Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOn the matrices in B-spline collocation methods for Riesz fractional equations and their spectral properties
In this work, we focus on a fractional differential equation in Riesz form discretized by a polynomial B-spline collocation method. For an arbitrary polynomial degree p, we show that the resulting coefficient matrices possess a Toeplitz-like structure. We investigate their spectral properties via their symbol and we prove that, like for second order differential problems, also in this case the given matrices are ill-conditioned both in the low and high frequencies for large p. More precisely, in the fractional scenario the symbol has a single zero at 0 of order α, with α the fractional derivative order that ranges from 1 to 2, and it presents an exponential decay to zero at π for increasing p that becomes faster as α approaches 1. This translates in a mitigated conditioning in the low frequencies and in a deterioration in the high frequencies when compared to second order problems. Furthermore, the derivation of the symbol reveals another similarity of our problem with a classical diffusion problem. Since the entries of the coefficient matrices are defined as evaluations of fractional derivatives of the B-spline basis at the collocation points, we are able to express the central entries of the coefficient matrix as inner products of two fractional derivatives of cardinal B-splines. Finally, we perform a numerical study of the approximation behavior of polynomial B-spline collocation. This study suggests that, in line with non-fractional diffusion problems, the approximation order for smooth solutions in the fractional case is p+2-α for even p, and p+1-α for odd p.
Improving Diffusion Inverse Problem Solving with Decoupled Noise Annealing
Diffusion models have recently achieved success in solving Bayesian inverse problems with learned data priors. Current methods build on top of the diffusion sampling process, where each denoising step makes small modifications to samples from the previous step. However, this process struggles to correct errors from earlier sampling steps, leading to worse performance in complicated nonlinear inverse problems, such as phase retrieval. To address this challenge, we propose a new method called Decoupled Annealing Posterior Sampling (DAPS) that relies on a novel noise annealing process. Specifically, we decouple consecutive steps in a diffusion sampling trajectory, allowing them to vary considerably from one another while ensuring their time-marginals anneal to the true posterior as we reduce noise levels. This approach enables the exploration of a larger solution space, improving the success rate for accurate reconstructions. We demonstrate that DAPS significantly improves sample quality and stability across multiple image restoration tasks, particularly in complicated nonlinear inverse problems. For example, we achieve a PSNR of 30.72dB on the FFHQ 256 dataset for phase retrieval, which is an improvement of 9.12dB compared to existing methods.
Solving Inverse Problems via Diffusion-Based Priors: An Approximation-Free Ensemble Sampling Approach
Diffusion models (DMs) have proven to be effective in modeling high-dimensional distributions, leading to their widespread adoption for representing complex priors in Bayesian inverse problems (BIPs). However, current DM-based posterior sampling methods proposed for solving common BIPs rely on heuristic approximations to the generative process. To exploit the generative capability of DMs and avoid the usage of such approximations, we propose an ensemble-based algorithm that performs posterior sampling without the use of heuristic approximations. Our algorithm is motivated by existing works that combine DM-based methods with the sequential Monte Carlo (SMC) method. By examining how the prior evolves through the diffusion process encoded by the pre-trained score function, we derive a modified partial differential equation (PDE) governing the evolution of the corresponding posterior distribution. This PDE includes a modified diffusion term and a reweighting term, which can be simulated via stochastic weighted particle methods. Theoretically, we prove that the error between the true posterior distribution can be bounded in terms of the training error of the pre-trained score function and the number of particles in the ensemble. Empirically, we validate our algorithm on several inverse problems in imaging to show that our method gives more accurate reconstructions compared to existing DM-based methods.
A Variational Perspective on Solving Inverse Problems with Diffusion Models
Diffusion models have emerged as a key pillar of foundation models in visual domains. One of their critical applications is to universally solve different downstream inverse tasks via a single diffusion prior without re-training for each task. Most inverse tasks can be formulated as inferring a posterior distribution over data (e.g., a full image) given a measurement (e.g., a masked image). This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable. To cope with this challenge, we propose a variational approach that by design seeks to approximate the true posterior distribution. We show that our approach naturally leads to regularization by denoising diffusion process (RED-Diff) where denoisers at different timesteps concurrently impose different structural constraints over the image. To gauge the contribution of denoisers from different timesteps, we propose a weighting mechanism based on signal-to-noise-ratio (SNR). Our approach provides a new variational perspective for solving inverse problems with diffusion models, allowing us to formulate sampling as stochastic optimization, where one can simply apply off-the-shelf solvers with lightweight iterates. Our experiments for image restoration tasks such as inpainting and superresolution demonstrate the strengths of our method compared with state-of-the-art sampling-based diffusion models.
Ambient Diffusion Posterior Sampling: Solving Inverse Problems with Diffusion Models trained on Corrupted Data
We provide a framework for solving inverse problems with diffusion models learned from linearly corrupted data. Our method, Ambient Diffusion Posterior Sampling (A-DPS), leverages a generative model pre-trained on one type of corruption (e.g. image inpainting) to perform posterior sampling conditioned on measurements from a potentially different forward process (e.g. image blurring). We test the efficacy of our approach on standard natural image datasets (CelebA, FFHQ, and AFHQ) and we show that A-DPS can sometimes outperform models trained on clean data for several image restoration tasks in both speed and performance. We further extend the Ambient Diffusion framework to train MRI models with access only to Fourier subsampled multi-coil MRI measurements at various acceleration factors (R=2, 4, 6, 8). We again observe that models trained on highly subsampled data are better priors for solving inverse problems in the high acceleration regime than models trained on fully sampled data. We open-source our code and the trained Ambient Diffusion MRI models: https://github.com/utcsilab/ambient-diffusion-mri .
Unsupervised Imaging Inverse Problems with Diffusion Distribution Matching
This work addresses image restoration tasks through the lens of inverse problems using unpaired datasets. In contrast to traditional approaches -- which typically assume full knowledge of the forward model or access to paired degraded and ground-truth images -- the proposed method operates under minimal assumptions and relies only on small, unpaired datasets. This makes it particularly well-suited for real-world scenarios, where the forward model is often unknown or misspecified, and collecting paired data is costly or infeasible. The method leverages conditional flow matching to model the distribution of degraded observations, while simultaneously learning the forward model via a distribution-matching loss that arises naturally from the framework. Empirically, it outperforms both single-image blind and unsupervised approaches on deblurring and non-uniform point spread function (PSF) calibration tasks. It also matches state-of-the-art performance on blind super-resolution. We also showcase the effectiveness of our method with a proof of concept for lens calibration: a real-world application traditionally requiring time-consuming experiments and specialized equipment. In contrast, our approach achieves this with minimal data acquisition effort.
Adaptive Training Meets Progressive Scaling: Elevating Efficiency in Diffusion Models
Diffusion models have demonstrated remarkable efficacy in various generative tasks with the predictive prowess of denoising model. Currently, diffusion models employ a uniform denoising model across all timesteps. However, the inherent variations in data distributions at different timesteps lead to conflicts during training, constraining the potential of diffusion models. To address this challenge, we propose a novel two-stage divide-and-conquer training strategy termed TDC Training. It groups timesteps based on task similarity and difficulty, assigning highly customized denoising models to each group, thereby enhancing the performance of diffusion models. While two-stage training avoids the need to train each model separately, the total training cost is even lower than training a single unified denoising model. Additionally, we introduce Proxy-based Pruning to further customize the denoising models. This method transforms the pruning problem of diffusion models into a multi-round decision-making problem, enabling precise pruning of diffusion models. Our experiments validate the effectiveness of TDC Training, demonstrating improvements in FID of 1.5 on ImageNet64 compared to original IDDPM, while saving about 20\% of computational resources.
Towards Better Alignment: Training Diffusion Models with Reinforcement Learning Against Sparse Rewards
Diffusion models have achieved remarkable success in text-to-image generation. However, their practical applications are hindered by the misalignment between generated images and corresponding text prompts. To tackle this issue, reinforcement learning (RL) has been considered for diffusion model fine-tuning. Yet, RL's effectiveness is limited by the challenge of sparse reward, where feedback is only available at the end of the generation process. This makes it difficult to identify which actions during the denoising process contribute positively to the final generated image, potentially leading to ineffective or unnecessary denoising policies. To this end, this paper presents a novel RL-based framework that addresses the sparse reward problem when training diffusion models. Our framework, named B^2-DiffuRL, employs two strategies: Backward progressive training and Branch-based sampling. For one thing, backward progressive training focuses initially on the final timesteps of denoising process and gradually extends the training interval to earlier timesteps, easing the learning difficulty from sparse rewards. For another, we perform branch-based sampling for each training interval. By comparing the samples within the same branch, we can identify how much the policies of the current training interval contribute to the final image, which helps to learn effective policies instead of unnecessary ones. B^2-DiffuRL is compatible with existing optimization algorithms. Extensive experiments demonstrate the effectiveness of B^2-DiffuRL in improving prompt-image alignment and maintaining diversity in generated images. The code for this work is available.
PoGDiff: Product-of-Gaussians Diffusion Models for Imbalanced Text-to-Image Generation
Diffusion models have made significant advancements in recent years. However, their performance often deteriorates when trained or fine-tuned on imbalanced datasets. This degradation is largely due to the disproportionate representation of majority and minority data in image-text pairs. In this paper, we propose a general fine-tuning approach, dubbed PoGDiff, to address this challenge. Rather than directly minimizing the KL divergence between the predicted and ground-truth distributions, PoGDiff replaces the ground-truth distribution with a Product of Gaussians (PoG), which is constructed by combining the original ground-truth targets with the predicted distribution conditioned on a neighboring text embedding. Experiments on real-world datasets demonstrate that our method effectively addresses the imbalance problem in diffusion models, improving both generation accuracy and quality.
Image Motion Blur Removal in the Temporal Dimension with Video Diffusion Models
Most motion deblurring algorithms rely on spatial-domain convolution models, which struggle with the complex, non-linear blur arising from camera shake and object motion. In contrast, we propose a novel single-image deblurring approach that treats motion blur as a temporal averaging phenomenon. Our core innovation lies in leveraging a pre-trained video diffusion transformer model to capture diverse motion dynamics within a latent space. It sidesteps explicit kernel estimation and effectively accommodates diverse motion patterns. We implement the algorithm within a diffusion-based inverse problem framework. Empirical results on synthetic and real-world datasets demonstrate that our method outperforms existing techniques in deblurring complex motion blur scenarios. This work paves the way for utilizing powerful video diffusion models to address single-image deblurring challenges.
Improving 3D Imaging with Pre-Trained Perpendicular 2D Diffusion Models
Diffusion models have become a popular approach for image generation and reconstruction due to their numerous advantages. However, most diffusion-based inverse problem-solving methods only deal with 2D images, and even recently published 3D methods do not fully exploit the 3D distribution prior. To address this, we propose a novel approach using two perpendicular pre-trained 2D diffusion models to solve the 3D inverse problem. By modeling the 3D data distribution as a product of 2D distributions sliced in different directions, our method effectively addresses the curse of dimensionality. Our experimental results demonstrate that our method is highly effective for 3D medical image reconstruction tasks, including MRI Z-axis super-resolution, compressed sensing MRI, and sparse-view CT. Our method can generate high-quality voxel volumes suitable for medical applications.
Elucidating the Exposure Bias in Diffusion Models
Diffusion models have demonstrated impressive generative capabilities, but their exposure bias problem, described as the input mismatch between training and sampling, lacks in-depth exploration. In this paper, we systematically investigate the exposure bias problem in diffusion models by first analytically modelling the sampling distribution, based on which we then attribute the prediction error at each sampling step as the root cause of the exposure bias issue. Furthermore, we discuss potential solutions to this issue and propose an intuitive metric for it. Along with the elucidation of exposure bias, we propose a simple, yet effective, training-free method called Epsilon Scaling to alleviate the exposure bias. We show that Epsilon Scaling explicitly moves the sampling trajectory closer to the vector field learned in the training phase by scaling down the network output (Epsilon), mitigating the input mismatch between training and sampling. Experiments on various diffusion frameworks (ADM, DDPM/DDIM, EDM, LDM), unconditional and conditional settings, and deterministic vs. stochastic sampling verify the effectiveness of our method. Remarkably, our ADM-ES, as a SOTA stochastic sampler, obtains 2.17 FID on CIFAR-10 under 100-step unconditional generation. The code is available at https://github.com/forever208/ADM-ES and https://github.com/forever208/EDM-ES.
ImageBrush: Learning Visual In-Context Instructions for Exemplar-Based Image Manipulation
While language-guided image manipulation has made remarkable progress, the challenge of how to instruct the manipulation process faithfully reflecting human intentions persists. An accurate and comprehensive description of a manipulation task using natural language is laborious and sometimes even impossible, primarily due to the inherent uncertainty and ambiguity present in linguistic expressions. Is it feasible to accomplish image manipulation without resorting to external cross-modal language information? If this possibility exists, the inherent modality gap would be effortlessly eliminated. In this paper, we propose a novel manipulation methodology, dubbed ImageBrush, that learns visual instructions for more accurate image editing. Our key idea is to employ a pair of transformation images as visual instructions, which not only precisely captures human intention but also facilitates accessibility in real-world scenarios. Capturing visual instructions is particularly challenging because it involves extracting the underlying intentions solely from visual demonstrations and then applying this operation to a new image. To address this challenge, we formulate visual instruction learning as a diffusion-based inpainting problem, where the contextual information is fully exploited through an iterative process of generation. A visual prompting encoder is carefully devised to enhance the model's capacity in uncovering human intent behind the visual instructions. Extensive experiments show that our method generates engaging manipulation results conforming to the transformations entailed in demonstrations. Moreover, our model exhibits robust generalization capabilities on various downstream tasks such as pose transfer, image translation and video inpainting.
LIPE: Learning Personalized Identity Prior for Non-rigid Image Editing
Although recent years have witnessed significant advancements in image editing thanks to the remarkable progress of text-to-image diffusion models, the problem of non-rigid image editing still presents its complexities and challenges. Existing methods often fail to achieve consistent results due to the absence of unique identity characteristics. Thus, learning a personalized identity prior might help with consistency in the edited results. In this paper, we explore a novel task: learning the personalized identity prior for text-based non-rigid image editing. To address the problems in jointly learning prior and editing the image, we present LIPE, a two-stage framework designed to customize the generative model utilizing a limited set of images of the same subject, and subsequently employ the model with learned prior for non-rigid image editing. Experimental results demonstrate the advantages of our approach in various editing scenarios over past related leading methods in qualitative and quantitative ways.
Solving Inverse Problems with Latent Diffusion Models via Hard Data Consistency
Diffusion models have recently emerged as powerful generative priors for solving inverse problems. However, training diffusion models in the pixel space are both data-intensive and computationally demanding, which restricts their applicability as priors for high-dimensional real-world data such as medical images. Latent diffusion models, which operate in a much lower-dimensional space, offer a solution to these challenges. However, incorporating latent diffusion models to solve inverse problems remains a challenging problem due to the nonlinearity of the encoder and decoder. To address these issues, we propose ReSample, an algorithm that can solve general inverse problems with pre-trained latent diffusion models. Our algorithm incorporates data consistency by solving an optimization problem during the reverse sampling process, a concept that we term as hard data consistency. Upon solving this optimization problem, we propose a novel resampling scheme to map the measurement-consistent sample back onto the noisy data manifold and theoretically demonstrate its benefits. Lastly, we apply our algorithm to solve a wide range of linear and nonlinear inverse problems in both natural and medical images, demonstrating that our approach outperforms existing state-of-the-art approaches, including those based on pixel-space diffusion models.
Deep Diffusion Image Prior for Efficient OOD Adaptation in 3D Inverse Problems
Recent inverse problem solvers that leverage generative diffusion priors have garnered significant attention due to their exceptional quality. However, adaptation of the prior is necessary when there exists a discrepancy between the training and testing distributions. In this work, we propose deep diffusion image prior (DDIP), which generalizes the recent adaptation method of SCD by introducing a formal connection to the deep image prior. Under this framework, we propose an efficient adaptation method dubbed D3IP, specified for 3D measurements, which accelerates DDIP by orders of magnitude while achieving superior performance. D3IP enables seamless integration of 3D inverse solvers and thus leads to coherent 3D reconstruction. Moreover, we show that meta-learning techniques can also be applied to yield even better performance. We show that our method is capable of solving diverse 3D reconstructive tasks from the generative prior trained only with phantom images that are vastly different from the training set, opening up new opportunities of applying diffusion inverse solvers even when training with gold standard data is impossible. Code: https://github.com/HJ-harry/DDIP3D
Direct Diffusion Bridge using Data Consistency for Inverse Problems
Diffusion model-based inverse problem solvers have shown impressive performance, but are limited in speed, mostly as they require reverse diffusion sampling starting from noise. Several recent works have tried to alleviate this problem by building a diffusion process, directly bridging the clean and the corrupted for specific inverse problems. In this paper, we first unify these existing works under the name Direct Diffusion Bridges (DDB), showing that while motivated by different theories, the resulting algorithms only differ in the choice of parameters. Then, we highlight a critical limitation of the current DDB framework, namely that it does not ensure data consistency. To address this problem, we propose a modified inference procedure that imposes data consistency without the need for fine-tuning. We term the resulting method data Consistent DDB (CDDB), which outperforms its inconsistent counterpart in terms of both perception and distortion metrics, thereby effectively pushing the Pareto-frontier toward the optimum. Our proposed method achieves state-of-the-art results on both evaluation criteria, showcasing its superiority over existing methods.
Parallel Diffusion Models of Operator and Image for Blind Inverse Problems
Diffusion model-based inverse problem solvers have demonstrated state-of-the-art performance in cases where the forward operator is known (i.e. non-blind). However, the applicability of the method to blind inverse problems has yet to be explored. In this work, we show that we can indeed solve a family of blind inverse problems by constructing another diffusion prior for the forward operator. Specifically, parallel reverse diffusion guided by gradients from the intermediate stages enables joint optimization of both the forward operator parameters as well as the image, such that both are jointly estimated at the end of the parallel reverse diffusion procedure. We show the efficacy of our method on two representative tasks -- blind deblurring, and imaging through turbulence -- and show that our method yields state-of-the-art performance, while also being flexible to be applicable to general blind inverse problems when we know the functional forms.
Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems
Recent studies on inverse problems have proposed posterior samplers that leverage the pre-trained diffusion models as powerful priors. These attempts have paved the way for using diffusion models in a wide range of inverse problems. However, the existing methods entail computationally demanding iterative sampling procedures and optimize a separate solution for each measurement, which leads to limited scalability and lack of generalization capability across unseen samples. To address these limitations, we propose a novel approach, Diffusion prior-based Amortized Variational Inference (DAVI) that solves inverse problems with a diffusion prior from an amortized variational inference perspective. Specifically, instead of separate measurement-wise optimization, our amortized inference learns a function that directly maps measurements to the implicit posterior distributions of corresponding clean data, enabling a single-step posterior sampling even for unseen measurements. Extensive experiments on image restoration tasks, e.g., Gaussian deblur, 4times super-resolution, and box inpainting with two benchmark datasets, demonstrate our approach's superior performance over strong baselines. Code is available at https://github.com/mlvlab/DAVI.
Solving 3D Inverse Problems using Pre-trained 2D Diffusion Models
Diffusion models have emerged as the new state-of-the-art generative model with high quality samples, with intriguing properties such as mode coverage and high flexibility. They have also been shown to be effective inverse problem solvers, acting as the prior of the distribution, while the information of the forward model can be granted at the sampling stage. Nonetheless, as the generative process remains in the same high dimensional (i.e. identical to data dimension) space, the models have not been extended to 3D inverse problems due to the extremely high memory and computational cost. In this paper, we combine the ideas from the conventional model-based iterative reconstruction with the modern diffusion models, which leads to a highly effective method for solving 3D medical image reconstruction tasks such as sparse-view tomography, limited angle tomography, compressed sensing MRI from pre-trained 2D diffusion models. In essence, we propose to augment the 2D diffusion prior with a model-based prior in the remaining direction at test time, such that one can achieve coherent reconstructions across all dimensions. Our method can be run in a single commodity GPU, and establishes the new state-of-the-art, showing that the proposed method can perform reconstructions of high fidelity and accuracy even in the most extreme cases (e.g. 2-view 3D tomography). We further reveal that the generalization capacity of the proposed method is surprisingly high, and can be used to reconstruct volumes that are entirely different from the training dataset.
Diffusion Posterior Sampling for General Noisy Inverse Problems
Diffusion models have been recently studied as powerful generative inverse problem solvers, owing to their high quality reconstructions and the ease of combining existing iterative solvers. However, most works focus on solving simple linear inverse problems in noiseless settings, which significantly under-represents the complexity of real-world problems. In this work, we extend diffusion solvers to efficiently handle general noisy (non)linear inverse problems via approximation of the posterior sampling. Interestingly, the resulting posterior sampling scheme is a blended version of diffusion sampling with the manifold constrained gradient without a strict measurement consistency projection step, yielding a more desirable generative path in noisy settings compared to the previous studies. Our method demonstrates that diffusion models can incorporate various measurement noise statistics such as Gaussian and Poisson, and also efficiently handle noisy nonlinear inverse problems such as Fourier phase retrieval and non-uniform deblurring. Code available at https://github.com/DPS2022/diffusion-posterior-sampling
Diffusion with Forward Models: Solving Stochastic Inverse Problems Without Direct Supervision
Denoising diffusion models are a powerful type of generative models used to capture complex distributions of real-world signals. However, their applicability is limited to scenarios where training samples are readily available, which is not always the case in real-world applications. For example, in inverse graphics, the goal is to generate samples from a distribution of 3D scenes that align with a given image, but ground-truth 3D scenes are unavailable and only 2D images are accessible. To address this limitation, we propose a novel class of denoising diffusion probabilistic models that learn to sample from distributions of signals that are never directly observed. Instead, these signals are measured indirectly through a known differentiable forward model, which produces partial observations of the unknown signal. Our approach involves integrating the forward model directly into the denoising process. This integration effectively connects the generative modeling of observations with the generative modeling of the underlying signals, allowing for end-to-end training of a conditional generative model over signals. During inference, our approach enables sampling from the distribution of underlying signals that are consistent with a given partial observation. We demonstrate the effectiveness of our method on three challenging computer vision tasks. For instance, in the context of inverse graphics, our model enables direct sampling from the distribution of 3D scenes that align with a single 2D input image.
Improving Diffusion Models for Inverse Problems using Manifold Constraints
Recently, diffusion models have been used to solve various inverse problems in an unsupervised manner with appropriate modifications to the sampling process. However, the current solvers, which recursively apply a reverse diffusion step followed by a projection-based measurement consistency step, often produce suboptimal results. By studying the generative sampling path, here we show that current solvers throw the sample path off the data manifold, and hence the error accumulates. To address this, we propose an additional correction term inspired by the manifold constraint, which can be used synergistically with the previous solvers to make the iterations close to the manifold. The proposed manifold constraint is straightforward to implement within a few lines of code, yet boosts the performance by a surprisingly large margin. With extensive experiments, we show that our method is superior to the previous methods both theoretically and empirically, producing promising results in many applications such as image inpainting, colorization, and sparse-view computed tomography. Code available https://github.com/HJ-harry/MCG_diffusion
Zero-Shot Solving of Imaging Inverse Problems via Noise-Refined Likelihood Guided Diffusion Models
Diffusion models have achieved remarkable success in imaging inverse problems owing to their powerful generative capabilities. However, existing approaches typically rely on models trained for specific degradation types, limiting their generalizability to various degradation scenarios. To address this limitation, we propose a zero-shot framework capable of handling various imaging inverse problems without model retraining. We introduce a likelihood-guided noise refinement mechanism that derives a closed-form approximation of the likelihood score, simplifying score estimation and avoiding expensive gradient computations. This estimated score is subsequently utilized to refine the model-predicted noise, thereby better aligning the restoration process with the generative framework of diffusion models. In addition, we integrate the Denoising Diffusion Implicit Models (DDIM) sampling strategy to further improve inference efficiency. The proposed mechanism can be applied to both optimization-based and sampling-based schemes, providing an effective and flexible zero-shot solution for imaging inverse problems. Extensive experiments demonstrate that our method achieves superior performance across multiple inverse problems, particularly in compressive sensing, delivering high-quality reconstructions even at an extremely low sampling rate (5%).
Warped Diffusion: Solving Video Inverse Problems with Image Diffusion Models
Using image models naively for solving inverse video problems often suffers from flickering, texture-sticking, and temporal inconsistency in generated videos. To tackle these problems, in this paper, we view frames as continuous functions in the 2D space, and videos as a sequence of continuous warping transformations between different frames. This perspective allows us to train function space diffusion models only on images and utilize them to solve temporally correlated inverse problems. The function space diffusion models need to be equivariant with respect to the underlying spatial transformations. To ensure temporal consistency, we introduce a simple post-hoc test-time guidance towards (self)-equivariant solutions. Our method allows us to deploy state-of-the-art latent diffusion models such as Stable Diffusion XL to solve video inverse problems. We demonstrate the effectiveness of our method for video inpainting and 8times video super-resolution, outperforming existing techniques based on noise transformations. We provide generated video results: https://giannisdaras.github.io/warped_diffusion.github.io/.
Ensemble Kalman Diffusion Guidance: A Derivative-free Method for Inverse Problems
When solving inverse problems, it is increasingly popular to use pre-trained diffusion models as plug-and-play priors. This framework can accommodate different forward models without re-training while preserving the generative capability of diffusion models. Despite their success in many imaging inverse problems, most existing methods rely on privileged information such as derivative, pseudo-inverse, or full knowledge about the forward model. This reliance poses a substantial limitation that restricts their use in a wide range of problems where such information is unavailable, such as in many scientific applications. To address this issue, we propose Ensemble Kalman Diffusion Guidance (EnKG) for diffusion models, a derivative-free approach that can solve inverse problems by only accessing forward model evaluations and a pre-trained diffusion model prior. We study the empirical effectiveness of our method across various inverse problems, including scientific settings such as inferring fluid flows and astronomical objects, which are highly non-linear inverse problems that often only permit black-box access to the forward model.
Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse Problems
Krylov subspace, which is generated by multiplying a given vector by the matrix of a linear transformation and its successive powers, has been extensively studied in classical optimization literature to design algorithms that converge quickly for large linear inverse problems. For example, the conjugate gradient method (CG), one of the most popular Krylov subspace methods, is based on the idea of minimizing the residual error in the Krylov subspace. However, with the recent advancement of high-performance diffusion solvers for inverse problems, it is not clear how classical wisdom can be synergistically combined with modern diffusion models. In this study, we propose a novel and efficient diffusion sampling strategy that synergistically combines the diffusion sampling and Krylov subspace methods. Specifically, we prove that if the tangent space at a denoised sample by Tweedie's formula forms a Krylov subspace, then the CG initialized with the denoised data ensures the data consistency update to remain in the tangent space. This negates the need to compute the manifold-constrained gradient (MCG), leading to a more efficient diffusion sampling method. Our method is applicable regardless of the parametrization and setting (i.e., VE, VP). Notably, we achieve state-of-the-art reconstruction quality on challenging real-world medical inverse imaging problems, including multi-coil MRI reconstruction and 3D CT reconstruction. Moreover, our proposed method achieves more than 80 times faster inference time than the previous state-of-the-art method. Code is available at https://github.com/HJ-harry/DDS
Diffusion Model Based Posterior Sampling for Noisy Linear Inverse Problems
With the rapid development of diffusion models and flow-based generative models, there has been a surge of interests in solving noisy linear inverse problems, e.g., super-resolution, deblurring, denoising, colorization, etc, with generative models. However, while remarkable reconstruction performances have been achieved, their inference time is typically too slow since most of them rely on the seminal diffusion posterior sampling (DPS) framework and thus to approximate the intractable likelihood score, time-consuming gradient calculation through back-propagation is needed. To address this issue, this paper provides a fast and effective solution by proposing a simple closed-form approximation to the likelihood score. For both diffusion and flow-based models, extensive experiments are conducted on various noisy linear inverse problems such as noisy super-resolution, denoising, deblurring, and colorization. In all these tasks, our method (namely DMPS) demonstrates highly competitive or even better reconstruction performances while being significantly faster than all the baseline methods.
Prompt-tuning latent diffusion models for inverse problems
We propose a new method for solving imaging inverse problems using text-to-image latent diffusion models as general priors. Existing methods using latent diffusion models for inverse problems typically rely on simple null text prompts, which can lead to suboptimal performance. To address this limitation, we introduce a method for prompt tuning, which jointly optimizes the text embedding on-the-fly while running the reverse diffusion process. This allows us to generate images that are more faithful to the diffusion prior. In addition, we propose a method to keep the evolution of latent variables within the range space of the encoder, by projection. This helps to reduce image artifacts, a major problem when using latent diffusion models instead of pixel-based diffusion models. Our combined method, called P2L, outperforms both image- and latent-diffusion model-based inverse problem solvers on a variety of tasks, such as super-resolution, deblurring, and inpainting.
Prompting4Debugging: Red-Teaming Text-to-Image Diffusion Models by Finding Problematic Prompts
Text-to-image diffusion models, e.g. Stable Diffusion (SD), lately have shown remarkable ability in high-quality content generation, and become one of the representatives for the recent wave of transformative AI. Nevertheless, such advance comes with an intensifying concern about the misuse of this generative technology, especially for producing copyrighted or NSFW (i.e. not safe for work) images. Although efforts have been made to filter inappropriate images/prompts or remove undesirable concepts/styles via model fine-tuning, the reliability of these safety mechanisms against diversified problematic prompts remains largely unexplored. In this work, we propose Prompting4Debugging (P4D) as a debugging and red-teaming tool that automatically finds problematic prompts for diffusion models to test the reliability of a deployed safety mechanism. We demonstrate the efficacy of our P4D tool in uncovering new vulnerabilities of SD models with safety mechanisms. Particularly, our result shows that around half of prompts in existing safe prompting benchmarks which were originally considered "safe" can actually be manipulated to bypass many deployed safety mechanisms, including concept removal, negative prompt, and safety guidance. Our findings suggest that, without comprehensive testing, the evaluations on limited safe prompting benchmarks can lead to a false sense of safety for text-to-image models.
Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Imaging Inverse Problems
Denoising diffusion models have emerged as the go-to framework for solving inverse problems in imaging. A critical concern regarding these models is their performance on out-of-distribution (OOD) tasks, which remains an under-explored challenge. Realistic reconstructions inconsistent with the measured data can be generated, hallucinating image features that are uniquely present in the training dataset. To simultaneously enforce data-consistency and leverage data-driven priors, we introduce a novel sampling framework called Steerable Conditional Diffusion. This framework adapts the denoising network specifically to the available measured data. Utilising our proposed method, we achieve substantial enhancements in OOD performance across diverse imaging modalities, advancing the robust deployment of denoising diffusion models in real-world applications.
Solving Linear Inverse Problems Provably via Posterior Sampling with Latent Diffusion Models
We present the first framework to solve linear inverse problems leveraging pre-trained latent diffusion models. Previously proposed algorithms (such as DPS and DDRM) only apply to pixel-space diffusion models. We theoretically analyze our algorithm showing provable sample recovery in a linear model setting. The algorithmic insight obtained from our analysis extends to more general settings often considered in practice. Experimentally, we outperform previously proposed posterior sampling algorithms in a wide variety of problems including random inpainting, block inpainting, denoising, deblurring, destriping, and super-resolution.
MolDiff: Addressing the Atom-Bond Inconsistency Problem in 3D Molecule Diffusion Generation
Deep generative models have recently achieved superior performance in 3D molecule generation. Most of them first generate atoms and then add chemical bonds based on the generated atoms in a post-processing manner. However, there might be no corresponding bond solution for the temporally generated atoms as their locations are generated without considering potential bonds. We define this problem as the atom-bond inconsistency problem and claim it is the main reason for current approaches to generating unrealistic 3D molecules. To overcome this problem, we propose a new diffusion model called MolDiff which can generate atoms and bonds simultaneously while still maintaining their consistency by explicitly modeling the dependence between their relationships. We evaluated the generation ability of our proposed model and the quality of the generated molecules using criteria related to both geometry and chemical properties. The empirical studies showed that our model outperforms previous approaches, achieving a three-fold improvement in success rate and generating molecules with significantly better quality.
Re-imagine the Negative Prompt Algorithm: Transform 2D Diffusion into 3D, alleviate Janus problem and Beyond
Although text-to-image diffusion models have made significant strides in generating images from text, they are sometimes more inclined to generate images like the data on which the model was trained rather than the provided text. This limitation has hindered their usage in both 2D and 3D applications. To address this problem, we explored the use of negative prompts but found that the current implementation fails to produce desired results, particularly when there is an overlap between the main and negative prompts. To overcome this issue, we propose Perp-Neg, a new algorithm that leverages the geometrical properties of the score space to address the shortcomings of the current negative prompts algorithm. Perp-Neg does not require any training or fine-tuning of the model. Moreover, we experimentally demonstrate that Perp-Neg provides greater flexibility in generating images by enabling users to edit out unwanted concepts from the initially generated images in 2D cases. Furthermore, to extend the application of Perp-Neg to 3D, we conducted a thorough exploration of how Perp-Neg can be used in 2D to condition the diffusion model to generate desired views, rather than being biased toward the canonical views. Finally, we applied our 2D intuition to integrate Perp-Neg with the state-of-the-art text-to-3D (DreamFusion) method, effectively addressing its Janus (multi-head) problem. Our project page is available at https://Perp-Neg.github.io/
GibbsDDRM: A Partially Collapsed Gibbs Sampler for Solving Blind Inverse Problems with Denoising Diffusion Restoration
Pre-trained diffusion models have been successfully used as priors in a variety of linear inverse problems, where the goal is to reconstruct a signal from noisy linear measurements. However, existing approaches require knowledge of the linear operator. In this paper, we propose GibbsDDRM, an extension of Denoising Diffusion Restoration Models (DDRM) to a blind setting in which the linear measurement operator is unknown. GibbsDDRM constructs a joint distribution of the data, measurements, and linear operator by using a pre-trained diffusion model for the data prior, and it solves the problem by posterior sampling with an efficient variant of a Gibbs sampler. The proposed method is problem-agnostic, meaning that a pre-trained diffusion model can be applied to various inverse problems without fine-tuning. In experiments, it achieved high performance on both blind image deblurring and vocal dereverberation tasks, despite the use of simple generic priors for the underlying linear operators.
Beyond First-Order Tweedie: Solving Inverse Problems using Latent Diffusion
Sampling from the posterior distribution poses a major computational challenge in solving inverse problems using latent diffusion models. Common methods rely on Tweedie's first-order moments, which are known to induce a quality-limiting bias. Existing second-order approximations are impractical due to prohibitive computational costs, making standard reverse diffusion processes intractable for posterior sampling. This paper introduces Second-order Tweedie sampler from Surrogate Loss (STSL), a novel sampler that offers efficiency comparable to first-order Tweedie with a tractable reverse process using second-order approximation. Our theoretical results reveal that the second-order approximation is lower bounded by our surrogate loss that only requires O(1) compute using the trace of the Hessian, and by the lower bound we derive a new drift term to make the reverse process tractable. Our method surpasses SoTA solvers PSLD and P2L, achieving 4X and 8X reduction in neural function evaluations, respectively, while notably enhancing sampling quality on FFHQ, ImageNet, and COCO benchmarks. In addition, we show STSL extends to text-guided image editing and addresses residual distortions present from corrupted images in leading text-guided image editing methods. To our best knowledge, this is the first work to offer an efficient second-order approximation in solving inverse problems using latent diffusion and editing real-world images with corruptions.
No Training, No Problem: Rethinking Classifier-Free Guidance for Diffusion Models
Classifier-free guidance (CFG) has become the standard method for enhancing the quality of conditional diffusion models. However, employing CFG requires either training an unconditional model alongside the main diffusion model or modifying the training procedure by periodically inserting a null condition. There is also no clear extension of CFG to unconditional models. In this paper, we revisit the core principles of CFG and introduce a new method, independent condition guidance (ICG), which provides the benefits of CFG without the need for any special training procedures. Our approach streamlines the training process of conditional diffusion models and can also be applied during inference on any pre-trained conditional model. Additionally, by leveraging the time-step information encoded in all diffusion networks, we propose an extension of CFG, called time-step guidance (TSG), which can be applied to any diffusion model, including unconditional ones. Our guidance techniques are easy to implement and have the same sampling cost as CFG. Through extensive experiments, we demonstrate that ICG matches the performance of standard CFG across various conditional diffusion models. Moreover, we show that TSG improves generation quality in a manner similar to CFG, without relying on any conditional information.
Diffusion Generative Inverse Design
Inverse design refers to the problem of optimizing the input of an objective function in order to enact a target outcome. For many real-world engineering problems, the objective function takes the form of a simulator that predicts how the system state will evolve over time, and the design challenge is to optimize the initial conditions that lead to a target outcome. Recent developments in learned simulation have shown that graph neural networks (GNNs) can be used for accurate, efficient, differentiable estimation of simulator dynamics, and support high-quality design optimization with gradient- or sampling-based optimization procedures. However, optimizing designs from scratch requires many expensive model queries, and these procedures exhibit basic failures on either non-convex or high-dimensional problems.In this work, we show how denoising diffusion models (DDMs) can be used to solve inverse design problems efficiently and propose a particle sampling algorithm for further improving their efficiency. We perform experiments on a number of fluid dynamics design challenges, and find that our approach substantially reduces the number of calls to the simulator compared to standard techniques.
Constrained Decoding of Diffusion LLMs with Context-Free Grammars
Large language models (LLMs) have shown promising performance across diverse domains. Many practical applications of LLMs, such as code completion and structured data extraction, require adherence to syntactic constraints specified by a formal language. Yet, due to their probabilistic nature, LLM output is not guaranteed to adhere to such formal languages. Prior work has proposed constrained decoding as a means to restrict LLM generation to particular formal languages. However, existing works are not applicable to the emerging paradigm of diffusion LLMs, when used in practical scenarios such as the generation of formally correct C++ or JSON output. In this paper we address this challenge and present the first constrained decoding method for diffusion models, one that can handle formal languages captured by context-free grammars. We begin by reducing constrained decoding to the more general additive infilling problem, which asks whether a partial output can be completed to a valid word in the target language. This problem also naturally subsumes the previously unaddressed multi-region infilling constrained decoding. We then reduce this problem to the task of deciding whether the intersection of the target language and a regular language is empty and present an efficient algorithm to solve it for context-free languages. Empirical results on various applications, such as C++ code infilling and structured data extraction in JSON, demonstrate that our method achieves near-perfect syntactic correctness while consistently preserving or improving functional correctness. Importantly, our efficiency optimizations ensure that the computational overhead remains practical.
Regularized Newton Raphson Inversion for Text-to-Image Diffusion Models
Diffusion inversion is the problem of taking an image and a text prompt that describes it and finding a noise latent that would generate the image. Most current inversion techniques operate by approximately solving an implicit equation and may converge slowly or yield poor reconstructed images. Here, we formulate the problem as finding the roots of an implicit equation and design a method to solve it efficiently. Our solution is based on Newton-Raphson (NR), a well-known technique in numerical analysis. A naive application of NR may be computationally infeasible and tends to converge to incorrect solutions. We describe an efficient regularized formulation that converges quickly to a solution that provides high-quality reconstructions. We also identify a source of inconsistency stemming from prompt conditioning during the inversion process, which significantly degrades the inversion quality. To address this, we introduce a prompt-aware adjustment of the encoding, effectively correcting this issue. Our solution, Regularized Newton-Raphson Inversion, inverts an image within 0.5 sec for latent consistency models, opening the door for interactive image editing. We further demonstrate improved results in image interpolation and generation of rare objects.
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
We tackle the problem of sampling from intractable high-dimensional density functions, a fundamental task that often appears in machine learning and statistics. We extend recent sampling-based approaches that leverage controlled stochastic processes to model approximate samples from these target densities. The main drawback of these approaches is that the training objective requires full trajectories to compute, resulting in sluggish credit assignment issues due to use of entire trajectories and a learning signal present only at the terminal time. In this work, we present Diffusion Generative Flow Samplers (DGFS), a sampling-based framework where the learning process can be tractably broken down into short partial trajectory segments, via parameterizing an additional "flow function". Our method takes inspiration from the theory developed for generative flow networks (GFlowNets), allowing us to make use of intermediate learning signals. Through various challenging experiments, we demonstrate that DGFS achieves more accurate estimates of the normalization constant than closely-related prior methods.
Bidirectional Temporal Diffusion Model for Temporally Consistent Human Animation
We introduce a method to generate temporally coherent human animation from a single image, a video, or a random noise. This problem has been formulated as modeling of an auto-regressive generation, i.e., to regress past frames to decode future frames. However, such unidirectional generation is highly prone to motion drifting over time, generating unrealistic human animation with significant artifacts such as appearance distortion. We claim that bidirectional temporal modeling enforces temporal coherence on a generative network by largely suppressing the motion ambiguity of human appearance. To prove our claim, we design a novel human animation framework using a denoising diffusion model: a neural network learns to generate the image of a person by denoising temporal Gaussian noises whose intermediate results are cross-conditioned bidirectionally between consecutive frames. In the experiments, our method demonstrates strong performance compared to existing unidirectional approaches with realistic temporal coherence.
Graphically Structured Diffusion Models
We introduce a framework for automatically defining and learning deep generative models with problem-specific structure. We tackle problem domains that are more traditionally solved by algorithms such as sorting, constraint satisfaction for Sudoku, and matrix factorization. Concretely, we train diffusion models with an architecture tailored to the problem specification. This problem specification should contain a graphical model describing relationships between variables, and often benefits from explicit representation of subcomputations. Permutation invariances can also be exploited. Across a diverse set of experiments we improve the scaling relationship between problem dimension and our model's performance, in terms of both training time and final accuracy. Our code can be found at https://github.com/plai-group/gsdm.
Diffusion On Syntax Trees For Program Synthesis
Large language models generate code one token at a time. Their autoregressive generation process lacks the feedback of observing the program's output. Training LLMs to suggest edits directly can be challenging due to the scarcity of rich edit data. To address these problems, we propose neural diffusion models that operate on syntax trees of any context-free grammar. Similar to image diffusion models, our method also inverts ``noise'' applied to syntax trees. Rather than generating code sequentially, we iteratively edit it while preserving syntactic validity, which makes it easy to combine this neural model with search. We apply our approach to inverse graphics tasks, where our model learns to convert images into programs that produce those images. Combined with search, our model is able to write graphics programs, see the execution result, and debug them to meet the required specifications. We additionally show how our system can write graphics programs for hand-drawn sketches.
Conditional Variational Diffusion Models
Inverse problems aim to determine parameters from observations, a crucial task in engineering and science. Lately, generative models, especially diffusion models, have gained popularity in this area for their ability to produce realistic solutions and their good mathematical properties. Despite their success, an important drawback of diffusion models is their sensitivity to the choice of variance schedule, which controls the dynamics of the diffusion process. Fine-tuning this schedule for specific applications is crucial but time-costly and does not guarantee an optimal result. We propose a novel approach for learning the schedule as part of the training process. Our method supports probabilistic conditioning on data, provides high-quality solutions, and is flexible, proving able to adapt to different applications with minimum overhead. This approach is tested in two unrelated inverse problems: super-resolution microscopy and quantitative phase imaging, yielding comparable or superior results to previous methods and fine-tuned diffusion models. We conclude that fine-tuning the schedule by experimentation should be avoided because it can be learned during training in a stable way that yields better results.
Diffusion Language Models Know the Answer Before Decoding
Diffusion language models (DLMs) have recently emerged as an alternative to autoregressive approaches, offering parallel sequence generation and flexible token orders. However, their inference remains slower than that of autoregressive models, primarily due to the cost of bidirectional attention and the large number of refinement steps required for high quality outputs. In this work, we highlight and leverage an overlooked property of DLMs early answer convergence: in many cases, the correct answer can be internally identified by half steps before the final decoding step, both under semi-autoregressive and random remasking schedules. For example, on GSM8K and MMLU, up to 97% and 99% of instances, respectively, can be decoded correctly using only half of the refinement steps. Building on this observation, we introduce Prophet, a training-free fast decoding paradigm that enables early commit decoding. Specifically, Prophet dynamically decides whether to continue refinement or to go "all-in" (i.e., decode all remaining tokens in one step), using the confidence gap between the top-2 prediction candidates as the criterion. It integrates seamlessly into existing DLM implementations, incurs negligible overhead, and requires no additional training. Empirical evaluations of LLaDA-8B and Dream-7B across multiple tasks show that Prophet reduces the number of decoding steps by up to 3.4x while preserving high generation quality. These results recast DLM decoding as a problem of when to stop sampling, and demonstrate that early decode convergence provides a simple yet powerful mechanism for accelerating DLM inference, complementary to existing speedup techniques. Our code is publicly available at https://github.com/pixeli99/Prophet.
Visual Diffusion Models are Geometric Solvers
In this paper we show that visual diffusion models can serve as effective geometric solvers: they can directly reason about geometric problems by working in pixel space. We first demonstrate this on the Inscribed Square Problem, a long-standing problem in geometry that asks whether every Jordan curve contains four points forming a square. We then extend the approach to two other well-known hard geometric problems: the Steiner Tree Problem and the Simple Polygon Problem. Our method treats each problem instance as an image and trains a standard visual diffusion model that transforms Gaussian noise into an image representing a valid approximate solution that closely matches the exact one. The model learns to transform noisy geometric structures into correct configurations, effectively recasting geometric reasoning as image generation. Unlike prior work that necessitates specialized architectures and domain-specific adaptations when applying diffusion to parametric geometric representations, we employ a standard visual diffusion model that operates on the visual representation of the problem. This simplicity highlights a surprising bridge between generative modeling and geometric problem solving. Beyond the specific problems studied here, our results point toward a broader paradigm: operating in image space provides a general and practical framework for approximating notoriously hard problems, and opens the door to tackling a far wider class of challenging geometric tasks.
3D Diffusion Policy
Imitation learning provides an efficient way to teach robots dexterous skills; however, learning complex skills robustly and generalizablely usually consumes large amounts of human demonstrations. To tackle this challenging problem, we present 3D Diffusion Policy (DP3), a novel visual imitation learning approach that incorporates the power of 3D visual representations into diffusion policies, a class of conditional action generative models. The core design of DP3 is the utilization of a compact 3D visual representation, extracted from sparse point clouds with an efficient point encoder. In our experiments involving 72 simulation tasks, DP3 successfully handles most tasks with just 10 demonstrations and surpasses baselines with a 55.3% relative improvement. In 4 real robot tasks, DP3 demonstrates precise control with a high success rate of 85%, given only 40 demonstrations of each task, and shows excellent generalization abilities in diverse aspects, including space, viewpoint, appearance, and instance. Interestingly, in real robot experiments, DP3 rarely violates safety requirements, in contrast to baseline methods which frequently do, necessitating human intervention. Our extensive evaluation highlights the critical importance of 3D representations in real-world robot learning. Videos, code, and data are available on https://3d-diffusion-policy.github.io .
Diff9D: Diffusion-Based Domain-Generalized Category-Level 9-DoF Object Pose Estimation
Nine-degrees-of-freedom (9-DoF) object pose and size estimation is crucial for enabling augmented reality and robotic manipulation. Category-level methods have received extensive research attention due to their potential for generalization to intra-class unknown objects. However, these methods require manual collection and labeling of large-scale real-world training data. To address this problem, we introduce a diffusion-based paradigm for domain-generalized category-level 9-DoF object pose estimation. Our motivation is to leverage the latent generalization ability of the diffusion model to address the domain generalization challenge in object pose estimation. This entails training the model exclusively on rendered synthetic data to achieve generalization to real-world scenes. We propose an effective diffusion model to redefine 9-DoF object pose estimation from a generative perspective. Our model does not require any 3D shape priors during training or inference. By employing the Denoising Diffusion Implicit Model, we demonstrate that the reverse diffusion process can be executed in as few as 3 steps, achieving near real-time performance. Finally, we design a robotic grasping system comprising both hardware and software components. Through comprehensive experiments on two benchmark datasets and the real-world robotic system, we show that our method achieves state-of-the-art domain generalization performance. Our code will be made public at https://github.com/CNJianLiu/Diff9D.
Hierarchical Conditioning of Diffusion Models Using Tree-of-Life for Studying Species Evolution
A central problem in biology is to understand how organisms evolve and adapt to their environment by acquiring variations in the observable characteristics or traits of species across the tree of life. With the growing availability of large-scale image repositories in biology and recent advances in generative modeling, there is an opportunity to accelerate the discovery of evolutionary traits automatically from images. Toward this goal, we introduce Phylo-Diffusion, a novel framework for conditioning diffusion models with phylogenetic knowledge represented in the form of HIERarchical Embeddings (HIER-Embeds). We also propose two new experiments for perturbing the embedding space of Phylo-Diffusion: trait masking and trait swapping, inspired by counterpart experiments of gene knockout and gene editing/swapping. Our work represents a novel methodological advance in generative modeling to structure the embedding space of diffusion models using tree-based knowledge. Our work also opens a new chapter of research in evolutionary biology by using generative models to visualize evolutionary changes directly from images. We empirically demonstrate the usefulness of Phylo-Diffusion in capturing meaningful trait variations for fishes and birds, revealing novel insights about the biological mechanisms of their evolution.
PolarAnything: Diffusion-based Polarimetric Image Synthesis
Polarization images facilitate image enhancement and 3D reconstruction tasks, but the limited accessibility of polarization cameras hinders their broader application. This gap drives the need for synthesizing photorealistic polarization images. The existing polarization simulator Mitsuba relies on a parametric polarization image formation model and requires extensive 3D assets covering shape and PBR materials, preventing it from generating large-scale photorealistic images. To address this problem, we propose PolarAnything, capable of synthesizing polarization images from a single RGB input with both photorealism and physical accuracy, eliminating the dependency on 3D asset collections. Drawing inspiration from the zero-shot performance of pretrained diffusion models, we introduce a diffusion-based generative framework with an effective representation strategy that preserves the fidelity of polarization properties. Experiments show that our model generates high-quality polarization images and supports downstream tasks like shape from polarization.
Diffusion Implicit Policy for Unpaired Scene-aware Motion Synthesis
Human motion generation is a long-standing problem, and scene-aware motion synthesis has been widely researched recently due to its numerous applications. Prevailing methods rely heavily on paired motion-scene data whose quantity is limited. Meanwhile, it is difficult to generalize to diverse scenes when trained only on a few specific ones. Thus, we propose a unified framework, termed Diffusion Implicit Policy (DIP), for scene-aware motion synthesis, where paired motion-scene data are no longer necessary. In this framework, we disentangle human-scene interaction from motion synthesis during training and then introduce an interaction-based implicit policy into motion diffusion during inference. Synthesized motion can be derived through iterative diffusion denoising and implicit policy optimization, thus motion naturalness and interaction plausibility can be maintained simultaneously. The proposed implicit policy optimizes the intermediate noised motion in a GAN Inversion manner to maintain motion continuity and control keyframe poses though the ControlNet branch and motion inpainting. For long-term motion synthesis, we introduce motion blending for stable transitions between multiple sub-tasks, where motions are fused in rotation power space and translation linear space. The proposed method is evaluated on synthesized scenes with ShapeNet furniture, and real scenes from PROX and Replica. Results show that our framework presents better motion naturalness and interaction plausibility than cutting-edge methods. This also indicates the feasibility of utilizing the DIP for motion synthesis in more general tasks and versatile scenes. https://jingyugong.github.io/DiffusionImplicitPolicy/
Accelerating Diffusion Transformers with Token-wise Feature Caching
Diffusion transformers have shown significant effectiveness in both image and video synthesis at the expense of huge computation costs. To address this problem, feature caching methods have been introduced to accelerate diffusion transformers by caching the features in previous timesteps and reusing them in the following timesteps. However, previous caching methods ignore that different tokens exhibit different sensitivities to feature caching, and feature caching on some tokens may lead to 10times more destruction to the overall generation quality compared with other tokens. In this paper, we introduce token-wise feature caching, allowing us to adaptively select the most suitable tokens for caching, and further enable us to apply different caching ratios to neural layers in different types and depths. Extensive experiments on PixArt-alpha, OpenSora, and DiT demonstrate our effectiveness in both image and video generation with no requirements for training. For instance, 2.36times and 1.93times acceleration are achieved on OpenSora and PixArt-alpha with almost no drop in generation quality.
Diffusion assisted image reconstruction in optoacoustic tomography
In this paper we consider the problem of acoustic inversion in the context of the optoacoustic tomography image reconstruction problem. By leveraging the ability of the recently proposed diffusion models for image generative tasks among others, we devise an image reconstruction architecture based on a conditional diffusion process. The scheme makes use of an initial image reconstruction, which is preprocessed by an autoencoder to generate an adequate representation. This representation is used as conditional information in a generative diffusion process. Although the computational requirements for training and implementing the architecture are not low, several design choices discussed in the work were made to keep them manageable. Numerical results show that the conditional information allows to properly bias the parameters of the diffusion model to improve the quality of the initial reconstructed image, eliminating artifacts or even reconstructing finer details of the ground-truth image that are not recoverable by the initial image reconstruction method. We also tested the proposal under experimental conditions and the obtained results were in line with those corresponding to the numerical simulations. Improvements in image quality up to 17 % in terms of peak signal-to-noise ratio were observed.
On diffusion models for amortized inference: Benchmarking and improving stochastic control and sampling
We study the problem of training diffusion models to sample from a distribution with a given unnormalized density or energy function. We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods (continuous generative flow networks). Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work. We also propose a novel exploration strategy for off-policy methods, based on local search in the target space with the use of a replay buffer, and show that it improves the quality of samples on a variety of target distributions. Our code for the sampling methods and benchmarks studied is made public at https://github.com/GFNOrg/gfn-diffusion as a base for future work on diffusion models for amortized inference.
Denoising Diffusion Bridge Models
Diffusion models are powerful generative models that map noise to data using stochastic processes. However, for many applications such as image editing, the model input comes from a distribution that is not random noise. As such, diffusion models must rely on cumbersome methods like guidance or projected sampling to incorporate this information in the generative process. In our work, we propose Denoising Diffusion Bridge Models (DDBMs), a natural alternative to this paradigm based on diffusion bridges, a family of processes that interpolate between two paired distributions given as endpoints. Our method learns the score of the diffusion bridge from data and maps from one endpoint distribution to the other by solving a (stochastic) differential equation based on the learned score. Our method naturally unifies several classes of generative models, such as score-based diffusion models and OT-Flow-Matching, allowing us to adapt existing design and architectural choices to our more general problem. Empirically, we apply DDBMs to challenging image datasets in both pixel and latent space. On standard image translation problems, DDBMs achieve significant improvement over baseline methods, and, when we reduce the problem to image generation by setting the source distribution to random noise, DDBMs achieve comparable FID scores to state-of-the-art methods despite being built for a more general task.
Stimulating Diffusion Model for Image Denoising via Adaptive Embedding and Ensembling
Image denoising is a fundamental problem in computational photography, where achieving high perception with low distortion is highly demanding. Current methods either struggle with perceptual quality or suffer from significant distortion. Recently, the emerging diffusion model has achieved state-of-the-art performance in various tasks and demonstrates great potential for image denoising. However, stimulating diffusion models for image denoising is not straightforward and requires solving several critical problems. For one thing, the input inconsistency hinders the connection between diffusion models and image denoising. For another, the content inconsistency between the generated image and the desired denoised image introduces distortion. To tackle these problems, we present a novel strategy called the Diffusion Model for Image Denoising (DMID) by understanding and rethinking the diffusion model from a denoising perspective. Our DMID strategy includes an adaptive embedding method that embeds the noisy image into a pre-trained unconditional diffusion model and an adaptive ensembling method that reduces distortion in the denoised image. Our DMID strategy achieves state-of-the-art performance on both distortion-based and perception-based metrics, for both Gaussian and real-world image denoising.The code is available at https://github.com/Li-Tong-621/DMID.
DiffusionDepth: Diffusion Denoising Approach for Monocular Depth Estimation
Monocular depth estimation is a challenging task that predicts the pixel-wise depth from a single 2D image. Current methods typically model this problem as a regression or classification task. We propose DiffusionDepth, a new approach that reformulates monocular depth estimation as a denoising diffusion process. It learns an iterative denoising process to `denoise' random depth distribution into a depth map with the guidance of monocular visual conditions. The process is performed in the latent space encoded by a dedicated depth encoder and decoder. Instead of diffusing ground truth (GT) depth, the model learns to reverse the process of diffusing the refined depth of itself into random depth distribution. This self-diffusion formulation overcomes the difficulty of applying generative models to sparse GT depth scenarios. The proposed approach benefits this task by refining depth estimation step by step, which is superior for generating accurate and highly detailed depth maps. Experimental results on KITTI and NYU-Depth-V2 datasets suggest that a simple yet efficient diffusion approach could reach state-of-the-art performance in both indoor and outdoor scenarios with acceptable inference time.
Taming Latent Diffusion Model for Neural Radiance Field Inpainting
Neural Radiance Field (NeRF) is a representation for 3D reconstruction from multi-view images. Despite some recent work showing preliminary success in editing a reconstructed NeRF with diffusion prior, they remain struggling to synthesize reasonable geometry in completely uncovered regions. One major reason is the high diversity of synthetic contents from the diffusion model, which hinders the radiance field from converging to a crisp and deterministic geometry. Moreover, applying latent diffusion models on real data often yields a textural shift incoherent to the image condition due to auto-encoding errors. These two problems are further reinforced with the use of pixel-distance losses. To address these issues, we propose tempering the diffusion model's stochasticity with per-scene customization and mitigating the textural shift with masked adversarial training. During the analyses, we also found the commonly used pixel and perceptual losses are harmful in the NeRF inpainting task. Through rigorous experiments, our framework yields state-of-the-art NeRF inpainting results on various real-world scenes. Project page: https://hubert0527.github.io/MALD-NeRF
Constrained Diffusion Implicit Models
This paper describes an efficient algorithm for solving noisy linear inverse problems using pretrained diffusion models. Extending the paradigm of denoising diffusion implicit models (DDIM), we propose constrained diffusion implicit models (CDIM) that modify the diffusion updates to enforce a constraint upon the final output. For noiseless inverse problems, CDIM exactly satisfies the constraints; in the noisy case, we generalize CDIM to satisfy an exact constraint on the residual distribution of the noise. Experiments across a variety of tasks and metrics show strong performance of CDIM, with analogous inference acceleration to unconstrained DDIM: 10 to 50 times faster than previous conditional diffusion methods. We demonstrate the versatility of our approach on many problems including super-resolution, denoising, inpainting, deblurring, and 3D point cloud reconstruction.
TextCtrl: Diffusion-based Scene Text Editing with Prior Guidance Control
Centred on content modification and style preservation, Scene Text Editing (STE) remains a challenging task despite considerable progress in text-to-image synthesis and text-driven image manipulation recently. GAN-based STE methods generally encounter a common issue of model generalization, while Diffusion-based STE methods suffer from undesired style deviations. To address these problems, we propose TextCtrl, a diffusion-based method that edits text with prior guidance control. Our method consists of two key components: (i) By constructing fine-grained text style disentanglement and robust text glyph structure representation, TextCtrl explicitly incorporates Style-Structure guidance into model design and network training, significantly improving text style consistency and rendering accuracy. (ii) To further leverage the style prior, a Glyph-adaptive Mutual Self-attention mechanism is proposed which deconstructs the implicit fine-grained features of the source image to enhance style consistency and vision quality during inference. Furthermore, to fill the vacancy of the real-world STE evaluation benchmark, we create the first real-world image-pair dataset termed ScenePair for fair comparisons. Experiments demonstrate the effectiveness of TextCtrl compared with previous methods concerning both style fidelity and text accuracy.
A Simple Early Exiting Framework for Accelerated Sampling in Diffusion Models
Diffusion models have shown remarkable performance in generation problems over various domains including images, videos, text, and audio. A practical bottleneck of diffusion models is their sampling speed, due to the repeated evaluation of score estimation networks during the inference. In this work, we propose a novel framework capable of adaptively allocating compute required for the score estimation, thereby reducing the overall sampling time of diffusion models. We observe that the amount of computation required for the score estimation may vary along the time step for which the score is estimated. Based on this observation, we propose an early-exiting scheme, where we skip the subset of parameters in the score estimation network during the inference, based on a time-dependent exit schedule. Using the diffusion models for image synthesis, we show that our method could significantly improve the sampling throughput of the diffusion models without compromising image quality. Furthermore, we also demonstrate that our method seamlessly integrates with various types of solvers for faster sampling, capitalizing on their compatibility to enhance overall efficiency. The source code and our experiments are available at https://github.com/taehong-moon/ee-diffusion
Disentangled Diffusion-Based 3D Human Pose Estimation with Hierarchical Spatial and Temporal Denoiser
Recently, diffusion-based methods for monocular 3D human pose estimation have achieved state-of-the-art (SOTA) performance by directly regressing the 3D joint coordinates from the 2D pose sequence. Although some methods decompose the task into bone length and bone direction prediction based on the human anatomical skeleton to explicitly incorporate more human body prior constraints, the performance of these methods is significantly lower than that of the SOTA diffusion-based methods. This can be attributed to the tree structure of the human skeleton. Direct application of the disentangled method could amplify the accumulation of hierarchical errors, propagating through each hierarchy. Meanwhile, the hierarchical information has not been fully explored by the previous methods. To address these problems, a Disentangled Diffusion-based 3D Human Pose Estimation method with Hierarchical Spatial and Temporal Denoiser is proposed, termed DDHPose. In our approach: (1) We disentangle the 3D pose and diffuse the bone length and bone direction during the forward process of the diffusion model to effectively model the human pose prior. A disentanglement loss is proposed to supervise diffusion model learning. (2) For the reverse process, we propose Hierarchical Spatial and Temporal Denoiser (HSTDenoiser) to improve the hierarchical modeling of each joint. Our HSTDenoiser comprises two components: the Hierarchical-Related Spatial Transformer (HRST) and the Hierarchical-Related Temporal Transformer (HRTT). HRST exploits joint spatial information and the influence of the parent joint on each joint for spatial modeling, while HRTT utilizes information from both the joint and its hierarchical adjacent joints to explore the hierarchical temporal correlations among joints. Code and models are available at https://github.com/Andyen512/DDHPose
Improving Diffusion Models for Scene Text Editing with Dual Encoders
Scene text editing is a challenging task that involves modifying or inserting specified texts in an image while maintaining its natural and realistic appearance. Most previous approaches to this task rely on style-transfer models that crop out text regions and feed them into image transfer models, such as GANs. However, these methods are limited in their ability to change text style and are unable to insert texts into images. Recent advances in diffusion models have shown promise in overcoming these limitations with text-conditional image editing. However, our empirical analysis reveals that state-of-the-art diffusion models struggle with rendering correct text and controlling text style. To address these problems, we propose DIFFSTE to improve pre-trained diffusion models with a dual encoder design, which includes a character encoder for better text legibility and an instruction encoder for better style control. An instruction tuning framework is introduced to train our model to learn the mapping from the text instruction to the corresponding image with either the specified style or the style of the surrounding texts in the background. Such a training method further brings our method the zero-shot generalization ability to the following three scenarios: generating text with unseen font variation, e.g., italic and bold, mixing different fonts to construct a new font, and using more relaxed forms of natural language as the instructions to guide the generation task. We evaluate our approach on five datasets and demonstrate its superior performance in terms of text correctness, image naturalness, and style controllability. Our code is publicly available. https://github.com/UCSB-NLP-Chang/DiffSTE
Loopholing Discrete Diffusion: Deterministic Bypass of the Sampling Wall
Discrete diffusion models offer a promising alternative to autoregressive generation through parallel decoding, but they suffer from a sampling wall: once categorical sampling occurs, rich distributional information collapses into one-hot vectors and cannot be propagated across steps, forcing subsequent steps to operate with limited information. To mitigate this problem, we introduce Loopholing, a novel and simple mechanism that preserves this information via a deterministic latent pathway, leading to Loopholing Discrete Diffusion Models (LDDMs). Trained efficiently with a self-conditioning strategy, LDDMs achieve substantial gains-reducing generative perplexity by up to 61% over prior baselines, closing (and in some cases surpassing) the gap with autoregressive models, and producing more coherent text. Applied to reasoning tasks, LDDMs also improve performance on arithmetic benchmarks such as Countdown and Game of 24. These results also indicate that loopholing mitigates idle steps and oscillations, providing a scalable path toward high-quality non-autoregressive text generation.
InstructVideo: Instructing Video Diffusion Models with Human Feedback
Diffusion models have emerged as the de facto paradigm for video generation. However, their reliance on web-scale data of varied quality often yields results that are visually unappealing and misaligned with the textual prompts. To tackle this problem, we propose InstructVideo to instruct text-to-video diffusion models with human feedback by reward fine-tuning. InstructVideo has two key ingredients: 1) To ameliorate the cost of reward fine-tuning induced by generating through the full DDIM sampling chain, we recast reward fine-tuning as editing. By leveraging the diffusion process to corrupt a sampled video, InstructVideo requires only partial inference of the DDIM sampling chain, reducing fine-tuning cost while improving fine-tuning efficiency. 2) To mitigate the absence of a dedicated video reward model for human preferences, we repurpose established image reward models, e.g., HPSv2. To this end, we propose Segmental Video Reward, a mechanism to provide reward signals based on segmental sparse sampling, and Temporally Attenuated Reward, a method that mitigates temporal modeling degradation during fine-tuning. Extensive experiments, both qualitative and quantitative, validate the practicality and efficacy of using image reward models in InstructVideo, significantly enhancing the visual quality of generated videos without compromising generalization capabilities. Code and models will be made publicly available.
Pix2Gif: Motion-Guided Diffusion for GIF Generation
We present Pix2Gif, a motion-guided diffusion model for image-to-GIF (video) generation. We tackle this problem differently by formulating the task as an image translation problem steered by text and motion magnitude prompts, as shown in teaser fig. To ensure that the model adheres to motion guidance, we propose a new motion-guided warping module to spatially transform the features of the source image conditioned on the two types of prompts. Furthermore, we introduce a perceptual loss to ensure the transformed feature map remains within the same space as the target image, ensuring content consistency and coherence. In preparation for the model training, we meticulously curated data by extracting coherent image frames from the TGIF video-caption dataset, which provides rich information about the temporal changes of subjects. After pretraining, we apply our model in a zero-shot manner to a number of video datasets. Extensive qualitative and quantitative experiments demonstrate the effectiveness of our model -- it not only captures the semantic prompt from text but also the spatial ones from motion guidance. We train all our models using a single node of 16xV100 GPUs. Code, dataset and models are made public at: https://hiteshk03.github.io/Pix2Gif/.
Reflecting Reality: Enabling Diffusion Models to Produce Faithful Mirror Reflections
We tackle the problem of generating highly realistic and plausible mirror reflections using diffusion-based generative models. We formulate this problem as an image inpainting task, allowing for more user control over the placement of mirrors during the generation process. To enable this, we create SynMirror, a large-scale dataset of diverse synthetic scenes with objects placed in front of mirrors. SynMirror contains around 198K samples rendered from 66K unique 3D objects, along with their associated depth maps, normal maps and instance-wise segmentation masks, to capture relevant geometric properties of the scene. Using this dataset, we propose a novel depth-conditioned inpainting method called MirrorFusion, which generates high-quality geometrically consistent and photo-realistic mirror reflections given an input image and a mask depicting the mirror region. MirrorFusion outperforms state-of-the-art methods on SynMirror, as demonstrated by extensive quantitative and qualitative analysis. To the best of our knowledge, we are the first to successfully tackle the challenging problem of generating controlled and faithful mirror reflections of an object in a scene using diffusion based models. SynMirror and MirrorFusion open up new avenues for image editing and augmented reality applications for practitioners and researchers alike.
Ctrl-Crash: Controllable Diffusion for Realistic Car Crashes
Video diffusion techniques have advanced significantly in recent years; however, they struggle to generate realistic imagery of car crashes due to the scarcity of accident events in most driving datasets. Improving traffic safety requires realistic and controllable accident simulations. To tackle the problem, we propose Ctrl-Crash, a controllable car crash video generation model that conditions on signals such as bounding boxes, crash types, and an initial image frame. Our approach enables counterfactual scenario generation where minor variations in input can lead to dramatically different crash outcomes. To support fine-grained control at inference time, we leverage classifier-free guidance with independently tunable scales for each conditioning signal. Ctrl-Crash achieves state-of-the-art performance across quantitative video quality metrics (e.g., FVD and JEDi) and qualitative measurements based on a human-evaluation of physical realism and video quality compared to prior diffusion-based methods.
DreamPolisher: Towards High-Quality Text-to-3D Generation via Geometric Diffusion
We present DreamPolisher, a novel Gaussian Splatting based method with geometric guidance, tailored to learn cross-view consistency and intricate detail from textual descriptions. While recent progress on text-to-3D generation methods have been promising, prevailing methods often fail to ensure view-consistency and textural richness. This problem becomes particularly noticeable for methods that work with text input alone. To address this, we propose a two-stage Gaussian Splatting based approach that enforces geometric consistency among views. Initially, a coarse 3D generation undergoes refinement via geometric optimization. Subsequently, we use a ControlNet driven refiner coupled with the geometric consistency term to improve both texture fidelity and overall consistency of the generated 3D asset. Empirical evaluations across diverse textual prompts spanning various object categories demonstrate the efficacy of DreamPolisher in generating consistent and realistic 3D objects, aligning closely with the semantics of the textual instructions.
Towards Accurate Guided Diffusion Sampling through Symplectic Adjoint Method
Training-free guided sampling in diffusion models leverages off-the-shelf pre-trained networks, such as an aesthetic evaluation model, to guide the generation process. Current training-free guided sampling algorithms obtain the guidance energy function based on a one-step estimate of the clean image. However, since the off-the-shelf pre-trained networks are trained on clean images, the one-step estimation procedure of the clean image may be inaccurate, especially in the early stages of the generation process in diffusion models. This causes the guidance in the early time steps to be inaccurate. To overcome this problem, we propose Symplectic Adjoint Guidance (SAG), which calculates the gradient guidance in two inner stages. Firstly, SAG estimates the clean image via n function calls, where n serves as a flexible hyperparameter that can be tailored to meet specific image quality requirements. Secondly, SAG uses the symplectic adjoint method to obtain the gradients accurately and efficiently in terms of the memory requirements. Extensive experiments demonstrate that SAG generates images with higher qualities compared to the baselines in both guided image and video generation tasks.
Diff2Lip: Audio Conditioned Diffusion Models for Lip-Synchronization
The task of lip synchronization (lip-sync) seeks to match the lips of human faces with different audio. It has various applications in the film industry as well as for creating virtual avatars and for video conferencing. This is a challenging problem as one needs to simultaneously introduce detailed, realistic lip movements while preserving the identity, pose, emotions, and image quality. Many of the previous methods trying to solve this problem suffer from image quality degradation due to a lack of complete contextual information. In this paper, we present Diff2Lip, an audio-conditioned diffusion-based model which is able to do lip synchronization in-the-wild while preserving these qualities. We train our model on Voxceleb2, a video dataset containing in-the-wild talking face videos. Extensive studies show that our method outperforms popular methods like Wav2Lip and PC-AVS in Fr\'echet inception distance (FID) metric and Mean Opinion Scores (MOS) of the users. We show results on both reconstruction (same audio-video inputs) as well as cross (different audio-video inputs) settings on Voxceleb2 and LRW datasets. Video results and code can be accessed from our project page ( https://soumik-kanad.github.io/diff2lip ).
DiffStyleTTS: Diffusion-based Hierarchical Prosody Modeling for Text-to-Speech with Diverse and Controllable Styles
Human speech exhibits rich and flexible prosodic variations. To address the one-to-many mapping problem from text to prosody in a reasonable and flexible manner, we propose DiffStyleTTS, a multi-speaker acoustic model based on a conditional diffusion module and an improved classifier-free guidance, which hierarchically models speech prosodic features, and controls different prosodic styles to guide prosody prediction. Experiments show that our method outperforms all baselines in naturalness and achieves superior synthesis speed compared to three diffusion-based baselines. Additionally, by adjusting the guiding scale, DiffStyleTTS effectively controls the guidance intensity of the synthetic prosody.
Self Speculative Decoding for Diffusion Large Language Models
Diffusion-based Large Language Models (dLLMs) have emerged as a competitive alternative to autoregressive models, offering unique advantages through bidirectional attention and parallel generation paradigms. However, the generation results of current parallel decoding methods deviate from stepwise decoding, introducing potential performance degradation, which limits their practical deployment. To address this problem, we propose Self Speculative Decoding (SSD), a lossless inference acceleration method that leverages the dLLM itself as both speculative decoding drafter and verifier without auxiliary modules. SSD introduces a self-drafting mechanism where the model generates predictions for multiple positions, then verifies them through hierarchical verification trees in a single forward pass. Unlike traditional speculative decoding that requires separate draft models, SSD eliminates model redundancy and memory overhead by exploiting the dLLM's inherent parallel prediction capability for multiple positions. This self-speculative approach allows the model to progressively verify and accept multiple tokens in a single forward pass. Our experiments demonstrate that SSD achieves up to 3.46times speedup while keeping the output identical to stepwise decoding on open source models such as LLaDA and Dream. Code will be made publicly available on GitHub.
Towards Redundancy Reduction in Diffusion Models for Efficient Video Super-Resolution
Diffusion models have recently shown promising results for video super-resolution (VSR). However, directly adapting generative diffusion models to VSR can result in redundancy, since low-quality videos already preserve substantial content information. Such redundancy leads to increased computational overhead and learning burden, as the model performs superfluous operations and must learn to filter out irrelevant information. To address this problem, we propose OASIS, an efficient one-step diffusion model with attention specialization for real-world video super-resolution. OASIS incorporates an attention specialization routing that assigns attention heads to different patterns according to their intrinsic behaviors. This routing mitigates redundancy while effectively preserving pretrained knowledge, allowing diffusion models to better adapt to VSR and achieve stronger performance. Moreover, we propose a simple yet effective progressive training strategy, which starts with temporally consistent degradations and then shifts to inconsistent settings. This strategy facilitates learning under complex degradations. Extensive experiments demonstrate that OASIS achieves state-of-the-art performance on both synthetic and real-world datasets. OASIS also provides superior inference speed, offering a 6.2\times$$ speedup over one-step diffusion baselines such as SeedVR2. The code will be available at https://github.com/jp-guo/OASIS{https://github.com/jp-guo/OASIS}.
MDNS: Masked Diffusion Neural Sampler via Stochastic Optimal Control
We study the problem of learning a neural sampler to generate samples from discrete state spaces where the target probability mass function piproptoe^{-U} is known up to a normalizing constant, which is an important task in fields such as statistical physics, machine learning, combinatorial optimization, etc. To better address this challenging task when the state space has a large cardinality and the distribution is multi-modal, we propose Masked Diffusion Neural Sampler (MDNS), a novel framework for training discrete neural samplers by aligning two path measures through a family of learning objectives, theoretically grounded in the stochastic optimal control of the continuous-time Markov chains. We validate the efficiency and scalability of MDNS through extensive experiments on various distributions with distinct statistical properties, where MDNS learns to accurately sample from the target distributions despite the extremely high problem dimensions and outperforms other learning-based baselines by a large margin. A comprehensive study of ablations and extensions is also provided to demonstrate the efficacy and potential of the proposed framework.
Controllable Reference Guided Diffusion with Local Global Fusion for Real World Remote Sensing Image Super Resolution
Super resolution techniques can enhance the spatial resolution of remote sensing images, enabling more efficient large scale earth observation applications. While single image SR methods enhance low resolution images, they neglect valuable complementary information from auxiliary data. Reference based SR can be interpreted as an information fusion task, where historical high resolution reference images are combined with current LR observations. However, existing RefSR methods struggle with real world complexities, such as cross sensor resolution gap and significant land cover changes, often leading to under generation or over reliance on reference image. To address these challenges, we propose CRefDiff, a novel controllable reference guided diffusion model for real world remote sensing image SR. To address the under generation problem, CRefDiff leverages a powerful generative prior to produce accurate structures and textures. To mitigate over reliance on the reference, we introduce a dual branch fusion mechanism that adaptively fuse both local and global information from the reference image. Moreover, the dual branch design enables reference strength control during inference, enhancing the models interactivity and flexibility. Finally, the Better Start strategy is proposed to significantly reduce the number of denoising steps, thereby accelerating the inference process. To support further research, we introduce RealRefRSSRD, a new real world RefSR dataset for remote sensing images, consisting of HR NAIP and LR Sentinel2 image pairs with diverse land cover changes and significant temporal gaps. Extensive experiments on RealRefRSSRD show that CRefDiff achieves SOTA performance and improves downstream tasks.
One-Step Diffusion for Detail-Rich and Temporally Consistent Video Super-Resolution
It is a challenging problem to reproduce rich spatial details while maintaining temporal consistency in real-world video super-resolution (Real-VSR), especially when we leverage pre-trained generative models such as stable diffusion (SD) for realistic details synthesis. Existing SD-based Real-VSR methods often compromise spatial details for temporal coherence, resulting in suboptimal visual quality. We argue that the key lies in how to effectively extract the degradation-robust temporal consistency priors from the low-quality (LQ) input video and enhance the video details while maintaining the extracted consistency priors. To achieve this, we propose a Dual LoRA Learning (DLoRAL) paradigm to train an effective SD-based one-step diffusion model, achieving realistic frame details and temporal consistency simultaneously. Specifically, we introduce a Cross-Frame Retrieval (CFR) module to aggregate complementary information across frames, and train a Consistency-LoRA (C-LoRA) to learn robust temporal representations from degraded inputs. After consistency learning, we fix the CFR and C-LoRA modules and train a Detail-LoRA (D-LoRA) to enhance spatial details while aligning with the temporal space defined by C-LoRA to keep temporal coherence. The two phases alternate iteratively for optimization, collaboratively delivering consistent and detail-rich outputs. During inference, the two LoRA branches are merged into the SD model, allowing efficient and high-quality video restoration in a single diffusion step. Experiments show that DLoRAL achieves strong performance in both accuracy and speed. Code and models are available at https://github.com/yjsunnn/DLoRAL.
VORTA: Efficient Video Diffusion via Routing Sparse Attention
Video diffusion transformers have achieved remarkable progress in high-quality video generation, but remain computationally expensive due to the quadratic complexity of attention over high-dimensional video sequences. Recent acceleration methods enhance the efficiency by exploiting the local sparsity of attention scores; yet they often struggle with accelerating the long-range computation. To address this problem, we propose VORTA, an acceleration framework with two novel components: 1) a sparse attention mechanism that efficiently captures long-range dependencies, and 2) a routing strategy that adaptively replaces full 3D attention with specialized sparse attention variants. VORTA achieves an end-to-end speedup 1.76times without loss of quality on VBench. Furthermore, it can seamlessly integrate with various other acceleration methods, such as model caching and step distillation, reaching up to speedup 14.41times with negligible performance degradation. VORTA demonstrates its efficiency and enhances the practicality of video diffusion transformers in real-world settings. Codes and weights are available at https://github.com/wenhao728/VORTA.
Learning Long-Context Diffusion Policies via Past-Token Prediction
Reasoning over long sequences of observations and actions is essential for many robotic tasks. Yet, learning effective long-context policies from demonstrations remains challenging. As context length increases, training becomes increasingly expensive due to rising memory demands, and policy performance often degrades as a result of spurious correlations. Recent methods typically sidestep these issues by truncating context length, discarding historical information that may be critical for subsequent decisions. In this paper, we propose an alternative approach that explicitly regularizes the retention of past information. We first revisit the copycat problem in imitation learning and identify an opposite challenge in recent diffusion policies: rather than over-relying on prior actions, they often fail to capture essential dependencies between past and future actions. To address this, we introduce Past-Token Prediction (PTP), an auxiliary task in which the policy learns to predict past action tokens alongside future ones. This regularization significantly improves temporal modeling in the policy head, with minimal reliance on visual representations. Building on this observation, we further introduce a multistage training strategy: pre-train the visual encoder with short contexts, and fine-tune the policy head using cached long-context embeddings. This strategy preserves the benefits of PTP while greatly reducing memory and computational overhead. Finally, we extend PTP into a self-verification mechanism at test time, enabling the policy to score and select candidates consistent with past actions during inference. Experiments across four real-world and six simulated tasks demonstrate that our proposed method improves the performance of long-context diffusion policies by 3x and accelerates policy training by more than 10x.
DIVE: Inverting Conditional Diffusion Models for Discriminative Tasks
Diffusion models have shown remarkable progress in various generative tasks such as image and video generation. This paper studies the problem of leveraging pretrained diffusion models for performing discriminative tasks. Specifically, we extend the discriminative capability of pretrained frozen generative diffusion models from the classification task to the more complex object detection task, by "inverting" a pretrained layout-to-image diffusion model. To this end, a gradient-based discrete optimization approach for replacing the heavy prediction enumeration process, and a prior distribution model for making more accurate use of the Bayes' rule, are proposed respectively. Empirical results show that this method is on par with basic discriminative object detection baselines on COCO dataset. In addition, our method can greatly speed up the previous diffusion-based method for classification without sacrificing accuracy. Code and models are available at https://github.com/LiYinqi/DIVE .
Split Gibbs Discrete Diffusion Posterior Sampling
We study the problem of posterior sampling in discrete-state spaces using discrete diffusion models. While posterior sampling methods for continuous diffusion models have achieved remarkable progress, analogous methods for discrete diffusion models remain challenging. In this work, we introduce a principled plug-and-play discrete diffusion posterior sampling algorithm based on split Gibbs sampling, which we call SG-DPS. Our algorithm enables reward-guided generation and solving inverse problems in discrete-state spaces. We demonstrate that SG-DPS converges to the true posterior distribution on synthetic benchmarks, and enjoys state-of-the-art posterior sampling performance on a range of benchmarks for discrete data, achieving up to 2x improved performance compared to existing baselines.
Fine-Tuning Discrete Diffusion Models via Reward Optimization with Applications to DNA and Protein Design
Recent studies have demonstrated the strong empirical performance of diffusion models on discrete sequences across domains from natural language to biological sequence generation. For example, in the protein inverse folding task, conditional diffusion models have achieved impressive results in generating natural-like sequences that fold back into the original structure. However, practical design tasks often require not only modeling a conditional distribution but also optimizing specific task objectives. For instance, we may prefer protein sequences with high stability. To address this, we consider the scenario where we have pre-trained discrete diffusion models that can generate natural-like sequences, as well as reward models that map sequences to task objectives. We then formulate the reward maximization problem within discrete diffusion models, analogous to reinforcement learning (RL), while minimizing the KL divergence against pretrained diffusion models to preserve naturalness. To solve this RL problem, we propose a novel algorithm, DRAKES, that enables direct backpropagation of rewards through entire trajectories generated by diffusion models, by making the originally non-differentiable trajectories differentiable using the Gumbel-Softmax trick. Our theoretical analysis indicates that our approach can generate sequences that are both natural-like and yield high rewards. While similar tasks have been recently explored in diffusion models for continuous domains, our work addresses unique algorithmic and theoretical challenges specific to discrete diffusion models, which arise from their foundation in continuous-time Markov chains rather than Brownian motion. Finally, we demonstrate the effectiveness of DRAKES in generating DNA and protein sequences that optimize enhancer activity and protein stability, respectively, important tasks for gene therapies and protein-based therapeutics.
D3RoMa: Disparity Diffusion-based Depth Sensing for Material-Agnostic Robotic Manipulation
Depth sensing is an important problem for 3D vision-based robotics. Yet, a real-world active stereo or ToF depth camera often produces noisy and incomplete depth which bottlenecks robot performances. In this work, we propose D3RoMa, a learning-based depth estimation framework on stereo image pairs that predicts clean and accurate depth in diverse indoor scenes, even in the most challenging scenarios with translucent or specular surfaces where classical depth sensing completely fails. Key to our method is that we unify depth estimation and restoration into an image-to-image translation problem by predicting the disparity map with a denoising diffusion probabilistic model. At inference time, we further incorporated a left-right consistency constraint as classifier guidance to the diffusion process. Our framework combines recently advanced learning-based approaches and geometric constraints from traditional stereo vision. For model training, we create a large scene-level synthetic dataset with diverse transparent and specular objects to compensate for existing tabletop datasets. The trained model can be directly applied to real-world in-the-wild scenes and achieve state-of-the-art performance in multiple public depth estimation benchmarks. Further experiments in real environments show that accurate depth prediction significantly improves robotic manipulation in various scenarios.
One-Shot Diffusion Mimicker for Handwritten Text Generation
Existing handwritten text generation methods often require more than ten handwriting samples as style references. However, in practical applications, users tend to prefer a handwriting generation model that operates with just a single reference sample for its convenience and efficiency. This approach, known as "one-shot generation", significantly simplifies the process but poses a significant challenge due to the difficulty of accurately capturing a writer's style from a single sample, especially when extracting fine details from the characters' edges amidst sparse foreground and undesired background noise. To address this problem, we propose a One-shot Diffusion Mimicker (One-DM) to generate handwritten text that can mimic any calligraphic style with only one reference sample. Inspired by the fact that high-frequency information of the individual sample often contains distinct style patterns (e.g., character slant and letter joining), we develop a novel style-enhanced module to improve the style extraction by incorporating high-frequency components from a single sample. We then fuse the style features with the text content as a merged condition for guiding the diffusion model to produce high-quality handwritten text images. Extensive experiments demonstrate that our method can successfully generate handwriting scripts with just one sample reference in multiple languages, even outperforming previous methods using over ten samples. Our source code is available at https://github.com/dailenson/One-DM.
GeoGuide: Geometric guidance of diffusion models
Diffusion models are among the most effective methods for image generation. This is in particular because, unlike GANs, they can be easily conditioned during training to produce elements with desired class or properties. However, guiding a pre-trained diffusion model to generate elements from previously unlabeled data is significantly more challenging. One of the possible solutions was given by the ADM-G guiding approach. Although ADM-G successfully generates elements from the given class, there is a significant quality gap compared to a model originally conditioned on this class. In particular, the FID score obtained by the ADM-G-guided diffusion model is nearly three times lower than the class-conditioned guidance. We demonstrate that this issue is partly due to ADM-G providing minimal guidance during the final stage of the denoising process. To address this problem, we propose GeoGuide, a guidance model based on tracing the distance of the diffusion model's trajectory from the data manifold. The main idea of GeoGuide is to produce normalized adjustments during the backward denoising process. As shown in the experiments, GeoGuide surpasses the probabilistic approach ADM-G with respect to both the FID scores and the quality of the generated images.
Multimodal-Conditioned Latent Diffusion Models for Fashion Image Editing
Fashion illustration is a crucial medium for designers to convey their creative vision and transform design concepts into tangible representations that showcase the interplay between clothing and the human body. In the context of fashion design, computer vision techniques have the potential to enhance and streamline the design process. Departing from prior research primarily focused on virtual try-on, this paper tackles the task of multimodal-conditioned fashion image editing. Our approach aims to generate human-centric fashion images guided by multimodal prompts, including text, human body poses, garment sketches, and fabric textures. To address this problem, we propose extending latent diffusion models to incorporate these multiple modalities and modifying the structure of the denoising network, taking multimodal prompts as input. To condition the proposed architecture on fabric textures, we employ textual inversion techniques and let diverse cross-attention layers of the denoising network attend to textual and texture information, thus incorporating different granularity conditioning details. Given the lack of datasets for the task, we extend two existing fashion datasets, Dress Code and VITON-HD, with multimodal annotations. Experimental evaluations demonstrate the effectiveness of our proposed approach in terms of realism and coherence concerning the provided multimodal inputs.
Denoising Diffusion via Image-Based Rendering
Generating 3D scenes is a challenging open problem, which requires synthesizing plausible content that is fully consistent in 3D space. While recent methods such as neural radiance fields excel at view synthesis and 3D reconstruction, they cannot synthesize plausible details in unobserved regions since they lack a generative capability. Conversely, existing generative methods are typically not capable of reconstructing detailed, large-scale scenes in the wild, as they use limited-capacity 3D scene representations, require aligned camera poses, or rely on additional regularizers. In this work, we introduce the first diffusion model able to perform fast, detailed reconstruction and generation of real-world 3D scenes. To achieve this, we make three contributions. First, we introduce a new neural scene representation, IB-planes, that can efficiently and accurately represent large 3D scenes, dynamically allocating more capacity as needed to capture details visible in each image. Second, we propose a denoising-diffusion framework to learn a prior over this novel 3D scene representation, using only 2D images without the need for any additional supervision signal such as masks or depths. This supports 3D reconstruction and generation in a unified architecture. Third, we develop a principled approach to avoid trivial 3D solutions when integrating the image-based rendering with the diffusion model, by dropping out representations of some images. We evaluate the model on several challenging datasets of real and synthetic images, and demonstrate superior results on generation, novel view synthesis and 3D reconstruction.
Bring Metric Functions into Diffusion Models
We introduce a Cascaded Diffusion Model (Cas-DM) that improves a Denoising Diffusion Probabilistic Model (DDPM) by effectively incorporating additional metric functions in training. Metric functions such as the LPIPS loss have been proven highly effective in consistency models derived from the score matching. However, for the diffusion counterparts, the methodology and efficacy of adding extra metric functions remain unclear. One major challenge is the mismatch between the noise predicted by a DDPM at each step and the desired clean image that the metric function works well on. To address this problem, we propose Cas-DM, a network architecture that cascades two network modules to effectively apply metric functions to the diffusion model training. The first module, similar to a standard DDPM, learns to predict the added noise and is unaffected by the metric function. The second cascaded module learns to predict the clean image, thereby facilitating the metric function computation. Experiment results show that the proposed diffusion model backbone enables the effective use of the LPIPS loss, leading to state-of-the-art image quality (FID, sFID, IS) on various established benchmarks.
DifAugGAN: A Practical Diffusion-style Data Augmentation for GAN-based Single Image Super-resolution
It is well known the adversarial optimization of GAN-based image super-resolution (SR) methods makes the preceding SR model generate unpleasant and undesirable artifacts, leading to large distortion. We attribute the cause of such distortions to the poor calibration of the discriminator, which hampers its ability to provide meaningful feedback to the generator for learning high-quality images. To address this problem, we propose a simple but non-travel diffusion-style data augmentation scheme for current GAN-based SR methods, known as DifAugGAN. It involves adapting the diffusion process in generative diffusion models for improving the calibration of the discriminator during training motivated by the successes of data augmentation schemes in the field to achieve good calibration. Our DifAugGAN can be a Plug-and-Play strategy for current GAN-based SISR methods to improve the calibration of the discriminator and thus improve SR performance. Extensive experimental evaluations demonstrate the superiority of DifAugGAN over state-of-the-art GAN-based SISR methods across both synthetic and real-world datasets, showcasing notable advancements in both qualitative and quantitative results.
DPM-OT: A New Diffusion Probabilistic Model Based on Optimal Transport
Sampling from diffusion probabilistic models (DPMs) can be viewed as a piecewise distribution transformation, which generally requires hundreds or thousands of steps of the inverse diffusion trajectory to get a high-quality image. Recent progress in designing fast samplers for DPMs achieves a trade-off between sampling speed and sample quality by knowledge distillation or adjusting the variance schedule or the denoising equation. However, it can't be optimal in both aspects and often suffer from mode mixture in short steps. To tackle this problem, we innovatively regard inverse diffusion as an optimal transport (OT) problem between latents at different stages and propose the DPM-OT, a unified learning framework for fast DPMs with a direct expressway represented by OT map, which can generate high-quality samples within around 10 function evaluations. By calculating the semi-discrete optimal transport map between the data latents and the white noise, we obtain an expressway from the prior distribution to the data distribution, while significantly alleviating the problem of mode mixture. In addition, we give the error bound of the proposed method, which theoretically guarantees the stability of the algorithm. Extensive experiments validate the effectiveness and advantages of DPM-OT in terms of speed and quality (FID and mode mixture), thus representing an efficient solution for generative modeling. Source codes are available at https://github.com/cognaclee/DPM-OT
DDDM-VC: Decoupled Denoising Diffusion Models with Disentangled Representation and Prior Mixup for Verified Robust Voice Conversion
Diffusion-based generative models have exhibited powerful generative performance in recent years. However, as many attributes exist in the data distribution and owing to several limitations of sharing the model parameters across all levels of the generation process, it remains challenging to control specific styles for each attribute. To address the above problem, this paper presents decoupled denoising diffusion models (DDDMs) with disentangled representations, which can control the style for each attribute in generative models. We apply DDDMs to voice conversion (VC) tasks to address the challenges of disentangling and controlling each speech attribute (e.g., linguistic information, intonation, and timbre). First, we use a self-supervised representation to disentangle the speech representation. Subsequently, the DDDMs are applied to resynthesize the speech from the disentangled representations for denoising with respect to each attribute. Moreover, we also propose the prior mixup for robust voice style transfer, which uses the converted representation of the mixed style as a prior distribution for the diffusion models. The experimental results reveal that our method outperforms publicly available VC models. Furthermore, we show that our method provides robust generative performance regardless of the model size. Audio samples are available https://hayeong0.github.io/DDDM-VC-demo/.
DDS2M: Self-Supervised Denoising Diffusion Spatio-Spectral Model for Hyperspectral Image Restoration
Diffusion models have recently received a surge of interest due to their impressive performance for image restoration, especially in terms of noise robustness. However, existing diffusion-based methods are trained on a large amount of training data and perform very well in-distribution, but can be quite susceptible to distribution shift. This is especially inappropriate for data-starved hyperspectral image (HSI) restoration. To tackle this problem, this work puts forth a self-supervised diffusion model for HSI restoration, namely Denoising Diffusion Spatio-Spectral Model (DDS2M), which works by inferring the parameters of the proposed Variational Spatio-Spectral Module (VS2M) during the reverse diffusion process, solely using the degraded HSI without any extra training data. In VS2M, a variational inference-based loss function is customized to enable the untrained spatial and spectral networks to learn the posterior distribution, which serves as the transitions of the sampling chain to help reverse the diffusion process. Benefiting from its self-supervised nature and the diffusion process, DDS2M enjoys stronger generalization ability to various HSIs compared to existing diffusion-based methods and superior robustness to noise compared to existing HSI restoration methods. Extensive experiments on HSI denoising, noisy HSI completion and super-resolution on a variety of HSIs demonstrate DDS2M's superiority over the existing task-specific state-of-the-arts.
Diff-Font: Diffusion Model for Robust One-Shot Font Generation
Font generation is a difficult and time-consuming task, especially in those languages using ideograms that have complicated structures with a large number of characters, such as Chinese. To solve this problem, few-shot font generation and even one-shot font generation have attracted a lot of attention. However, most existing font generation methods may still suffer from (i) large cross-font gap challenge; (ii) subtle cross-font variation problem; and (iii) incorrect generation of complicated characters. In this paper, we propose a novel one-shot font generation method based on a diffusion model, named Diff-Font, which can be stably trained on large datasets. The proposed model aims to generate the entire font library by giving only one sample as the reference. Specifically, a large stroke-wise dataset is constructed, and a stroke-wise diffusion model is proposed to preserve the structure and the completion of each generated character. To our best knowledge, the proposed Diff-Font is the first work that developed diffusion models to handle the font generation task. The well-trained Diff-Font is not only robust to font gap and font variation, but also achieved promising performance on difficult character generation. Compared to previous font generation methods, our model reaches state-of-the-art performance both qualitatively and quantitatively.
PixNerd: Pixel Neural Field Diffusion
The current success of diffusion transformers heavily depends on the compressed latent space shaped by the pre-trained variational autoencoder(VAE). However, this two-stage training paradigm inevitably introduces accumulated errors and decoding artifacts. To address the aforementioned problems, researchers return to pixel space at the cost of complicated cascade pipelines and increased token complexity. In contrast to their efforts, we propose to model the patch-wise decoding with neural field and present a single-scale, single-stage, efficient, end-to-end solution, coined as pixel neural field diffusion~(PixelNerd). Thanks to the efficient neural field representation in PixNerd, we directly achieved 2.15 FID on ImageNet 256times256 and 2.84 FID on ImageNet 512times512 without any complex cascade pipeline or VAE. We also extend our PixNerd framework to text-to-image applications. Our PixNerd-XXL/16 achieved a competitive 0.73 overall score on the GenEval benchmark and 80.9 overall score on the DPG benchmark.
Common Diffusion Noise Schedules and Sample Steps are Flawed
We discover that common diffusion noise schedules do not enforce the last timestep to have zero signal-to-noise ratio (SNR), and some implementations of diffusion samplers do not start from the last timestep. Such designs are flawed and do not reflect the fact that the model is given pure Gaussian noise at inference, creating a discrepancy between training and inference. We show that the flawed design causes real problems in existing implementations. In Stable Diffusion, it severely limits the model to only generate images with medium brightness and prevents it from generating very bright and dark samples. We propose a few simple fixes: (1) rescale the noise schedule to enforce zero terminal SNR; (2) train the model with v prediction; (3) change the sampler to always start from the last timestep; (4) rescale classifier-free guidance to prevent over-exposure. These simple changes ensure the diffusion process is congruent between training and inference and allow the model to generate samples more faithful to the original data distribution.
Prompt-Free Conditional Diffusion for Multi-object Image Augmentation
Diffusion models has underpinned much recent advances of dataset augmentation in various computer vision tasks. However, when involving generating multi-object images as real scenarios, most existing methods either rely entirely on text condition, resulting in a deviation between the generated objects and the original data, or rely too much on the original images, resulting in a lack of diversity in the generated images, which is of limited help to downstream tasks. To mitigate both problems with one stone, we propose a prompt-free conditional diffusion framework for multi-object image augmentation. Specifically, we introduce a local-global semantic fusion strategy to extract semantics from images to replace text, and inject knowledge into the diffusion model through LoRA to alleviate the category deviation between the original model and the target dataset. In addition, we design a reward model based counting loss to assist the traditional reconstruction loss for model training. By constraining the object counts of each category instead of pixel-by-pixel constraints, bridging the quantity deviation between the generated data and the original data while improving the diversity of the generated data. Experimental results demonstrate the superiority of the proposed method over several representative state-of-the-art baselines and showcase strong downstream task gain and out-of-domain generalization capabilities. Code is available at https://github.com/00why00/PFCD{here}.
What Makes a Good Diffusion Planner for Decision Making?
Diffusion models have recently shown significant potential in solving decision-making problems, particularly in generating behavior plans -- also known as diffusion planning. While numerous studies have demonstrated the impressive performance of diffusion planning, the mechanisms behind the key components of a good diffusion planner remain unclear and the design choices are highly inconsistent in existing studies. In this work, we address this issue through systematic empirical experiments on diffusion planning in an offline reinforcement learning (RL) setting, providing practical insights into the essential components of diffusion planning. We trained and evaluated over 6,000 diffusion models, identifying the critical components such as guided sampling, network architecture, action generation and planning strategy. We revealed that some design choices opposite to the common practice in previous work in diffusion planning actually lead to better performance, e.g., unconditional sampling with selection can be better than guided sampling and Transformer outperforms U-Net as denoising network. Based on these insights, we suggest a simple yet strong diffusion planning baseline that achieves state-of-the-art results on standard offline RL benchmarks.
Learning Diffusion Priors from Observations by Expectation Maximization
Diffusion models recently proved to be remarkable priors for Bayesian inverse problems. However, training these models typically requires access to large amounts of clean data, which could prove difficult in some settings. In this work, we present a novel method based on the expectation-maximization algorithm for training diffusion models from incomplete and noisy observations only. Unlike previous works, our method leads to proper diffusion models, which is crucial for downstream tasks. As part of our method, we propose and motivate an improved posterior sampling scheme for unconditional diffusion models. We present empirical evidence supporting the effectiveness of our method.
Correcting Diffusion Generation through Resampling
Despite diffusion models' superior capabilities in modeling complex distributions, there are still non-trivial distributional discrepancies between generated and ground-truth images, which has resulted in several notable problems in image generation, including missing object errors in text-to-image generation and low image quality. Existing methods that attempt to address these problems mostly do not tend to address the fundamental cause behind these problems, which is the distributional discrepancies, and hence achieve sub-optimal results. In this paper, we propose a particle filtering framework that can effectively address both problems by explicitly reducing the distributional discrepancies. Specifically, our method relies on a set of external guidance, including a small set of real images and a pre-trained object detector, to gauge the distribution gap, and then design the resampling weight accordingly to correct the gap. Experiments show that our methods can effectively correct missing object errors and improve image quality in various image generation tasks. Notably, our method outperforms the existing strongest baseline by 5% in object occurrence and 1.0 in FID on MS-COCO. Our code is publicly available at https://github.com/UCSB-NLP-Chang/diffusion_resampling.git.
DiffusionCLIP: Text-Guided Diffusion Models for Robust Image Manipulation
Recently, GAN inversion methods combined with Contrastive Language-Image Pretraining (CLIP) enables zero-shot image manipulation guided by text prompts. However, their applications to diverse real images are still difficult due to the limited GAN inversion capability. Specifically, these approaches often have difficulties in reconstructing images with novel poses, views, and highly variable contents compared to the training data, altering object identity, or producing unwanted image artifacts. To mitigate these problems and enable faithful manipulation of real images, we propose a novel method, dubbed DiffusionCLIP, that performs text-driven image manipulation using diffusion models. Based on full inversion capability and high-quality image generation power of recent diffusion models, our method performs zero-shot image manipulation successfully even between unseen domains and takes another step towards general application by manipulating images from a widely varying ImageNet dataset. Furthermore, we propose a novel noise combination method that allows straightforward multi-attribute manipulation. Extensive experiments and human evaluation confirmed robust and superior manipulation performance of our methods compared to the existing baselines. Code is available at https://github.com/gwang-kim/DiffusionCLIP.git.
Attentive Eraser: Unleashing Diffusion Model's Object Removal Potential via Self-Attention Redirection Guidance
Recently, diffusion models have emerged as promising newcomers in the field of generative models, shining brightly in image generation. However, when employed for object removal tasks, they still encounter issues such as generating random artifacts and the incapacity to repaint foreground object areas with appropriate content after removal. To tackle these problems, we propose Attentive Eraser, a tuning-free method to empower pre-trained diffusion models for stable and effective object removal. Firstly, in light of the observation that the self-attention maps influence the structure and shape details of the generated images, we propose Attention Activation and Suppression (ASS), which re-engineers the self-attention mechanism within the pre-trained diffusion models based on the given mask, thereby prioritizing the background over the foreground object during the reverse generation process. Moreover, we introduce Self-Attention Redirection Guidance (SARG), which utilizes the self-attention redirected by ASS to guide the generation process, effectively removing foreground objects within the mask while simultaneously generating content that is both plausible and coherent. Experiments demonstrate the stability and effectiveness of Attentive Eraser in object removal across a variety of pre-trained diffusion models, outperforming even training-based methods. Furthermore, Attentive Eraser can be implemented in various diffusion model architectures and checkpoints, enabling excellent scalability. Code is available at https://github.com/Anonym0u3/AttentiveEraser.
Constrained Synthesis with Projected Diffusion Models
This paper introduces an approach to endow generative diffusion processes the ability to satisfy and certify compliance with constraints and physical principles. The proposed method recast the traditional sampling process of generative diffusion models as a constrained optimization problem, steering the generated data distribution to remain within a specified region to ensure adherence to the given constraints. These capabilities are validated on applications featuring both convex and challenging, non-convex, constraints as well as ordinary differential equations, in domains spanning from synthesizing new materials with precise morphometric properties, generating physics-informed motion, optimizing paths in planning scenarios, and human motion synthesis.
Phasic Content Fusing Diffusion Model with Directional Distribution Consistency for Few-Shot Model Adaption
Training a generative model with limited number of samples is a challenging task. Current methods primarily rely on few-shot model adaption to train the network. However, in scenarios where data is extremely limited (less than 10), the generative network tends to overfit and suffers from content degradation. To address these problems, we propose a novel phasic content fusing few-shot diffusion model with directional distribution consistency loss, which targets different learning objectives at distinct training stages of the diffusion model. Specifically, we design a phasic training strategy with phasic content fusion to help our model learn content and style information when t is large, and learn local details of target domain when t is small, leading to an improvement in the capture of content, style and local details. Furthermore, we introduce a novel directional distribution consistency loss that ensures the consistency between the generated and source distributions more efficiently and stably than the prior methods, preventing our model from overfitting. Finally, we propose a cross-domain structure guidance strategy that enhances structure consistency during domain adaptation. Theoretical analysis, qualitative and quantitative experiments demonstrate the superiority of our approach in few-shot generative model adaption tasks compared to state-of-the-art methods. The source code is available at: https://github.com/sjtuplayer/few-shot-diffusion.
Removing Structured Noise with Diffusion Models
Solving ill-posed inverse problems requires careful formulation of prior beliefs over the signals of interest and an accurate description of their manifestation into noisy measurements. Handcrafted signal priors based on e.g. sparsity are increasingly replaced by data-driven deep generative models, and several groups have recently shown that state-of-the-art score-based diffusion models yield particularly strong performance and flexibility. In this paper, we show that the powerful paradigm of posterior sampling with diffusion models can be extended to include rich, structured, noise models. To that end, we propose a joint conditional reverse diffusion process with learned scores for the noise and signal-generating distribution. We demonstrate strong performance gains across various inverse problems with structured noise, outperforming competitive baselines that use normalizing flows and adversarial networks. This opens up new opportunities and relevant practical applications of diffusion modeling for inverse problems in the context of non-Gaussian measurement models.
EDICT: Exact Diffusion Inversion via Coupled Transformations
Finding an initial noise vector that produces an input image when fed into the diffusion process (known as inversion) is an important problem in denoising diffusion models (DDMs), with applications for real image editing. The state-of-the-art approach for real image editing with inversion uses denoising diffusion implicit models (DDIMs) to deterministically noise the image to the intermediate state along the path that the denoising would follow given the original conditioning. However, DDIM inversion for real images is unstable as it relies on local linearization assumptions, which result in the propagation of errors, leading to incorrect image reconstruction and loss of content. To alleviate these problems, we propose Exact Diffusion Inversion via Coupled Transformations (EDICT), an inversion method that draws inspiration from affine coupling layers. EDICT enables mathematically exact inversion of real and model-generated images by maintaining two coupled noise vectors which are used to invert each other in an alternating fashion. Using Stable Diffusion, a state-of-the-art latent diffusion model, we demonstrate that EDICT successfully reconstructs real images with high fidelity. On complex image datasets like MS-COCO, EDICT reconstruction significantly outperforms DDIM, improving the mean square error of reconstruction by a factor of two. Using noise vectors inverted from real images, EDICT enables a wide range of image edits--from local and global semantic edits to image stylization--while maintaining fidelity to the original image structure. EDICT requires no model training/finetuning, prompt tuning, or extra data and can be combined with any pretrained DDM. Code is available at https://github.com/salesforce/EDICT.
DreamCraft3D: Hierarchical 3D Generation with Bootstrapped Diffusion Prior
We present DreamCraft3D, a hierarchical 3D content generation method that produces high-fidelity and coherent 3D objects. We tackle the problem by leveraging a 2D reference image to guide the stages of geometry sculpting and texture boosting. A central focus of this work is to address the consistency issue that existing works encounter. To sculpt geometries that render coherently, we perform score distillation sampling via a view-dependent diffusion model. This 3D prior, alongside several training strategies, prioritizes the geometry consistency but compromises the texture fidelity. We further propose Bootstrapped Score Distillation to specifically boost the texture. We train a personalized diffusion model, Dreambooth, on the augmented renderings of the scene, imbuing it with 3D knowledge of the scene being optimized. The score distillation from this 3D-aware diffusion prior provides view-consistent guidance for the scene. Notably, through an alternating optimization of the diffusion prior and 3D scene representation, we achieve mutually reinforcing improvements: the optimized 3D scene aids in training the scene-specific diffusion model, which offers increasingly view-consistent guidance for 3D optimization. The optimization is thus bootstrapped and leads to substantial texture boosting. With tailored 3D priors throughout the hierarchical generation, DreamCraft3D generates coherent 3D objects with photorealistic renderings, advancing the state-of-the-art in 3D content generation. Code available at https://github.com/deepseek-ai/DreamCraft3D.
Text2Layer: Layered Image Generation using Latent Diffusion Model
Layer compositing is one of the most popular image editing workflows among both amateurs and professionals. Motivated by the success of diffusion models, we explore layer compositing from a layered image generation perspective. Instead of generating an image, we propose to generate background, foreground, layer mask, and the composed image simultaneously. To achieve layered image generation, we train an autoencoder that is able to reconstruct layered images and train diffusion models on the latent representation. One benefit of the proposed problem is to enable better compositing workflows in addition to the high-quality image output. Another benefit is producing higher-quality layer masks compared to masks produced by a separate step of image segmentation. Experimental results show that the proposed method is able to generate high-quality layered images and initiates a benchmark for future work.
Emergent Correspondence from Image Diffusion
Finding correspondences between images is a fundamental problem in computer vision. In this paper, we show that correspondence emerges in image diffusion models without any explicit supervision. We propose a simple strategy to extract this implicit knowledge out of diffusion networks as image features, namely DIffusion FeaTures (DIFT), and use them to establish correspondences between real images. Without any additional fine-tuning or supervision on the task-specific data or annotations, DIFT is able to outperform both weakly-supervised methods and competitive off-the-shelf features in identifying semantic, geometric, and temporal correspondences. Particularly for semantic correspondence, DIFT from Stable Diffusion is able to outperform DINO and OpenCLIP by 19 and 14 accuracy points respectively on the challenging SPair-71k benchmark. It even outperforms the state-of-the-art supervised methods on 9 out of 18 categories while remaining on par for the overall performance. Project page: https://diffusionfeatures.github.io
SweetDreamer: Aligning Geometric Priors in 2D Diffusion for Consistent Text-to-3D
It is inherently ambiguous to lift 2D results from pre-trained diffusion models to a 3D world for text-to-3D generation. 2D diffusion models solely learn view-agnostic priors and thus lack 3D knowledge during the lifting, leading to the multi-view inconsistency problem. We find that this problem primarily stems from geometric inconsistency, and avoiding misplaced geometric structures substantially mitigates the problem in the final outputs. Therefore, we improve the consistency by aligning the 2D geometric priors in diffusion models with well-defined 3D shapes during the lifting, addressing the vast majority of the problem. This is achieved by fine-tuning the 2D diffusion model to be viewpoint-aware and to produce view-specific coordinate maps of canonically oriented 3D objects. In our process, only coarse 3D information is used for aligning. This "coarse" alignment not only resolves the multi-view inconsistency in geometries but also retains the ability in 2D diffusion models to generate detailed and diversified high-quality objects unseen in the 3D datasets. Furthermore, our aligned geometric priors (AGP) are generic and can be seamlessly integrated into various state-of-the-art pipelines, obtaining high generalizability in terms of unseen shapes and visual appearance while greatly alleviating the multi-view inconsistency problem. Our method represents a new state-of-the-art performance with an 85+% consistency rate by human evaluation, while many previous methods are around 30%. Our project page is https://sweetdreamer3d.github.io/
Training Diffusion Models with Reinforcement Learning
Diffusion models are a class of flexible generative models trained with an approximation to the log-likelihood objective. However, most use cases of diffusion models are not concerned with likelihoods, but instead with downstream objectives such as human-perceived image quality or drug effectiveness. In this paper, we investigate reinforcement learning methods for directly optimizing diffusion models for such objectives. We describe how posing denoising as a multi-step decision-making problem enables a class of policy gradient algorithms, which we refer to as denoising diffusion policy optimization (DDPO), that are more effective than alternative reward-weighted likelihood approaches. Empirically, DDPO is able to adapt text-to-image diffusion models to objectives that are difficult to express via prompting, such as image compressibility, and those derived from human feedback, such as aesthetic quality. Finally, we show that DDPO can improve prompt-image alignment using feedback from a vision-language model without the need for additional data collection or human annotation.
Multimodal Garment Designer: Human-Centric Latent Diffusion Models for Fashion Image Editing
Fashion illustration is used by designers to communicate their vision and to bring the design idea from conceptualization to realization, showing how clothes interact with the human body. In this context, computer vision can thus be used to improve the fashion design process. Differently from previous works that mainly focused on the virtual try-on of garments, we propose the task of multimodal-conditioned fashion image editing, guiding the generation of human-centric fashion images by following multimodal prompts, such as text, human body poses, and garment sketches. We tackle this problem by proposing a new architecture based on latent diffusion models, an approach that has not been used before in the fashion domain. Given the lack of existing datasets suitable for the task, we also extend two existing fashion datasets, namely Dress Code and VITON-HD, with multimodal annotations collected in a semi-automatic manner. Experimental results on these new datasets demonstrate the effectiveness of our proposal, both in terms of realism and coherence with the given multimodal inputs. Source code and collected multimodal annotations are publicly available at: https://github.com/aimagelab/multimodal-garment-designer.
GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models
Diffusion models have recently been shown to generate high-quality synthetic images, especially when paired with a guidance technique to trade off diversity for fidelity. We explore diffusion models for the problem of text-conditional image synthesis and compare two different guidance strategies: CLIP guidance and classifier-free guidance. We find that the latter is preferred by human evaluators for both photorealism and caption similarity, and often produces photorealistic samples. Samples from a 3.5 billion parameter text-conditional diffusion model using classifier-free guidance are favored by human evaluators to those from DALL-E, even when the latter uses expensive CLIP reranking. Additionally, we find that our models can be fine-tuned to perform image inpainting, enabling powerful text-driven image editing. We train a smaller model on a filtered dataset and release the code and weights at https://github.com/openai/glide-text2im.
Diffusion-LM Improves Controllable Text Generation
Controlling the behavior of language models (LMs) without re-training is a major open problem in natural language generation. While recent works have demonstrated successes on controlling simple sentence attributes (e.g., sentiment), there has been little progress on complex, fine-grained controls (e.g., syntactic structure). To address this challenge, we develop a new non-autoregressive language model based on continuous diffusions that we call Diffusion-LM. Building upon the recent successes of diffusion models in continuous domains, Diffusion-LM iteratively denoises a sequence of Gaussian vectors into word vectors, yielding a sequence of intermediate latent variables. The continuous, hierarchical nature of these intermediate variables enables a simple gradient-based algorithm to perform complex, controllable generation tasks. We demonstrate successful control of Diffusion-LM for six challenging fine-grained control tasks, significantly outperforming prior work.
DiffDis: Empowering Generative Diffusion Model with Cross-Modal Discrimination Capability
Recently, large-scale diffusion models, e.g., Stable diffusion and DallE2, have shown remarkable results on image synthesis. On the other hand, large-scale cross-modal pre-trained models (e.g., CLIP, ALIGN, and FILIP) are competent for various downstream tasks by learning to align vision and language embeddings. In this paper, we explore the possibility of jointly modeling generation and discrimination. Specifically, we propose DiffDis to unify the cross-modal generative and discriminative pretraining into one single framework under the diffusion process. DiffDis first formulates the image-text discriminative problem as a generative diffusion process of the text embedding from the text encoder conditioned on the image. Then, we propose a novel dual-stream network architecture, which fuses the noisy text embedding with the knowledge of latent images from different scales for image-text discriminative learning. Moreover, the generative and discriminative tasks can efficiently share the image-branch network structure in the multi-modality model. Benefiting from diffusion-based unified training, DiffDis achieves both better generation ability and cross-modal semantic alignment in one architecture. Experimental results show that DiffDis outperforms single-task models on both the image generation and the image-text discriminative tasks, e.g., 1.65% improvement on average accuracy of zero-shot classification over 12 datasets and 2.42 improvement on FID of zero-shot image synthesis.
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
Predicting the binding structure of a small molecule ligand to a protein -- a task known as molecular docking -- is critical to drug design. Recent deep learning methods that treat docking as a regression problem have decreased runtime compared to traditional search-based methods but have yet to offer substantial improvements in accuracy. We instead frame molecular docking as a generative modeling problem and develop DiffDock, a diffusion generative model over the non-Euclidean manifold of ligand poses. To do so, we map this manifold to the product space of the degrees of freedom (translational, rotational, and torsional) involved in docking and develop an efficient diffusion process on this space. Empirically, DiffDock obtains a 38% top-1 success rate (RMSD<2A) on PDBBind, significantly outperforming the previous state-of-the-art of traditional docking (23%) and deep learning (20%) methods. Moreover, while previous methods are not able to dock on computationally folded structures (maximum accuracy 10.4%), DiffDock maintains significantly higher precision (21.7%). Finally, DiffDock has fast inference times and provides confidence estimates with high selective accuracy.
Towards Coherent Image Inpainting Using Denoising Diffusion Implicit Models
Image inpainting refers to the task of generating a complete, natural image based on a partially revealed reference image. Recently, many research interests have been focused on addressing this problem using fixed diffusion models. These approaches typically directly replace the revealed region of the intermediate or final generated images with that of the reference image or its variants. However, since the unrevealed regions are not directly modified to match the context, it results in incoherence between revealed and unrevealed regions. To address the incoherence problem, a small number of methods introduce a rigorous Bayesian framework, but they tend to introduce mismatches between the generated and the reference images due to the approximation errors in computing the posterior distributions. In this paper, we propose COPAINT, which can coherently inpaint the whole image without introducing mismatches. COPAINT also uses the Bayesian framework to jointly modify both revealed and unrevealed regions, but approximates the posterior distribution in a way that allows the errors to gradually drop to zero throughout the denoising steps, thus strongly penalizing any mismatches with the reference image. Our experiments verify that COPAINT can outperform the existing diffusion-based methods under both objective and subjective metrics. The codes are available at https://github.com/UCSB-NLP-Chang/CoPaint/.
Pluralistic Aging Diffusion Autoencoder
Face aging is an ill-posed problem because multiple plausible aging patterns may correspond to a given input. Most existing methods often produce one deterministic estimation. This paper proposes a novel CLIP-driven Pluralistic Aging Diffusion Autoencoder (PADA) to enhance the diversity of aging patterns. First, we employ diffusion models to generate diverse low-level aging details via a sequential denoising reverse process. Second, we present Probabilistic Aging Embedding (PAE) to capture diverse high-level aging patterns, which represents age information as probabilistic distributions in the common CLIP latent space. A text-guided KL-divergence loss is designed to guide this learning. Our method can achieve pluralistic face aging conditioned on open-world aging texts and arbitrary unseen face images. Qualitative and quantitative experiments demonstrate that our method can generate more diverse and high-quality plausible aging results.
Input Perturbation Reduces Exposure Bias in Diffusion Models
Denoising Diffusion Probabilistic Models have shown an impressive generation quality, although their long sampling chain leads to high computational costs. In this paper, we observe that a long sampling chain also leads to an error accumulation phenomenon, which is similar to the exposure bias problem in autoregressive text generation. Specifically, we note that there is a discrepancy between training and testing, since the former is conditioned on the ground truth samples, while the latter is conditioned on the previously generated results. To alleviate this problem, we propose a very simple but effective training regularization, consisting in perturbing the ground truth samples to simulate the inference time prediction errors. We empirically show that, without affecting the recall and precision, the proposed input perturbation leads to a significant improvement in the sample quality while reducing both the training and the inference times. For instance, on CelebA 64times64, we achieve a new state-of-the-art FID score of 1.27, while saving 37.5% of the training time. The code is publicly available at https://github.com/forever208/DDPM-IP
