pose-Controllable Long Human Video Generation
Generating long, temporally coherent videos with precise control over subject identity and motion is a formidable challenge for current diffusion models, which often suffer from identity drift and are limited to short clips. We introduce PoseGen, a novel framework that generates arbitrarily long videos of a specific subject from a single reference image and a driving pose sequence. Our core innovation is an in-context LoRA finetuning strategy that injects subject appearance at the token level for identity preservation, while simultaneously conditioning on pose information at the channel level for fine-grained motion control. To overcome duration limits, PoseGen pioneers an interleaved segment generation method that seamlessly stitches video clips together, using a shared KV cache mechanism and a specialized transition process to ensure background consistency and temporal smoothness. Trained on a remarkably small 33-hour video dataset, extensive experiments show that PoseGen significantly outperforms state-of-the-art methods in identity fidelity, pose accuracy, and its unique ability to produce coherent, artifact-free videos of unlimited duration.
Learning Task Representations from In-Context Learning
Large language models (LLMs) have demonstrated remarkable proficiency in in-context learning (ICL), where models adapt to new tasks through example-based prompts without requiring parameter updates. However, understanding how tasks are internally encoded and generalized remains a challenge. To address some of the empirical and technical gaps in the literature, we introduce an automated formulation for encoding task information in ICL prompts as a function of attention heads within the transformer architecture. This approach computes a single task vector as a weighted sum of attention heads, with the weights optimized causally via gradient descent. Our findings show that existing methods fail to generalize effectively to modalities beyond text. In response, we also design a benchmark to evaluate whether a task vector can preserve task fidelity in functional regression tasks. The proposed method successfully extracts task-specific information from in-context demonstrations and excels in both text and regression tasks, demonstrating its generalizability across modalities. Moreover, ablation studies show that our method's effectiveness stems from aligning the distribution of the last hidden state with that of an optimally performing in-context-learned model.
Grounding Language Model with Chunking-Free In-Context Retrieval
This paper presents a novel Chunking-Free In-Context (CFIC) retrieval approach, specifically tailored for Retrieval-Augmented Generation (RAG) systems. Traditional RAG systems often struggle with grounding responses using precise evidence text due to the challenges of processing lengthy documents and filtering out irrelevant content. Commonly employed solutions, such as document chunking and adapting language models to handle longer contexts, have their limitations. These methods either disrupt the semantic coherence of the text or fail to effectively address the issues of noise and inaccuracy in evidence retrieval. CFIC addresses these challenges by circumventing the conventional chunking process. It utilizes the encoded hidden states of documents for in-context retrieval, employing auto-aggressive decoding to accurately identify the specific evidence text required for user queries, eliminating the need for chunking. CFIC is further enhanced by incorporating two decoding strategies, namely Constrained Sentence Prefix Decoding and Skip Decoding. These strategies not only improve the efficiency of the retrieval process but also ensure that the fidelity of the generated grounding text evidence is maintained. Our evaluations of CFIC on a range of open QA datasets demonstrate its superiority in retrieving relevant and accurate evidence, offering a significant improvement over traditional methods. By doing away with the need for document chunking, CFIC presents a more streamlined, effective, and efficient retrieval solution, making it a valuable advancement in the field of RAG systems.
VERIFY: A Benchmark of Visual Explanation and Reasoning for Investigating Multimodal Reasoning Fidelity
Visual reasoning is central to human cognition, enabling individuals to interpret and abstractly understand their environment. Although recent Multimodal Large Language Models (MLLMs) have demonstrated impressive performance across language and vision-language tasks, existing benchmarks primarily measure recognition-based skills and inadequately assess true visual reasoning capabilities. To bridge this critical gap, we introduce VERIFY, a benchmark explicitly designed to isolate and rigorously evaluate the visual reasoning capabilities of state-of-the-art MLLMs. VERIFY compels models to reason primarily from visual information, providing minimal textual context to reduce reliance on domain-specific knowledge and linguistic biases. Each problem is accompanied by a human-annotated reasoning path, making it the first to provide in-depth evaluation of model decision-making processes. Additionally, we propose novel metrics that assess visual reasoning fidelity beyond mere accuracy, highlighting critical imbalances in current model reasoning patterns. Our comprehensive benchmarking of leading MLLMs uncovers significant limitations, underscoring the need for a balanced and holistic approach to both perception and reasoning. For more teaser and testing, visit our project page (https://verify-eqh.pages.dev/).
ContextDrag: Precise Drag-Based Image Editing via Context-Preserving Token Injection and Position-Consistent Attention
Drag-based image editing aims to modify visual content followed by user-specified drag operations. Despite existing methods having made notable progress, they still fail to fully exploit the contextual information in the reference image, including fine-grained texture details, leading to edits with limited coherence and fidelity. To address this challenge, we introduce ContextDrag, a new paradigm for drag-based editing that leverages the strong contextual modeling capability of editing models, such as FLUX-Kontext. By incorporating VAE-encoded features from the reference image, ContextDrag can leverage rich contextual cues and preserve fine-grained details, without the need for finetuning or inversion. Specifically, ContextDrag introduced a novel Context-preserving Token Injection (CTI) that injects noise-free reference features into their correct destination locations via a Latent-space Reverse Mapping (LRM) algorithm. This strategy enables precise drag control while preserving consistency in both semantics and texture details. Second, ContextDrag adopts a novel Position-Consistent Attention (PCA), which positional re-encodes the reference tokens and applies overlap-aware masking to eliminate interference from irrelevant reference features. Extensive experiments on DragBench-SR and DragBench-DR demonstrate that our approach surpasses all existing SOTA methods. Code will be publicly available.
Noise Map Guidance: Inversion with Spatial Context for Real Image Editing
Text-guided diffusion models have become a popular tool in image synthesis, known for producing high-quality and diverse images. However, their application to editing real images often encounters hurdles primarily due to the text condition deteriorating the reconstruction quality and subsequently affecting editing fidelity. Null-text Inversion (NTI) has made strides in this area, but it fails to capture spatial context and requires computationally intensive per-timestep optimization. Addressing these challenges, we present Noise Map Guidance (NMG), an inversion method rich in a spatial context, tailored for real-image editing. Significantly, NMG achieves this without necessitating optimization, yet preserves the editing quality. Our empirical investigations highlight NMG's adaptability across various editing techniques and its robustness to variants of DDIM inversions.
VideoCanvas: Unified Video Completion from Arbitrary Spatiotemporal Patches via In-Context Conditioning
We introduce the task of arbitrary spatio-temporal video completion, where a video is generated from arbitrary, user-specified patches placed at any spatial location and timestamp, akin to painting on a video canvas. This flexible formulation naturally unifies many existing controllable video generation tasks--including first-frame image-to-video, inpainting, extension, and interpolation--under a single, cohesive paradigm. Realizing this vision, however, faces a fundamental obstacle in modern latent video diffusion models: the temporal ambiguity introduced by causal VAEs, where multiple pixel frames are compressed into a single latent representation, making precise frame-level conditioning structurally difficult. We address this challenge with VideoCanvas, a novel framework that adapts the In-Context Conditioning (ICC) paradigm to this fine-grained control task with zero new parameters. We propose a hybrid conditioning strategy that decouples spatial and temporal control: spatial placement is handled via zero-padding, while temporal alignment is achieved through Temporal RoPE Interpolation, which assigns each condition a continuous fractional position within the latent sequence. This resolves the VAE's temporal ambiguity and enables pixel-frame-aware control on a frozen backbone. To evaluate this new capability, we develop VideoCanvasBench, the first benchmark for arbitrary spatio-temporal video completion, covering both intra-scene fidelity and inter-scene creativity. Experiments demonstrate that VideoCanvas significantly outperforms existing conditioning paradigms, establishing a new state of the art in flexible and unified video generation.
IC-Effect: Precise and Efficient Video Effects Editing via In-Context Learning
We propose IC-Effect, an instruction-guided, DiT-based framework for few-shot video VFX editing that synthesizes complex effects (\eg flames, particles and cartoon characters) while strictly preserving spatial and temporal consistency. Video VFX editing is highly challenging because injected effects must blend seamlessly with the background, the background must remain entirely unchanged, and effect patterns must be learned efficiently from limited paired data. However, existing video editing models fail to satisfy these requirements. IC-Effect leverages the source video as clean contextual conditions, exploiting the contextual learning capability of DiT models to achieve precise background preservation and natural effect injection. A two-stage training strategy, consisting of general editing adaptation followed by effect-specific learning via Effect-LoRA, ensures strong instruction following and robust effect modeling. To further improve efficiency, we introduce spatiotemporal sparse tokenization, enabling high fidelity with substantially reduced computation. We also release a paired VFX editing dataset spanning 15 high-quality visual styles. Extensive experiments show that IC-Effect delivers high-quality, controllable, and temporally consistent VFX editing, opening new possibilities for video creation.
SCAIL: Towards Studio-Grade Character Animation via In-Context Learning of 3D-Consistent Pose Representations
Achieving character animation that meets studio-grade production standards remains challenging despite recent progress. Existing approaches can transfer motion from a driving video to a reference image, but often fail to preserve structural fidelity and temporal consistency in wild scenarios involving complex motion and cross-identity animations. In this work, we present SCAIL (Studio-grade Character Animation via In-context Learning), a framework designed to address these challenges from two key innovations. First, we propose a novel 3D pose representation, providing a more robust and flexible motion signal. Second, we introduce a full-context pose injection mechanism within a diffusion-transformer architecture, enabling effective spatio-temporal reasoning over full motion sequences. To align with studio-level requirements, we develop a curated data pipeline ensuring both diversity and quality, and establish a comprehensive benchmark for systematic evaluation. Experiments show that SCAIL achieves state-of-the-art performance and advances character animation toward studio-grade reliability and realism.
ProteusNeRF: Fast Lightweight NeRF Editing using 3D-Aware Image Context
Neural Radiance Fields (NeRFs) have recently emerged as a popular option for photo-realistic object capture due to their ability to faithfully capture high-fidelity volumetric content even from handheld video input. Although much research has been devoted to efficient optimization leading to real-time training and rendering, options for interactive editing NeRFs remain limited. We present a very simple but effective neural network architecture that is fast and efficient while maintaining a low memory footprint. This architecture can be incrementally guided through user-friendly image-based edits. Our representation allows straightforward object selection via semantic feature distillation at the training stage. More importantly, we propose a local 3D-aware image context to facilitate view-consistent image editing that can then be distilled into fine-tuned NeRFs, via geometric and appearance adjustments. We evaluate our setup on a variety of examples to demonstrate appearance and geometric edits and report 10-30x speedup over concurrent work focusing on text-guided NeRF editing. Video results can be seen on our project webpage at https://proteusnerf.github.io.
Modeling Beyond MOS: Quality Assessment Models Must Integrate Context, Reasoning, and Multimodality
This position paper argues that Mean Opinion Score (MOS), while historically foundational, is no longer sufficient as the sole supervisory signal for multimedia quality assessment models. MOS reduces rich, context-sensitive human judgments to a single scalar, obscuring semantic failures, user intent, and the rationale behind quality decisions. We contend that modern quality assessment models must integrate three interdependent capabilities: (1) context-awareness, to adapt evaluations to task-specific goals and viewing conditions; (2) reasoning, to produce interpretable, evidence-grounded justifications for quality judgments; and (3) multimodality, to align perceptual and semantic cues using vision-language models. We critique the limitations of current MOS-centric benchmarks and propose a roadmap for reform: richer datasets with contextual metadata and expert rationales, and new evaluation metrics that assess semantic alignment, reasoning fidelity, and contextual sensitivity. By reframing quality assessment as a contextual, explainable, and multimodal modeling task, we aim to catalyze a shift toward more robust, human-aligned, and trustworthy evaluation systems.
RAGBoost: Efficient Retrieval-Augmented Generation with Accuracy-Preserving Context Reuse
Retrieval-augmented generation (RAG) enhances large language models (LLMs) with retrieved context but often suffers from downgraded prefill performance as modern applications demand longer and more complex inputs. Existing caching techniques either preserve accuracy with low cache reuse or improve reuse at the cost of degraded reasoning quality. We present RAGBoost, an efficient RAG system that achieves high cache reuse without sacrificing accuracy through accuracy-preserving context reuse. RAGBoost detects overlapping retrieved items across concurrent sessions and multi-turn interactions, using efficient context indexing, ordering, and de-duplication to maximize reuse, while lightweight contextual hints maintain reasoning fidelity. It integrates seamlessly with existing LLM inference engines and improves their prefill performance by 1.5-3X over state-of-the-art methods, while preserving or even enhancing reasoning accuracy across diverse RAG and agentic AI workloads. Our code is released at: https://github.com/Edinburgh-AgenticAI/RAGBoost.
From Inpainting to Editing: A Self-Bootstrapping Framework for Context-Rich Visual Dubbing
Audio-driven visual dubbing aims to synchronize a video's lip movements with new speech, but is fundamentally challenged by the lack of ideal training data: paired videos where only a subject's lip movements differ while all other visual conditions are identical. Existing methods circumvent this with a mask-based inpainting paradigm, where an incomplete visual conditioning forces models to simultaneously hallucinate missing content and sync lips, leading to visual artifacts, identity drift, and poor synchronization. In this work, we propose a novel self-bootstrapping framework that reframes visual dubbing from an ill-posed inpainting task into a well-conditioned video-to-video editing problem. Our approach employs a Diffusion Transformer, first as a data generator, to synthesize ideal training data: a lip-altered companion video for each real sample, forming visually aligned video pairs. A DiT-based audio-driven editor is then trained on these pairs end-to-end, leveraging the complete and aligned input video frames to focus solely on precise, audio-driven lip modifications. This complete, frame-aligned input conditioning forms a rich visual context for the editor, providing it with complete identity cues, scene interactions, and continuous spatiotemporal dynamics. Leveraging this rich context fundamentally enables our method to achieve highly accurate lip sync, faithful identity preservation, and exceptional robustness against challenging in-the-wild scenarios. We further introduce a timestep-adaptive multi-phase learning strategy as a necessary component to disentangle conflicting editing objectives across diffusion timesteps, thereby facilitating stable training and yielding enhanced lip synchronization and visual fidelity. Additionally, we propose ContextDubBench, a comprehensive benchmark dataset for robust evaluation in diverse and challenging practical application scenarios.
ContextRef: Evaluating Referenceless Metrics For Image Description Generation
Referenceless metrics (e.g., CLIPScore) use pretrained vision--language models to assess image descriptions directly without costly ground-truth reference texts. Such methods can facilitate rapid progress, but only if they truly align with human preference judgments. In this paper, we introduce ContextRef, a benchmark for assessing referenceless metrics for such alignment. ContextRef has two components: human ratings along a variety of established quality dimensions, and ten diverse robustness checks designed to uncover fundamental weaknesses. A crucial aspect of ContextRef is that images and descriptions are presented in context, reflecting prior work showing that context is important for description quality. Using ContextRef, we assess a variety of pretrained models, scoring functions, and techniques for incorporating context. None of the methods is successful with ContextRef, but we show that careful fine-tuning yields substantial improvements. ContextRef remains a challenging benchmark though, in large part due to the challenge of context dependence.
FaithEval: Can Your Language Model Stay Faithful to Context, Even If "The Moon is Made of Marshmallows"
Ensuring faithfulness to context in large language models (LLMs) and retrieval-augmented generation (RAG) systems is crucial for reliable deployment in real-world applications, as incorrect or unsupported information can erode user trust. Despite advancements on standard benchmarks, faithfulness hallucination-where models generate responses misaligned with the provided context-remains a significant challenge. In this work, we introduce FaithEval, a novel and comprehensive benchmark tailored to evaluate the faithfulness of LLMs in contextual scenarios across three diverse tasks: unanswerable, inconsistent, and counterfactual contexts. These tasks simulate real-world challenges where retrieval mechanisms may surface incomplete, contradictory, or fabricated information. FaithEval comprises 4.9K high-quality problems in total, validated through a rigorous four-stage context construction and validation framework, employing both LLM-based auto-evaluation and human validation. Our extensive study across a wide range of open-source and proprietary models reveals that even state-of-the-art models often struggle to remain faithful to the given context, and that larger models do not necessarily exhibit improved faithfulness.Project is available at: https://github.com/SalesforceAIResearch/FaithEval.
Understanding and Leveraging the Expert Specialization of Context Faithfulness in Mixture-of-Experts LLMs
Context faithfulness is essential for reliable reasoning in context-dependent scenarios. However, large language models often struggle to ground their outputs in the provided context, resulting in irrelevant responses. Inspired by the emergent expert specialization observed in mixture-of-experts architectures, this work investigates whether certain experts exhibit specialization in context utilization, offering a potential pathway toward targeted optimization for improved context faithfulness. To explore this, we propose Router Lens, a method that accurately identifies context-faithful experts. Our analysis reveals that these experts progressively amplify attention to relevant contextual information, thereby enhancing context grounding. Building on this insight, we introduce Context-faithful Expert Fine-Tuning (CEFT), a lightweight optimization approach that selectively fine-tunes context-faithful experts. Experiments across a wide range of benchmarks and models demonstrate that CEFT matches or surpasses the performance of full fine-tuning while being significantly more efficient.
DreamBoothDPO: Improving Personalized Generation using Direct Preference Optimization
Personalized diffusion models have shown remarkable success in Text-to-Image (T2I) generation by enabling the injection of user-defined concepts into diverse contexts. However, balancing concept fidelity with contextual alignment remains a challenging open problem. In this work, we propose an RL-based approach that leverages the diverse outputs of T2I models to address this issue. Our method eliminates the need for human-annotated scores by generating a synthetic paired dataset for DPO-like training using external quality metrics. These better-worse pairs are specifically constructed to improve both concept fidelity and prompt adherence. Moreover, our approach supports flexible adjustment of the trade-off between image fidelity and textual alignment. Through multi-step training, our approach outperforms a naive baseline in convergence speed and output quality. We conduct extensive qualitative and quantitative analysis, demonstrating the effectiveness of our method across various architectures and fine-tuning techniques. The source code can be found at https://github.com/ControlGenAI/DreamBoothDPO.
Copy-Paste to Mitigate Large Language Model Hallucinations
While Retrieval-Augmented Generation (RAG) enables large language models (LLMs) to generate contextually grounded responses, contextual faithfulness remains challenging as LLMs may not consistently trust provided context, leading to hallucinations that undermine reliability. We observe an inverse correlation between response copying degree and context-unfaithful hallucinations on RAGTruth, suggesting that higher copying degrees reduce hallucinations by fostering genuine contextual belief. We propose CopyPasteLLM, obtained through two-stage high-copying response preference training. We design three prompting methods to enhance copying degree, demonstrating that high-copying responses achieve superior contextual faithfulness and hallucination control. These approaches enable a fully automated pipeline that transforms generated responses into high-copying preference data for training CopyPasteLLM. On FaithEval, ConFiQA and PubMedQA, CopyPasteLLM achieves best performance in both counterfactual and original contexts, remarkably with 12.2% to 24.5% accuracy improvements on FaithEval over the best baseline, while requiring only 365 training samples -- 1/50th of baseline data. To elucidate CopyPasteLLM's effectiveness, we propose the Context-Parameter Copying Capturing algorithm. Interestingly, this reveals that CopyPasteLLM recalibrates reliance on internal parametric knowledge rather than external knowledge during generation. All codes are available at https://github.com/longyongchao/CopyPasteLLM
Dynamic Attention-Guided Context Decoding for Mitigating Context Faithfulness Hallucinations in Large Language Models
Large language models (LLMs) often suffer from context faithfulness hallucinations, where outputs deviate from retrieved information due to insufficient context utilization and high output uncertainty. Our uncertainty evaluation experiments reveal a strong correlation between high uncertainty and hallucinations. We hypothesize that attention mechanisms encode signals indicative of contextual utilization, validated through probing analysis. Based on these insights, we propose Dynamic Attention-Guided Context Decoding (DAGCD), a lightweight framework that integrates attention distributions and uncertainty signals in a single-pass decoding process. Experiments across QA datasets demonstrate DAGCD's effectiveness, achieving significant improvements in faithfulness and robustness while maintaining computational efficiency.
Enhancing Conditional Image Generation with Explainable Latent Space Manipulation
In the realm of image synthesis, achieving fidelity to a reference image while adhering to conditional prompts remains a significant challenge. This paper proposes a novel approach that integrates a diffusion model with latent space manipulation and gradient-based selective attention mechanisms to address this issue. Leveraging Grad-SAM (Gradient-based Selective Attention Manipulation), we analyze the cross attention maps of the cross attention layers and gradients for the denoised latent vector, deriving importance scores of elements of denoised latent vector related to the subject of interest. Using this information, we create masks at specific timesteps during denoising to preserve subjects while seamlessly integrating the reference image features. This approach ensures the faithful formation of subjects based on conditional prompts, while concurrently refining the background for a more coherent composition. Our experiments on places365 dataset demonstrate promising results, with our proposed model achieving the lowest mean and median Frechet Inception Distance (FID) scores compared to baseline models, indicating superior fidelity preservation. Furthermore, our model exhibits competitive performance in aligning the generated images with provided textual descriptions, as evidenced by high CLIP scores. These results highlight the effectiveness of our approach in both fidelity preservation and textual context preservation, offering a significant advancement in text-to-image synthesis tasks.
Evaluation Framework for Highlight Explanations of Context Utilisation in Language Models
Context utilisation, the ability of Language Models (LMs) to incorporate relevant information from the provided context when generating responses, remains largely opaque to users, who cannot determine whether models draw from parametric memory or provided context, nor identify which specific context pieces inform the response. Highlight explanations (HEs) offer a natural solution as they can point the exact context pieces and tokens that influenced model outputs. However, no existing work evaluates their effectiveness in accurately explaining context utilisation. We address this gap by introducing the first gold standard HE evaluation framework for context attribution, using controlled test cases with known ground-truth context usage, which avoids the limitations of existing indirect proxy evaluations. To demonstrate the framework's broad applicability, we evaluate four HE methods -- three established techniques and MechLight, a mechanistic interpretability approach we adapt for this task -- across four context scenarios, four datasets, and five LMs. Overall, we find that MechLight performs best across all context scenarios. However, all methods struggle with longer contexts and exhibit positional biases, pointing to fundamental challenges in explanation accuracy that require new approaches to deliver reliable context utilisation explanations at scale.
Context Engineering for Trustworthiness: Rescorla Wagner Steering Under Mixed and Inappropriate Contexts
Incorporating external context can significantly enhance the response quality of Large Language Models (LLMs). However, real-world contexts often mix relevant information with disproportionate inappropriate content, posing reliability risks. How do LLMs process and prioritize mixed context? To study this, we introduce the Poisoned Context Testbed, pairing queries with real-world contexts containing relevant and inappropriate content. Inspired by associative learning in animals, we adapt the Rescorla-Wagner (RW) model from neuroscience to quantify how competing contextual signals influence LLM outputs. Our adapted model reveals a consistent behavioral pattern: LLMs exhibit a strong tendency to incorporate information that is less prevalent in the context. This susceptibility is harmful in real-world settings, where small amounts of inappropriate content can substantially degrade response quality. Empirical evaluations on our testbed further confirm this vulnerability. To tackle this, we introduce RW-Steering, a two-stage finetuning-based approach that enables the model to internally identify and ignore inappropriate signals. Unlike prior methods that rely on extensive supervision across diverse context mixtures, RW-Steering generalizes robustly across varying proportions of inappropriate content. Experiments show that our best fine-tuned model improves response quality by 39.8% and reverses the undesirable behavior curve, establishing RW-Steering as a robust, generalizable context engineering solution for improving LLM safety in real-world use.
Image Generation from Contextually-Contradictory Prompts
Text-to-image diffusion models excel at generating high-quality, diverse images from natural language prompts. However, they often fail to produce semantically accurate results when the prompt contains concept combinations that contradict their learned priors. We define this failure mode as contextual contradiction, where one concept implicitly negates another due to entangled associations learned during training. To address this, we propose a stage-aware prompt decomposition framework that guides the denoising process using a sequence of proxy prompts. Each proxy prompt is constructed to match the semantic content expected to emerge at a specific stage of denoising, while ensuring contextual coherence. To construct these proxy prompts, we leverage a large language model (LLM) to analyze the target prompt, identify contradictions, and generate alternative expressions that preserve the original intent while resolving contextual conflicts. By aligning prompt information with the denoising progression, our method enables fine-grained semantic control and accurate image generation in the presence of contextual contradictions. Experiments across a variety of challenging prompts show substantial improvements in alignment to the textual prompt.
Foam-Agent 2.0: An End-to-End Composable Multi-Agent Framework for Automating CFD Simulation in OpenFOAM
Computational Fluid Dynamics (CFD) is an essential simulation tool in engineering, yet its steep learning curve and complex manual setup create significant barriers. To address these challenges, we introduce Foam-Agent, a multi-agent framework that automates the entire end-to-end OpenFOAM workflow from a single natural language prompt. Our key innovations address critical gaps in existing systems: 1. An Comprehensive End-to-End Simulation Automation: Foam-Agent is the first system to manage the full simulation pipeline, including advanced pre-processing with a versatile Meshing Agent capable of handling external mesh files and generating new geometries via Gmsh, automatic generation of HPC submission scripts, and post-simulation visualization via ParaView. 2. Composable Service Architecture: Going beyond a monolithic agent, the framework uses Model Context Protocol (MCP) to expose its core functions as discrete, callable tools. This allows for flexible integration and use by other agentic systems, such as Claude-code, for more exploratory workflows. 3. High-Fidelity Configuration Generation: We achieve superior accuracy through a Hierarchical Multi-Index RAG for precise context retrieval and a dependency-aware generation process that ensures configuration consistency. Evaluated on a benchmark of 110 simulation tasks, Foam-Agent achieves an 88.2% success rate with Claude 3.5 Sonnet, significantly outperforming existing frameworks (55.5% for MetaOpenFOAM). Foam-Agent dramatically lowers the expertise barrier for CFD, demonstrating how specialized multi-agent systems can democratize complex scientific computing. The code is public at https://github.com/csml-rpi/Foam-Agent.
Trusting Your Evidence: Hallucinate Less with Context-aware Decoding
Language models (LMs) often struggle to pay enough attention to the input context, and generate texts that are unfaithful or contain hallucinations. To mitigate this issue, we present context-aware decoding (CAD), which follows a contrastive output distribution that amplifies the difference between the output probabilities when a model is used with and without context. Our experiments show that CAD, without additional training, significantly improves the faithfulness of different LM families, including OPT, GPT, LLaMA and FLAN-T5 for summarization tasks (e.g., 14.3% gain for LLaMA in factuality metrics). Furthermore, CAD is particularly effective in overriding a model's prior knowledge when it contradicts the provided context, leading to substantial improvements in tasks where resolving the knowledge conflict is essential.
Context Is What You Need: The Maximum Effective Context Window for Real World Limits of LLMs
Large language model (LLM) providers boast big numbers for maximum context window sizes. To test the real world use of context windows, we 1) define a concept of maximum effective context window, 2) formulate a testing method of a context window's effectiveness over various sizes and problem types, and 3) create a standardized way to compare model efficacy for increasingly larger context window sizes to find the point of failure. We collected hundreds of thousands of data points across several models and found significant differences between reported Maximum Context Window (MCW) size and Maximum Effective Context Window (MECW) size. Our findings show that the MECW is, not only, drastically different from the MCW but also shifts based on the problem type. A few top of the line models in our test group failed with as little as 100 tokens in context; most had severe degradation in accuracy by 1000 tokens in context. All models fell far short of their Maximum Context Window by as much as 99 percent. Our data reveals the Maximum Effective Context Window shifts based on the type of problem provided, offering clear and actionable insights into how to improve model accuracy and decrease model hallucination rates.
EDELINE: Enhancing Memory in Diffusion-based World Models via Linear-Time Sequence Modeling
World models represent a promising approach for training reinforcement learning agents with significantly improved sample efficiency. While most world model methods primarily rely on sequences of discrete latent variables to model environment dynamics, this compression often neglects critical visual details essential for reinforcement learning. Recent diffusion-based world models condition generation on a fixed context length of frames to predict the next observation, using separate recurrent neural networks to model rewards and termination signals. Although this architecture effectively enhances visual fidelity, the fixed context length approach inherently limits memory capacity. In this paper, we introduce EDELINE, a unified world model architecture that integrates state space models with diffusion models. Our approach outperforms existing baselines across visually challenging Atari 100k tasks, memory-demanding Crafter benchmark, and 3D first-person ViZDoom environments, demonstrating superior performance in all these diverse challenges.
LayoutLLM-T2I: Eliciting Layout Guidance from LLM for Text-to-Image Generation
In the text-to-image generation field, recent remarkable progress in Stable Diffusion makes it possible to generate rich kinds of novel photorealistic images. However, current models still face misalignment issues (e.g., problematic spatial relation understanding and numeration failure) in complex natural scenes, which impedes the high-faithfulness text-to-image generation. Although recent efforts have been made to improve controllability by giving fine-grained guidance (e.g., sketch and scribbles), this issue has not been fundamentally tackled since users have to provide such guidance information manually. In this work, we strive to synthesize high-fidelity images that are semantically aligned with a given textual prompt without any guidance. Toward this end, we propose a coarse-to-fine paradigm to achieve layout planning and image generation. Concretely, we first generate the coarse-grained layout conditioned on a given textual prompt via in-context learning based on Large Language Models. Afterward, we propose a fine-grained object-interaction diffusion method to synthesize high-faithfulness images conditioned on the prompt and the automatically generated layout. Extensive experiments demonstrate that our proposed method outperforms the state-of-the-art models in terms of layout and image generation. Our code and settings are available at https://layoutllm-t2i.github.io.
Can Large Language Models Understand Context?
Understanding context is key to understanding human language, an ability which Large Language Models (LLMs) have been increasingly seen to demonstrate to an impressive extent. However, though the evaluation of LLMs encompasses various domains within the realm of Natural Language Processing, limited attention has been paid to probing their linguistic capability of understanding contextual features. This paper introduces a context understanding benchmark by adapting existing datasets to suit the evaluation of generative models. This benchmark comprises of four distinct tasks and nine datasets, all featuring prompts designed to assess the models' ability to understand context. First, we evaluate the performance of LLMs under the in-context learning pretraining scenario. Experimental results indicate that pre-trained dense models struggle with understanding more nuanced contextual features when compared to state-of-the-art fine-tuned models. Second, as LLM compression holds growing significance in both research and real-world applications, we assess the context understanding of quantized models under in-context-learning settings. We find that 3-bit post-training quantization leads to varying degrees of performance reduction on our benchmark. We conduct an extensive analysis of these scenarios to substantiate our experimental results.
Visual Funnel: Resolving Contextual Blindness in Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) demonstrate impressive reasoning capabilities, but often fail to perceive fine-grained visual details, limiting their applicability in precision-demanding tasks. While methods that crop salient regions of an image offer a partial solution, we identify a critical limitation they introduce: "Contextual Blindness". This failure occurs due to structural disconnect between high-fidelity details (from the crop) and the broader global context (from the original image), even when all necessary visual information is present. We argue that this limitation stems not from a lack of information 'Quantity', but from a lack of 'Structural Diversity' in the model's input. To resolve this, we propose Visual Funnel, a training-free, two-step approach. Visual Funnel first performs Contextual Anchoring to identify the region of interest in a single forward pass. It then constructs an Entropy-Scaled Portfolio that preserves the hierarchical context - ranging from focal detail to broader surroundings - by dynamically determining crop sizes based on attention entropy and refining crop centers. Through extensive experiments, we demonstrate that Visual Funnel significantly outperforms naive single-crop and unstructured multi-crop baselines. Our results further validate that simply adding more unstructured crops provides limited or even detrimental benefits, confirming that the hierarchical structure of our portfolio is key to resolving Contextual Blindness.
PatchVSR: Breaking Video Diffusion Resolution Limits with Patch-wise Video Super-Resolution
Pre-trained video generation models hold great potential for generative video super-resolution (VSR). However, adapting them for full-size VSR, as most existing methods do, suffers from unnecessary intensive full-attention computation and fixed output resolution. To overcome these limitations, we make the first exploration into utilizing video diffusion priors for patch-wise VSR. This is non-trivial because pre-trained video diffusion models are not native for patch-level detail generation. To mitigate this challenge, we propose an innovative approach, called PatchVSR, which integrates a dual-stream adapter for conditional guidance. The patch branch extracts features from input patches to maintain content fidelity while the global branch extracts context features from the resized full video to bridge the generation gap caused by incomplete semantics of patches. Particularly, we also inject the patch's location information into the model to better contextualize patch synthesis within the global video frame. Experiments demonstrate that our method can synthesize high-fidelity, high-resolution details at the patch level. A tailor-made multi-patch joint modulation is proposed to ensure visual consistency across individually enhanced patches. Due to the flexibility of our patch-based paradigm, we can achieve highly competitive 4K VSR based on a 512x512 resolution base model, with extremely high efficiency.
Adaptive Focus Memory for Language Models
Large language models (LLMs) are increasingly deployed in multi-turn dialogue settings, but their behavior is still bottlenecked by fixed context windows and naive memory strategies. Replaying the full conversation at every turn is simple but expensive, while static summarization or recency-only heuristics often erase safety-critical user details. We present Adaptive Focus Memory (AFM), a dynamic context manager that assigns each past message one of three fidelity levels -- FULL, COMPRESSED, or PLACEHOLDER -- based on semantic similarity to the current query, half-life recency weighting, and importance classification. AFM packs messages chronologically under a strict token budget, preferring high fidelity for the most relevant turns while aiming to preserve a cheap trace of the dialogue. In a safety-oriented benchmark involving a user with a severe peanut allergy planning a trip to Thailand, AFM retains the allergy across both short and medium-length conversations, matches the safety performance of naive replay, and cuts average token usage by 66% relative to a replay baseline. We release a modular Python implementation of AFM designed for OpenAI-compatible APIs and offline operation, enabling practitioners to reduce inference cost without sacrificing safety or factual continuity in the evaluated scenario.
Controlling Personality-Based Stylistic Variation with Neural Natural Language Generators
Natural language generators for task-oriented dialogue must effectively realize system dialogue actions and their associated semantics. In many applications, it is also desirable for generators to control the style of an utterance. To date, work on task-oriented neural generation has primarily focused on semantic fidelity rather than achieving stylistic goals, while work on style has been done in contexts where it is difficult to measure content preservation. Here we present three different sequence-to-sequence models and carefully test how well they disentangle content and style. We use a statistical generator, Personage, to synthesize a new corpus of over 88,000 restaurant domain utterances whose style varies according to models of personality, giving us total control over both the semantic content and the stylistic variation in the training data. We then vary the amount of explicit stylistic supervision given to the three models. We show that our most explicit model can simultaneously achieve high fidelity to both semantic and stylistic goals: this model adds a context vector of 36 stylistic parameters as input to the hidden state of the encoder at each time step, showing the benefits of explicit stylistic supervision, even when the amount of training data is large.
Revisiting Context Choices for Context-aware Machine Translation
One of the most popular methods for context-aware machine translation (MT) is to use separate encoders for the source sentence and context as multiple sources for one target sentence. Recent work has cast doubt on whether these models actually learn useful signals from the context or are improvements in automatic evaluation metrics just a side-effect. We show that multi-source transformer models improve MT over standard transformer-base models even with empty lines provided as context, but the translation quality improves significantly (1.51 - 2.65 BLEU) when a sufficient amount of correct context is provided. We also show that even though randomly shuffling in-domain context can also improve over baselines, the correct context further improves translation quality and random out-of-domain context further degrades it.
VR-Thinker: Boosting Video Reward Models through Thinking-with-Image Reasoning
Recent advancements in multimodal reward models (RMs) have substantially improved post-training for visual generative models. However, current RMs face inherent limitations: (1) visual inputs consume large context budgets, forcing fewer frames and causing loss of fine-grained details; and (2) all visual information is packed into the initial prompt, exacerbating hallucination and forgetting during chain-of-thought reasoning. To overcome these issues, we introduce VideoReward Thinker (VR-Thinker), a thinking-with-image framework that equips the RM with visual reasoning operations (e.g., select frame) and a configurable visual memory window. This allows the RM to actively acquire and update visual evidence within context limits, improving reasoning fidelity and reliability. We activate visual reasoning via a reinforcement fine-tuning pipeline: (i) Cold Start with curated visual chain-of-thought data to distill basic reasoning skills and operation formatting; (ii) select samples whose per-dimension and overall judgments are all correct, then conduct Rejection sampling Fine-Tuning on these high-quality traces to further enhance reasoning; and (iii) apply Group Relative Policy Optimization (GRPO) to strengthen reasoning. Our approach delivers state-of-the-art accuracy among open-source models on video preference benchmarks, especially for longer videos: a 7B VR-Thinker achieves 80.5% on VideoGen Reward, 82.3% on GenAI-Bench, and 75.6% on MJ-Bench-Video. These results validate the effectiveness and promise of thinking-with-image multimodal reward modeling.
Amortized Bayesian Meta-Learning for Low-Rank Adaptation of Large Language Models
Fine-tuning large language models (LLMs) with low-rank adaptaion (LoRA) is a cost-effective way to incorporate information from a specific dataset. However, it is often unclear how well the fine-tuned LLM will generalize, i.e., how well it will perform on unseen datasets. Methods have been proposed to improve generalization by optimizing with in-context prompts, or by using meta-learning to fine-tune LLMs. However, these methods are expensive in memory and computation, requiring either long-context prompts or saving copies of parameters and using second-order gradient updates. To address these challenges, we propose Amortized Bayesian Meta-Learning for LoRA (ABMLL). This method builds on amortized Bayesian meta-learning for smaller models, adapting this approach to LLMs while maintaining its computational efficiency. We reframe task-specific and global parameters in the context of LoRA and use a set of new hyperparameters to balance reconstruction accuracy and the fidelity of task-specific parameters to the global ones. ABMLL provides effective generalization and scales to large models such as Llama3-8B. Furthermore, as a result of using a Bayesian framework, ABMLL provides improved uncertainty quantification. We test ABMLL on Unified-QA and CrossFit datasets and find that it outperforms existing methods on these benchmarks in terms of both accuracy and expected calibration error.
Protect: Towards Robust Guardrailing Stack for Trustworthy Enterprise LLM Systems
The increasing deployment of Large Language Models (LLMs) across enterprise and mission-critical domains has underscored the urgent need for robust guardrailing systems that ensure safety, reliability, and compliance. Existing solutions often struggle with real-time oversight, multi-modal data handling, and explainability -- limitations that hinder their adoption in regulated environments. Existing guardrails largely operate in isolation, focused on text alone making them inadequate for multi-modal, production-scale environments. We introduce Protect, natively multi-modal guardrailing model designed to operate seamlessly across text, image, and audio inputs, designed for enterprise-grade deployment. Protect integrates fine-tuned, category-specific adapters trained via Low-Rank Adaptation (LoRA) on an extensive, multi-modal dataset covering four safety dimensions: toxicity, sexism, data privacy, and prompt injection. Our teacher-assisted annotation pipeline leverages reasoning and explanation traces to generate high-fidelity, context-aware labels across modalities. Experimental results demonstrate state-of-the-art performance across all safety dimensions, surpassing existing open and proprietary models such as WildGuard, LlamaGuard-4, and GPT-4.1. Protect establishes a strong foundation for trustworthy, auditable, and production-ready safety systems capable of operating across text, image, and audio modalities.
Illuminating Darkness: Learning to Enhance Low-light Images In-the-Wild
Single-shot low-light image enhancement (SLLIE) remains challenging due to the limited availability of diverse, real-world paired datasets. To bridge this gap, we introduce the Low-Light Smartphone Dataset (LSD), a large-scale, high-resolution (4K+) dataset collected in the wild across a wide range of challenging lighting conditions (0.1 to 200 lux). LSD contains 6,425 precisely aligned low and normal-light image pairs, selected from over 8,000 dynamic indoor and outdoor scenes through multi-frame acquisition and expert evaluation. To evaluate generalization and aesthetic quality, we collect 2,117 unpaired low-light images from previously unseen devices. To fully exploit LSD, we propose TFFormer, a hybrid model that encodes luminance and chrominance (LC) separately to reduce color-structure entanglement. We further propose a cross-attention-driven joint decoder for context-aware fusion of LC representations, along with LC refinement and LC-guided supervision to significantly enhance perceptual fidelity and structural consistency. TFFormer achieves state-of-the-art results on LSD (+2.45 dB PSNR) and substantially improves downstream vision tasks, such as low-light object detection (+6.80 mAP on ExDark).
ACT-Bench: Towards Action Controllable World Models for Autonomous Driving
World models have emerged as promising neural simulators for autonomous driving, with the potential to supplement scarce real-world data and enable closed-loop evaluations. However, current research primarily evaluates these models based on visual realism or downstream task performance, with limited focus on fidelity to specific action instructions - a crucial property for generating targeted simulation scenes. Although some studies address action fidelity, their evaluations rely on closed-source mechanisms, limiting reproducibility. To address this gap, we develop an open-access evaluation framework, ACT-Bench, for quantifying action fidelity, along with a baseline world model, Terra. Our benchmarking framework includes a large-scale dataset pairing short context videos from nuScenes with corresponding future trajectory data, which provides conditional input for generating future video frames and enables evaluation of action fidelity for executed motions. Furthermore, Terra is trained on multiple large-scale trajectory-annotated datasets to enhance action fidelity. Leveraging this framework, we demonstrate that the state-of-the-art model does not fully adhere to given instructions, while Terra achieves improved action fidelity. All components of our benchmark framework will be made publicly available to support future research.
Mavors: Multi-granularity Video Representation for Multimodal Large Language Model
Long-context video understanding in multimodal large language models (MLLMs) faces a critical challenge: balancing computational efficiency with the retention of fine-grained spatio-temporal patterns. Existing approaches (e.g., sparse sampling, dense sampling with low resolution, and token compression) suffer from significant information loss in temporal dynamics, spatial details, or subtle interactions, particularly in videos with complex motion or varying resolutions. To address this, we propose Mavors, a novel framework that introduces Multi-granularity video representation for holistic long-video modeling. Specifically, Mavors directly encodes raw video content into latent representations through two core components: 1) an Intra-chunk Vision Encoder (IVE) that preserves high-resolution spatial features via 3D convolutions and Vision Transformers, and 2) an Inter-chunk Feature Aggregator (IFA) that establishes temporal coherence across chunks using transformer-based dependency modeling with chunk-level rotary position encodings. Moreover, the framework unifies image and video understanding by treating images as single-frame videos via sub-image decomposition. Experiments across diverse benchmarks demonstrate Mavors' superiority in maintaining both spatial fidelity and temporal continuity, significantly outperforming existing methods in tasks requiring fine-grained spatio-temporal reasoning.
LaTeXTrans: Structured LaTeX Translation with Multi-Agent Coordination
Despite the remarkable progress of modern machine translation (MT) systems on general-domain texts, translating structured LaTeX-formatted documents remains a significant challenge. These documents typically interleave natural language with domain-specific syntax, such as mathematical equations, tables, figures, and cross-references, all of which must be accurately preserved to maintain semantic integrity and compilability. In this paper, we introduce LaTeXTrans, a collaborative multi-agent system designed to address this challenge. LaTeXTrans ensures format preservation, structural fidelity, and terminology consistency through six specialized agents: 1) a Parser that decomposes LaTeX into translation-friendly units via placeholder substitution and syntax filtering; 2) a Translator, Validator, Summarizer, and Terminology Extractor that work collaboratively to ensure context-aware, self-correcting, and terminology-consistent translations; 3) a Generator that reconstructs the translated content into well-structured LaTeX documents. Experimental results demonstrate that LaTeXTrans can outperform mainstream MT systems in both translation accuracy and structural fidelity, offering an effective and practical solution for translating LaTeX-formatted documents.The code of LaTeXTrans is available at https://github.com/NiuTrans/LaTeXTrans.
DeepCode: Open Agentic Coding
Recent advances in large language models (LLMs) have given rise to powerful coding agents, making it possible for code assistants to evolve into code engineers. However, existing methods still face significant challenges in achieving high-fidelity document-to-codebase synthesis--such as scientific papers to code--primarily due to a fundamental conflict between information overload and the context bottlenecks of LLMs. In this work, we introduce DeepCode, a fully autonomous framework that fundamentally addresses this challenge through principled information-flow management. By treating repository synthesis as a channel optimization problem, DeepCode seamlessly orchestrates four information operations to maximize task-relevant signals under finite context budgets: source compression via blueprint distillation, structured indexing using stateful code memory, conditional knowledge injection via retrieval-augmented generation, and closed-loop error correction. Extensive evaluations on the PaperBench benchmark demonstrate that DeepCode achieves state-of-the-art performance, decisively outperforming leading commercial agents such as Cursor and Claude Code, and crucially, surpassing PhD-level human experts from top institutes on key reproduction metrics. By systematically transforming paper specifications into production-grade implementations comparable to human expert quality, this work establishes new foundations for autonomous scientific reproduction that can accelerate research evaluation and discovery.
Trainable Dynamic Mask Sparse Attention
In large language models, the demand for modeling long contexts is constantly increasing, but the quadratic complexity of the standard self-attention mechanism often becomes a bottleneck. Although existing sparse attention mechanisms have improved efficiency, they may still encounter issues such as static patterns or information loss. We introduce a trainable dynamic mask sparse attention mechanism, Dynamic Mask Attention, which effectively utilizes content-aware and position-aware sparsity. DMA achieves this through two key innovations: First, it dynamically generates content-aware sparse masks from value representations, enabling the model to identify and focus on critical information adaptively. Second, it implements position-aware sparse attention computation that effectively skips unnecessary calculation regions. This dual-sparsity design allows the model to significantly reduce the computational complexity of important information while retaining complete information, achieving an excellent balance between information fidelity and computational efficiency. We have verified the performance of DMA through comprehensive experiments. Comparative studies show that DMA outperforms multi-head attention, sliding window attention, multi-head latent attention, and native sparse attention in terms of perplexity under Chinchilla Scaling Law settings. Moreover, in challenging multi-query associative recall tasks, DMA also demonstrates superior performance and efficiency compared to these methods. Crucially, in the evaluation of a 1.7B parameter model, DMA significantly outperforms multi-head attention in both standard benchmark performance and the challenging needle-in-a-haystack task. These experimental results highlight its capability to balance model efficiency and long-context modeling ability effectively.
Beyond Confidence: Adaptive and Coherent Decoding for Diffusion Language Models
Diffusion Language Models (DLMs) have recently achieved significant success due to their any-order generation capabilities. However, existing inference methods typically rely on local, immediate-step metrics such as confidence or entropy which inherently lack a more reliable perspective. This limitation frequently leads to inconsistent sampling trajectories and suboptimal generation quality. To address this, we propose Coherent Contextual Decoding (CCD), a novel inference framework built upon two core innovations. First, CCD employs a trajectory rectification mechanism that leverages historical context to enhance sequence coherence, enabling the early rejection of suboptimal paths. We demonstrate that this mechanism is theoretically equivalent to modeling the consistency of historical steps via the conditional mutual information between context and token predictions. Building on this theoretical insight, we further address the inefficiency of conventional uniform decoding budgets. Instead of rigid allocations based on diffusion steps, we introduce an adaptive sampling strategy that dynamically adjusts the unmasking budget for each step according to our consistency metric. Consequently, our method significantly improves the quality of generation trajectories while accelerating the sampling process. Empirically, our method achieves a simultaneous enhancement in both inference speed and performance across diverse benchmarks on Dream and LLaDA, delivering up to 3.48x speedup alongside 3.91% performance improvement.
OmniPaint: Mastering Object-Oriented Editing via Disentangled Insertion-Removal Inpainting
Diffusion-based generative models have revolutionized object-oriented image editing, yet their deployment in realistic object removal and insertion remains hampered by challenges such as the intricate interplay of physical effects and insufficient paired training data. In this work, we introduce OmniPaint, a unified framework that re-conceptualizes object removal and insertion as interdependent processes rather than isolated tasks. Leveraging a pre-trained diffusion prior along with a progressive training pipeline comprising initial paired sample optimization and subsequent large-scale unpaired refinement via CycleFlow, OmniPaint achieves precise foreground elimination and seamless object insertion while faithfully preserving scene geometry and intrinsic properties. Furthermore, our novel CFD metric offers a robust, reference-free evaluation of context consistency and object hallucination, establishing a new benchmark for high-fidelity image editing. Project page: https://yeates.github.io/OmniPaint-Page/
Pretraining Frame Preservation in Autoregressive Video Memory Compression
We present PFP, a neural network structure to compress long videos into short contexts, with an explicit pretraining objective to preserve the high-frequency details of single frames at arbitrary temporal positions. The baseline model can compress a 20-second video into a context at about 5k length, where random frames can be retrieved with perceptually preserved appearances. Such pretrained models can be directly fine-tuned as memory encoders for autoregressive video models, enabling long history memory with low context cost and relatively low fidelity loss. We evaluate the framework with ablative settings and discuss the trade-offs of possible neural architecture designs.
MADFormer: Mixed Autoregressive and Diffusion Transformers for Continuous Image Generation
Recent progress in multimodal generation has increasingly combined autoregressive (AR) and diffusion-based approaches, leveraging their complementary strengths: AR models capture long-range dependencies and produce fluent, context-aware outputs, while diffusion models operate in continuous latent spaces to refine high-fidelity visual details. However, existing hybrids often lack systematic guidance on how and why to allocate model capacity between these paradigms. In this work, we introduce MADFormer, a Mixed Autoregressive and Diffusion Transformer that serves as a testbed for analyzing AR-diffusion trade-offs. MADFormer partitions image generation into spatial blocks, using AR layers for one-pass global conditioning across blocks and diffusion layers for iterative local refinement within each block. Through controlled experiments on FFHQ-1024 and ImageNet, we identify two key insights: (1) block-wise partitioning significantly improves performance on high-resolution images, and (2) vertically mixing AR and diffusion layers yields better quality-efficiency balances--improving FID by up to 75% under constrained inference compute. Our findings offer practical design principles for future hybrid generative models.
MIRAGE: A Benchmark for Multimodal Information-Seeking and Reasoning in Agricultural Expert-Guided Conversations
We introduce MIRAGE, a new benchmark for multimodal expert-level reasoning and decision-making in consultative interaction settings. Designed for the agriculture domain, MIRAGE captures the full complexity of expert consultations by combining natural user queries, expert-authored responses, and image-based context, offering a high-fidelity benchmark for evaluating models on grounded reasoning, clarification strategies, and long-form generation in a real-world, knowledge-intensive domain. Grounded in over 35,000 real user-expert interactions and curated through a carefully designed multi-step pipeline, MIRAGE spans diverse crop health, pest diagnosis, and crop management scenarios. The benchmark includes more than 7,000 unique biological entities, covering plant species, pests, and diseases, making it one of the most taxonomically diverse benchmarks available for vision-language models, grounded in the real world. Unlike existing benchmarks that rely on well-specified user inputs and closed-set taxonomies, MIRAGE features underspecified, context-rich scenarios with open-world settings, requiring models to infer latent knowledge gaps, handle rare entities, and either proactively guide the interaction or respond. Project Page: https://mirage-benchmark.github.io
X-Actor: Emotional and Expressive Long-Range Portrait Acting from Audio
We present X-Actor, a novel audio-driven portrait animation framework that generates lifelike, emotionally expressive talking head videos from a single reference image and an input audio clip. Unlike prior methods that emphasize lip synchronization and short-range visual fidelity in constrained speaking scenarios, X-Actor enables actor-quality, long-form portrait performance capturing nuanced, dynamically evolving emotions that flow coherently with the rhythm and content of speech. Central to our approach is a two-stage decoupled generation pipeline: an audio-conditioned autoregressive diffusion model that predicts expressive yet identity-agnostic facial motion latent tokens within a long temporal context window, followed by a diffusion-based video synthesis module that translates these motions into high-fidelity video animations. By operating in a compact facial motion latent space decoupled from visual and identity cues, our autoregressive diffusion model effectively captures long-range correlations between audio and facial dynamics through a diffusion-forcing training paradigm, enabling infinite-length emotionally-rich motion prediction without error accumulation. Extensive experiments demonstrate that X-Actor produces compelling, cinematic-style performances that go beyond standard talking head animations and achieves state-of-the-art results in long-range, audio-driven emotional portrait acting.
Chinese Toxic Language Mitigation via Sentiment Polarity Consistent Rewrites
Detoxifying offensive language while preserving the speaker's original intent is a challenging yet critical goal for improving the quality of online interactions. Although large language models (LLMs) show promise in rewriting toxic content, they often default to overly polite rewrites, distorting the emotional tone and communicative intent. This problem is especially acute in Chinese, where toxicity often arises implicitly through emojis, homophones, or discourse context. We present ToxiRewriteCN, the first Chinese detoxification dataset explicitly designed to preserve sentiment polarity. The dataset comprises 1,556 carefully annotated triplets, each containing a toxic sentence, a sentiment-aligned non-toxic rewrite, and labeled toxic spans. It covers five real-world scenarios: standard expressions, emoji-induced and homophonic toxicity, as well as single-turn and multi-turn dialogues. We evaluate 17 LLMs, including commercial and open-source models with variant architectures, across four dimensions: detoxification accuracy, fluency, content preservation, and sentiment polarity. Results show that while commercial and MoE models perform best overall, all models struggle to balance safety with emotional fidelity in more subtle or context-heavy settings such as emoji, homophone, and dialogue-based inputs. We release ToxiRewriteCN to support future research on controllable, sentiment-aware detoxification for Chinese.
Fast Prompt Alignment for Text-to-Image Generation
Text-to-image generation has advanced rapidly, yet aligning complex textual prompts with generated visuals remains challenging, especially with intricate object relationships and fine-grained details. This paper introduces Fast Prompt Alignment (FPA), a prompt optimization framework that leverages a one-pass approach, enhancing text-to-image alignment efficiency without the iterative overhead typical of current methods like OPT2I. FPA uses large language models (LLMs) for single-iteration prompt paraphrasing, followed by fine-tuning or in-context learning with optimized prompts to enable real-time inference, reducing computational demands while preserving alignment fidelity. Extensive evaluations on the COCO Captions and PartiPrompts datasets demonstrate that FPA achieves competitive text-image alignment scores at a fraction of the processing time, as validated through both automated metrics (TIFA, VQA) and human evaluation. A human study with expert annotators further reveals a strong correlation between human alignment judgments and automated scores, underscoring the robustness of FPA's improvements. The proposed method showcases a scalable, efficient alternative to iterative prompt optimization, enabling broader applicability in real-time, high-demand settings. The codebase is provided to facilitate further research: https://github.com/tiktok/fast_prompt_alignment
WorldGrow: Generating Infinite 3D World
We tackle the challenge of generating the infinitely extendable 3D world -- large, continuous environments with coherent geometry and realistic appearance. Existing methods face key challenges: 2D-lifting approaches suffer from geometric and appearance inconsistencies across views, 3D implicit representations are hard to scale up, and current 3D foundation models are mostly object-centric, limiting their applicability to scene-level generation. Our key insight is leveraging strong generation priors from pre-trained 3D models for structured scene block generation. To this end, we propose WorldGrow, a hierarchical framework for unbounded 3D scene synthesis. Our method features three core components: (1) a data curation pipeline that extracts high-quality scene blocks for training, making the 3D structured latent representations suitable for scene generation; (2) a 3D block inpainting mechanism that enables context-aware scene extension; and (3) a coarse-to-fine generation strategy that ensures both global layout plausibility and local geometric/textural fidelity. Evaluated on the large-scale 3D-FRONT dataset, WorldGrow achieves SOTA performance in geometry reconstruction, while uniquely supporting infinite scene generation with photorealistic and structurally consistent outputs. These results highlight its capability for constructing large-scale virtual environments and potential for building future world models.
VideoAgentTrek: Computer Use Pretraining from Unlabeled Videos
Training computer-use agents requires massive amounts of GUI interaction data, but manually annotating action trajectories at scale is prohibitively expensive. We present VideoAgentTrek, a scalable pipeline that automatically mines training data from publicly available screen-recorded videos at web scale, eliminating the need for manual annotation. Our approach addresses a key challenge: raw videos contain implicit demonstrations but lack explicit action labels. To solve this, we develop Video2Action, an inverse dynamics module (IDM) with two components: (1) a video grounding model that detects and localizes GUI actions with precise temporal boundaries and context, and (2) an action-content recognizer that extracts structured parameters like click coordinates and typed text with high fidelity. Applied to 39,000 YouTube tutorial videos, our pipeline generates 1.52 million interaction steps automatically. We leverage this data through continued pretraining followed by supervised fine-tuning. On OSWorld-Verified, our approach improves task success rates from 9.3% (SFT-only baseline) to 15.8%, a 70% relative improvement. On AgentNetBench, step accuracy increases from 64.1% to 69.3%. Our results demonstrate that passive internet videos can be transformed into high-quality supervision for computer-use agents, providing a scalable alternative to expensive manual annotation.
Infinite-Story: A Training-Free Consistent Text-to-Image Generation
We present Infinite-Story, a training-free framework for consistent text-to-image (T2I) generation tailored for multi-prompt storytelling scenarios. Built upon a scale-wise autoregressive model, our method addresses two key challenges in consistent T2I generation: identity inconsistency and style inconsistency. To overcome these issues, we introduce three complementary techniques: Identity Prompt Replacement, which mitigates context bias in text encoders to align identity attributes across prompts; and a unified attention guidance mechanism comprising Adaptive Style Injection and Synchronized Guidance Adaptation, which jointly enforce global style and identity appearance consistency while preserving prompt fidelity. Unlike prior diffusion-based approaches that require fine-tuning or suffer from slow inference, Infinite-Story operates entirely at test time, delivering high identity and style consistency across diverse prompts. Extensive experiments demonstrate that our method achieves state-of-the-art generation performance, while offering over 6X faster inference (1.72 seconds per image) than the existing fastest consistent T2I models, highlighting its effectiveness and practicality for real-world visual storytelling.
Can Understanding and Generation Truly Benefit Together -- or Just Coexist?
In this paper, we introduce an insightful paradigm through the Auto-Encoder lens-understanding as the encoder (I2T) that compresses images into text, and generation as the decoder (T2I) that reconstructs images from that text. Using reconstruction fidelity as the unified training objective, we enforce the coherent bidirectional information flow between the understanding and generation processes, bringing mutual gains. To implement this, we propose UAE, a novel framework for unified multimodal learning. We begin by pre-training the decoder with large-scale long-context image captions to capture fine-grained semantic and complex spatial relationships. We then propose Unified-GRPO via reinforcement learning (RL), which covers three stages: (1) A cold-start phase to gently initialize both encoder and decoder with a semantic reconstruction loss; (2) Generation for Understanding, where the encoder is trained to generate informative captions that maximize the decoder's reconstruction quality, enhancing its visual understanding; (3) Understanding for Generation, where the decoder is refined to reconstruct from these captions, forcing it to leverage every detail and improving its long-context instruction following and generation fidelity. For evaluation, we introduce Unified-Bench, the first benchmark tailored to assess the degree of unification of the UMMs. A surprising "aha moment" arises within the multimodal learning domain: as RL progresses, the encoder autonomously produces more descriptive captions, while the decoder simultaneously demonstrates a profound ability to understand these intricate descriptions, resulting in reconstructions of striking fidelity.
Uncertainty Unveiled: Can Exposure to More In-context Examples Mitigate Uncertainty for Large Language Models?
Recent advances in handling long sequences have facilitated the exploration of long-context in-context learning (ICL). While much of the existing research emphasizes performance improvements driven by additional in-context examples, the influence on the trustworthiness of generated responses remains underexplored. This paper addresses this gap by investigating how increased examples influence predictive uncertainty, an essential aspect in trustworthiness. We begin by systematically quantifying the uncertainty of ICL with varying shot counts, analyzing the impact of example quantity. Through uncertainty decomposition, we introduce a novel perspective on performance enhancement, with a focus on epistemic uncertainty (EU). Our results reveal that additional examples reduce total uncertainty in both simple and complex tasks by injecting task-specific knowledge, thereby diminishing EU and enhancing performance. For complex tasks, these advantages emerge only after addressing the increased noise and uncertainty associated with longer inputs. Finally, we explore the evolution of internal confidence across layers, unveiling the mechanisms driving the reduction in uncertainty.
ETHIC: Evaluating Large Language Models on Long-Context Tasks with High Information Coverage
Recent advancements in large language models (LLM) capable of processing extremely long texts highlight the need for a dedicated evaluation benchmark to assess their long-context capabilities. However, existing methods, like the needle-in-a-haystack test, do not effectively assess whether these models fully utilize contextual information, raising concerns about the reliability of current evaluation techniques. To thoroughly examine the effectiveness of existing benchmarks, we introduce a new metric called information coverage (IC), which quantifies the proportion of the input context necessary for answering queries. Our findings indicate that current benchmarks exhibit low IC; although the input context may be extensive, the actual usable context is often limited. To address this, we present ETHIC, a novel benchmark designed to assess LLMs' ability to leverage the entire context. Our benchmark comprises 2,648 test instances spanning four long-context tasks with high IC scores in the domains of books, debates, medicine, and law. Our evaluations reveal significant performance drops in contemporary LLMs, highlighting a critical challenge in managing long contexts. Our benchmark is available at https://github.com/dmis-lab/ETHIC.
Quantifying the Plausibility of Context Reliance in Neural Machine Translation
Establishing whether language models can use contextual information in a human-plausible way is important to ensure their safe adoption in real-world settings. However, the questions of when and which parts of the context affect model generations are typically tackled separately, and current plausibility evaluations are practically limited to a handful of artificial benchmarks. To address this, we introduce Plausibility Evaluation of Context Reliance (PECoRe), an end-to-end interpretability framework designed to quantify context usage in language models' generations. Our approach leverages model internals to (i) contrastively identify context-sensitive target tokens in generated texts and (ii) link them to contextual cues justifying their prediction. We use PECoRe to quantify the plausibility of context-aware machine translation models, comparing model rationales with human annotations across several discourse-level phenomena. Finally, we apply our method to unannotated generations to identify context-mediated predictions and highlight instances of (im)plausible context usage in model translations.
DreamBlend: Advancing Personalized Fine-tuning of Text-to-Image Diffusion Models
Given a small number of images of a subject, personalized image generation techniques can fine-tune large pre-trained text-to-image diffusion models to generate images of the subject in novel contexts, conditioned on text prompts. In doing so, a trade-off is made between prompt fidelity, subject fidelity and diversity. As the pre-trained model is fine-tuned, earlier checkpoints synthesize images with low subject fidelity but high prompt fidelity and diversity. In contrast, later checkpoints generate images with low prompt fidelity and diversity but high subject fidelity. This inherent trade-off limits the prompt fidelity, subject fidelity and diversity of generated images. In this work, we propose DreamBlend to combine the prompt fidelity from earlier checkpoints and the subject fidelity from later checkpoints during inference. We perform a cross attention guided image synthesis from a later checkpoint, guided by an image generated by an earlier checkpoint, for the same prompt. This enables generation of images with better subject fidelity, prompt fidelity and diversity on challenging prompts, outperforming state-of-the-art fine-tuning methods.
All That Glisters Is Not Gold: A Benchmark for Reference-Free Counterfactual Financial Misinformation Detection
We introduce RFC Bench, a benchmark for evaluating large language models on financial misinformation under realistic news. RFC Bench operates at the paragraph level and captures the contextual complexity of financial news where meaning emerges from dispersed cues. The benchmark defines two complementary tasks: reference free misinformation detection and comparison based diagnosis using paired original perturbed inputs. Experiments reveal a consistent pattern: performance is substantially stronger when comparative context is available, while reference free settings expose significant weaknesses, including unstable predictions and elevated invalid outputs. These results indicate that current models struggle to maintain coherent belief states without external grounding. By highlighting this gap, RFC Bench provides a structured testbed for studying reference free reasoning and advancing more reliable financial misinformation detection in real world settings.
Improving Diffusion-Based Image Synthesis with Context Prediction
Diffusion models are a new class of generative models, and have dramatically promoted image generation with unprecedented quality and diversity. Existing diffusion models mainly try to reconstruct input image from a corrupted one with a pixel-wise or feature-wise constraint along spatial axes. However, such point-based reconstruction may fail to make each predicted pixel/feature fully preserve its neighborhood context, impairing diffusion-based image synthesis. As a powerful source of automatic supervisory signal, context has been well studied for learning representations. Inspired by this, we for the first time propose ConPreDiff to improve diffusion-based image synthesis with context prediction. We explicitly reinforce each point to predict its neighborhood context (i.e., multi-stride features/tokens/pixels) with a context decoder at the end of diffusion denoising blocks in training stage, and remove the decoder for inference. In this way, each point can better reconstruct itself by preserving its semantic connections with neighborhood context. This new paradigm of ConPreDiff can generalize to arbitrary discrete and continuous diffusion backbones without introducing extra parameters in sampling procedure. Extensive experiments are conducted on unconditional image generation, text-to-image generation and image inpainting tasks. Our ConPreDiff consistently outperforms previous methods and achieves a new SOTA text-to-image generation results on MS-COCO, with a zero-shot FID score of 6.21.
Controllable Context Sensitivity and the Knob Behind It
When making predictions, a language model must trade off how much it relies on its context vs. its prior knowledge. Choosing how sensitive the model is to its context is a fundamental functionality, as it enables the model to excel at tasks like retrieval-augmented generation and question-answering. In this paper, we search for a knob which controls this sensitivity, determining whether language models answer from the context or their prior knowledge. To guide this search, we design a task for controllable context sensitivity. In this task, we first feed the model a context (Paris is in England) and a question (Where is Paris?); we then instruct the model to either use its prior or contextual knowledge and evaluate whether it generates the correct answer for both intents (either France or England). When fine-tuned on this task, instruction-tuned versions of Llama-3.1, Mistral-v0.3, and Gemma-2 can solve it with high accuracy (85-95%). Analyzing these high-performing models, we narrow down which layers may be important to context sensitivity using a novel linear time algorithm. Then, in each model, we identify a 1-D subspace in a single layer that encodes whether the model follows context or prior knowledge. Interestingly, while we identify this subspace in a fine-tuned model, we find that the exact same subspace serves as an effective knob in not only that model but also non-fine-tuned instruct and base models of that model family. Finally, we show a strong correlation between a model's performance and how distinctly it separates context-agreeing from context-ignoring answers in this subspace. These results suggest a single subspace facilitates how the model chooses between context and prior knowledge, hinting at a simple fundamental mechanism that controls this behavior.
Preface to Contextuality in Random Variables: A Systematic Introduction, by E. N. Dzhafarov, J. V. Kujala, and V. H. Cervantes
This is the preface for the book by E. N. Dzhafarov, J. V. Kujala, and V. H. Cervantes, titled Contextuality in Random Variables: A Systematic Introduction. It is to be published by Cambridge University Press in 2026.
Contextualized Evaluations: Taking the Guesswork Out of Language Model Evaluations
Language model users often issue queries that lack specification, where the context under which a query was issued -- such as the user's identity, the query's intent, and the criteria for a response to be useful -- is not explicit. For instance, a good response to a subjective query like "What book should I read next?" would depend on the user's preferences, and a good response to an open-ended query like "How do antibiotics work against bacteria?" would depend on the user's expertise. This makes evaluation of responses to such queries an ill-posed task, as evaluators may make arbitrary judgments about the response quality. To remedy this, we present contextualized evaluations, a protocol that synthetically constructs context surrounding an underspecified query and provides it during evaluation. We find that the presence of context can 1) alter conclusions drawn from evaluation, even flipping win rates between model pairs, 2) nudge evaluators to make fewer judgments based on surface-level criteria, like style, and 3) provide new insights about model behavior across diverse contexts. Specifically, our procedure uncovers an implicit bias towards WEIRD contexts in models' "default" responses and we find that models are not equally sensitive to following different contexts, even when they are provided in prompts.
CAAD: Context-Aware Adaptive Decoding for Truthful Text Generation
Ensuring truthfulness in large language models remains a critical challenge for reliable text generation. While supervised fine-tuning and reinforcement learning with human feedback have shown promise, they require substantial amount of annotated data and computational resources, limiting scalability. In contrast, decoding-time interventions offer lightweight alternatives without model retraining. However, existing decoding strategies often face issues like prompt sensitivity, limited generalization, or dependence on internal model states. We propose a context-aware adaptive decoding method that leverages a compact reference grounding space, built from as few as 10 annotated examples and comprising pairs of context embeddings and next token logits from truthful responses, to enable retrieval-based logit shaping during inference. At each decoding step, our method retrieves top-N semantically similar contexts and aggregates their associated next token logits to modify the LLM's logits. Across three open-ended question-answering benchmarks, our approach achieves a 2.8 percent average improvement on TruthfulQA and further outperforms existing baselines on both Biographies and WikiQA. Experimental results also demonstrate cross-task generalization, with TruthfulQA-derived grounding enhancing biography generation. Our model-agnostic, scalable, and efficient method requires only a single generation pass, highlighting the potential of context-aware decoding for factual reliability in LLMs.
Benchmarking LLMs for Fine-Grained Code Review with Enriched Context in Practice
Code review is a cornerstone of software quality assurance, and recent advances in Large Language Models (LLMs) have shown promise in its automation. However, existing benchmarks for LLM-based code review face three major limitations. Lack of semantic context: most benchmarks provide only code diffs without textual information such as issue descriptions, which are crucial for understanding developer intent. Data quality issues: without rigorous validation, many samples are noisy-e.g., reviews on outdated or irrelevant code-reducing evaluation reliability. Coarse granularity: most benchmarks operate at the file or commit level, overlooking the fine-grained, line-level reasoning essential for precise review. We introduce ContextCRBench, a high-quality, context-rich benchmark for fine-grained LLM evaluation in code review. Our construction pipeline comprises: Raw Data Crawling, collecting 153.7K issues and pull requests from top-tier repositories; Comprehensive Context Extraction, linking issue-PR pairs for textual context and extracting the full surrounding function or class for code context; and Multi-stage Data Filtering, combining rule-based and LLM-based validation to remove outdated, malformed, or low-value samples, resulting in 67,910 context-enriched entries. ContextCRBench supports three evaluation scenarios aligned with the review workflow: hunk-level quality assessment, line-level defect localization, and line-level comment generation. Evaluating eight leading LLMs (four closed-source and four open-source) reveals that textual context yields greater performance gains than code context alone, while current LLMs remain far from human-level review ability. Deployed at ByteDance, ContextCRBench drives a self-evolving code review system, improving performance by 61.98% and demonstrating its robustness and industrial utility. https://github.com/kinesiatricssxilm14/ContextCRBench.
MemeSense: An Adaptive In-Context Framework for Social Commonsense Driven Meme Moderation
Memes present unique moderation challenges due to their subtle, multimodal interplay of images, text, and social context. Standard systems relying predominantly on explicit textual cues often overlook harmful content camouflaged by irony, symbolism, or cultural references. To address this gap, we introduce MemeSense, an adaptive in-context learning framework that fuses social commonsense reasoning with visually and semantically related reference examples. By encoding crucial task information into a learnable cognitive shift vector, MemeSense effectively balances lexical, visual, and ethical considerations, enabling precise yet context-aware meme intervention. Extensive evaluations on a curated set of implicitly harmful memes demonstrate that MemeSense substantially outperforms strong baselines, paving the way for safer online communities. Code and data available at: https://github.com/sayantan11995/MemeSense
Cross-Modal Contextualized Diffusion Models for Text-Guided Visual Generation and Editing
Conditional diffusion models have exhibited superior performance in high-fidelity text-guided visual generation and editing. Nevertheless, prevailing text-guided visual diffusion models primarily focus on incorporating text-visual relationships exclusively into the reverse process, often disregarding their relevance in the forward process. This inconsistency between forward and reverse processes may limit the precise conveyance of textual semantics in visual synthesis results. To address this issue, we propose a novel and general contextualized diffusion model (ContextDiff) by incorporating the cross-modal context encompassing interactions and alignments between text condition and visual sample into forward and reverse processes. We propagate this context to all timesteps in the two processes to adapt their trajectories, thereby facilitating cross-modal conditional modeling. We generalize our contextualized diffusion to both DDPMs and DDIMs with theoretical derivations, and demonstrate the effectiveness of our model in evaluations with two challenging tasks: text-to-image generation, and text-to-video editing. In each task, our ContextDiff achieves new state-of-the-art performance, significantly enhancing the semantic alignment between text condition and generated samples, as evidenced by quantitative and qualitative evaluations. Our code is available at https://github.com/YangLing0818/ContextDiff
