Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeParGo: Bridging Vision-Language with Partial and Global Views
This work presents ParGo, a novel Partial-Global projector designed to connect the vision and language modalities for Multimodal Large Language Models (MLLMs). Unlike previous works that rely on global attention-based projectors, our ParGo bridges the representation gap between the separately pre-trained vision encoders and the LLMs by integrating global and partial views, which alleviates the overemphasis on prominent regions. To facilitate the effective training of ParGo, we collect a large-scale detail-captioned image-text dataset named ParGoCap-1M-PT, consisting of 1 million images paired with high-quality captions. Extensive experiments on several MLLM benchmarks demonstrate the effectiveness of our ParGo, highlighting its superiority in aligning vision and language modalities. Compared to conventional Q-Former projector, our ParGo achieves an improvement of 259.96 in MME benchmark. Furthermore, our experiments reveal that ParGo significantly outperforms other projectors, particularly in tasks that emphasize detail perception ability.
MixLLM: LLM Quantization with Global Mixed-precision between Output-features and Highly-efficient System Design
Quantization has become one of the most effective methodologies to compress LLMs into smaller size. However, the existing quantization solutions still show limitations of either non-negligible accuracy drop or system inefficiency. In this paper, we make a comprehensive analysis of the general quantization principles on their effect to the triangle of accuracy, memory consumption and system efficiency. We propose MixLLM that explores the new optimization space of mixed-precision quantization between output features based on the insight that different output features matter differently in the model. MixLLM identifies the output features with high salience in the global view rather than within each single layer, effectively assigning the larger bit-width to output features that need it most to achieve good accuracy with low memory consumption. We present the sweet spot of quantization configuration of algorithm-system co-design that leads to high accuracy and system efficiency. To address the system challenge, we design the two-step dequantization to make use of the int8 Tensor Core easily and fast data type conversion to reduce dequantization overhead significantly, and present the software pipeline to overlap the memory access, dequantization and the MatMul to the best. Extensive experiments show that with only 10% more bits, the PPL increasement can be reduced from about 0.5 in SOTA to within 0.2 for Llama 3.1 70B, while on average MMLU-Pro improves by 0.93 over the SOTA of three popular models. In addition to its superior accuracy, MixLLM also achieves state-of-the-art system efficiency.
Graphusion: A RAG Framework for Knowledge Graph Construction with a Global Perspective
Knowledge Graphs (KGs) are crucial in the field of artificial intelligence and are widely used in downstream tasks, such as question-answering (QA). The construction of KGs typically requires significant effort from domain experts. Large Language Models (LLMs) have recently been used for Knowledge Graph Construction (KGC). However, most existing approaches focus on a local perspective, extracting knowledge triplets from individual sentences or documents, missing a fusion process to combine the knowledge in a global KG. This work introduces Graphusion, a zero-shot KGC framework from free text. It contains three steps: in Step 1, we extract a list of seed entities using topic modeling to guide the final KG includes the most relevant entities; in Step 2, we conduct candidate triplet extraction using LLMs; in Step 3, we design the novel fusion module that provides a global view of the extracted knowledge, incorporating entity merging, conflict resolution, and novel triplet discovery. Results show that Graphusion achieves scores of 2.92 and 2.37 out of 3 for entity extraction and relation recognition, respectively. Moreover, we showcase how Graphusion could be applied to the Natural Language Processing (NLP) domain and validate it in an educational scenario. Specifically, we introduce TutorQA, a new expert-verified benchmark for QA, comprising six tasks and a total of 1,200 QA pairs. Using the Graphusion-constructed KG, we achieve a significant improvement on the benchmark, for example, a 9.2% accuracy improvement on sub-graph completion.
Mindscape-Aware Retrieval Augmented Generation for Improved Long Context Understanding
Humans understand long and complex texts by relying on a holistic semantic representation of the content. This global view helps organize prior knowledge, interpret new information, and integrate evidence dispersed across a document, as revealed by the Mindscape-Aware Capability of humans in psychology. Current Retrieval-Augmented Generation (RAG) systems lack such guidance and therefore struggle with long-context tasks. In this paper, we propose Mindscape-Aware RAG (MiA-RAG), the first approach that equips LLM-based RAG systems with explicit global context awareness. MiA-RAG builds a mindscape through hierarchical summarization and conditions both retrieval and generation on this global semantic representation. This enables the retriever to form enriched query embeddings and the generator to reason over retrieved evidence within a coherent global context. We evaluate MiA-RAG across diverse long-context and bilingual benchmarks for evidence-based understanding and global sense-making. It consistently surpasses baselines, and further analysis shows that it aligns local details with a coherent global representation, enabling more human-like long-context retrieval and reasoning.
GRATING: Low-Latency and Memory-Efficient Semantic Selection on Device
Semantic top-K selection with cross-encoder rerankers underpins of on-device AI services, such as retrieval-augmented generation, agent memory, and personalized recommendation. However, its latency and memory demands dominate end-to-end budgets on edge hardware. Revisiting the objective of top-K selection, we reveal that only relative rankings matter, not exact per-candidate scores. We further observe sequence-level sparsity: relative rankings stabilize early in intermediate layers, allowing pruning opportunities prior to completing full inference. Building on this insight, we propose monolithic forwarding and develop a training-free inference system, GRATING. By maintaining a global view of all candidates, it reduces latency through progressive cluster pruning. It also bounds peak memory usage by strategically overlapping I/O with computation via dual-layer sliding window and chunked execution. We evaluate GRATING against state-of-the-art baselines on rerankers from 0.6B to 8B parameters across Apple M2 and RTX 5070. GRATING consistently reduces latency by up to 89.0% and peak memory by up to 94.9% in microbenchmarks, without any loss in precision. Across three real-world on-device AI applications, GRATING lowers latency by 11.6%-51.0% and peak memory by 18.6%-77.8%, demonstrating substantial improvements in efficiency and deployability.
CAKE: Cascading and Adaptive KV Cache Eviction with Layer Preferences
Large language models (LLMs) excel at processing long sequences, boosting demand for key-value (KV) caching. While recent efforts to evict KV cache have alleviated the inference burden, they often fail to allocate resources rationally across layers with different attention patterns. In this paper, we introduce Cascading and Adaptive KV cache Eviction (CAKE), a novel approach that frames KV cache eviction as a "cake-slicing problem." CAKE assesses layer-specific preferences by considering attention dynamics in both spatial and temporal dimensions, allocates rational cache size for layers accordingly, and manages memory constraints in a cascading manner. This approach enables a global view of cache allocation, adaptively distributing resources across diverse attention mechanisms while maintaining memory budgets. CAKE also employs a new eviction indicator that considers the shifting importance of tokens over time, addressing limitations in existing methods that overlook temporal dynamics. Comprehensive experiments on LongBench and NeedleBench show that CAKE maintains model performance with only 3.2% of the KV cache and consistently outperforms current baselines across various models and memory constraints, particularly in low-memory settings. Additionally, CAKE achieves over 10x speedup in decoding latency compared to full cache when processing contexts of 128K tokens with FlashAttention-2. Our code is available at https://github.com/antgroup/cakekv.
Quarks to Cosmos: Particles and Plasma in Cosmological evolution
We describe in the context of the particle physics (PP) standard model (SM) `PP-SM' the understanding of the primordial properties and composition of the Universe in the temperature range 130GeV>T>20keV. The Universe evolution is described using FLRW cosmology. We present a global view on particle content across time and describe the different evolution eras using deceleration parameter q. We follow the arrow of time in the expanding and cooling Universe: After the PP-SM heavies (t, h, W, Z) diminish in abundance below Tsimeq 50GeV, the PP-SM plasma in the Universe is governed by the strongly interacting Quark-Gluon content. Once the temperature drops below Tsimeq 150MeV, quarks and gluons hadronize into strongly interacting matter particles. Rapid disappearance of baryonic antimatter completes at T_B=38.2MeV. We study the ensuing disappearance of strangeness and mesons in general. We show that the different eras defined by particle populations are barely separated from each other with abundance of muons fading out just prior to T=O(2.5)MeV, the era of emergence of the free-streaming neutrinos. We discuss the two relevant fundamental constants controlling the decoupling of neutrinos. We subsequently follow the primordial Universe as it passes through the hot dense electron-positron plasma epoch. The high density of positron antimatter disappears near T=20.3keV: Nuclear reactions occur in the presence of a highly mobile and relatively strongly interacting electron-positron plasma phase. We apply plasma theory methods to describe the strong screening effects between heavy dust particle (nucleons). We analyze the paramagnetic characteristics of the electron-positron plasma when exposed to an external primordial magnetic field.
Federated Recommendation with Additive Personalization
Building recommendation systems via federated learning (FL) is a new emerging challenge for advancing next-generation Internet service and privacy protection. Existing approaches train shared item embedding by FL while keeping the user embedding private on client side. However, item embedding identical for all clients cannot capture users' individual differences on perceiving the same item and thus leads to poor personalization. Moreover, dense item embedding in FL results in expensive communication cost and latency. To address these challenges, we propose Federated Recommendation with Additive Personalization (FedRAP), which learns a global view of items via FL and a personalized view locally on each user. FedRAP enforces sparsity of the global view to save FL's communication cost and encourages difference between the two views through regularization. We propose an effective curriculum to learn the local and global views progressively with increasing regularization weights. To produce recommendations for an user, FedRAP adds the two views together to obtain a personalized item embedding. FedRAP achieves the best performance in FL setting on multiple benchmarks. It outperforms recent federated recommendation methods and several ablation study baselines.
Graphusion: Leveraging Large Language Models for Scientific Knowledge Graph Fusion and Construction in NLP Education
Knowledge graphs (KGs) are crucial in the field of artificial intelligence and are widely applied in downstream tasks, such as enhancing Question Answering (QA) systems. The construction of KGs typically requires significant effort from domain experts. Recently, Large Language Models (LLMs) have been used for knowledge graph construction (KGC), however, most existing approaches focus on a local perspective, extracting knowledge triplets from individual sentences or documents. In this work, we introduce Graphusion, a zero-shot KGC framework from free text. The core fusion module provides a global view of triplets, incorporating entity merging, conflict resolution, and novel triplet discovery. We showcase how Graphusion could be applied to the natural language processing (NLP) domain and validate it in the educational scenario. Specifically, we introduce TutorQA, a new expert-verified benchmark for graph reasoning and QA, comprising six tasks and a total of 1,200 QA pairs. Our evaluation demonstrates that Graphusion surpasses supervised baselines by up to 10% in accuracy on link prediction. Additionally, it achieves average scores of 2.92 and 2.37 out of 3 in human evaluations for concept entity extraction and relation recognition, respectively.
Data-centric Artificial Intelligence: A Survey
Artificial Intelligence (AI) is making a profound impact in almost every domain. A vital enabler of its great success is the availability of abundant and high-quality data for building machine learning models. Recently, the role of data in AI has been significantly magnified, giving rise to the emerging concept of data-centric AI. The attention of researchers and practitioners has gradually shifted from advancing model design to enhancing the quality and quantity of the data. In this survey, we discuss the necessity of data-centric AI, followed by a holistic view of three general data-centric goals (training data development, inference data development, and data maintenance) and the representative methods. We also organize the existing literature from automation and collaboration perspectives, discuss the challenges, and tabulate the benchmarks for various tasks. We believe this is the first comprehensive survey that provides a global view of a spectrum of tasks across various stages of the data lifecycle. We hope it can help the readers efficiently grasp a broad picture of this field, and equip them with the techniques and further research ideas to systematically engineer data for building AI systems. A companion list of data-centric AI resources will be regularly updated on https://github.com/daochenzha/data-centric-AI
NaviNeRF: NeRF-based 3D Representation Disentanglement by Latent Semantic Navigation
3D representation disentanglement aims to identify, decompose, and manipulate the underlying explanatory factors of 3D data, which helps AI fundamentally understand our 3D world. This task is currently under-explored and poses great challenges: (i) the 3D representations are complex and in general contains much more information than 2D image; (ii) many 3D representations are not well suited for gradient-based optimization, let alone disentanglement. To address these challenges, we use NeRF as a differentiable 3D representation, and introduce a self-supervised Navigation to identify interpretable semantic directions in the latent space. To our best knowledge, this novel method, dubbed NaviNeRF, is the first work to achieve fine-grained 3D disentanglement without any priors or supervisions. Specifically, NaviNeRF is built upon the generative NeRF pipeline, and equipped with an Outer Navigation Branch and an Inner Refinement Branch. They are complementary -- the outer navigation is to identify global-view semantic directions, and the inner refinement dedicates to fine-grained attributes. A synergistic loss is further devised to coordinate two branches. Extensive experiments demonstrate that NaviNeRF has a superior fine-grained 3D disentanglement ability than the previous 3D-aware models. Its performance is also comparable to editing-oriented models relying on semantic or geometry priors.
Ross3D: Reconstructive Visual Instruction Tuning with 3D-Awareness
The rapid development of Large Multimodal Models (LMMs) for 2D images and videos has spurred efforts to adapt these models for interpreting 3D scenes. However, the absence of large-scale 3D vision-language datasets has posed a significant obstacle. To address this issue, typical approaches focus on injecting 3D awareness into 2D LMMs by designing 3D input-level scene representations. This work provides a new perspective. We introduce reconstructive visual instruction tuning with 3D-awareness (Ross3D), which integrates 3D-aware visual supervision into the training procedure. Specifically, it incorporates cross-view and global-view reconstruction. The former requires reconstructing masked views by aggregating overlapping information from other views. The latter aims to aggregate information from all available views to recover Bird's-Eye-View images, contributing to a comprehensive overview of the entire scene. Empirically, Ross3D achieves state-of-the-art performance across various 3D scene understanding benchmarks. More importantly, our semi-supervised experiments demonstrate significant potential in leveraging large amounts of unlabeled 3D vision-only data.
Beyond LLaVA-HD: Diving into High-Resolution Large Multimodal Models
Seeing clearly with high resolution is a foundation of Large Multimodal Models (LMMs), which has been proven to be vital for visual perception and reasoning. Existing works usually employ a straightforward resolution upscaling method, where the image consists of global and local branches, with the latter being the sliced image patches but resized to the same resolution as the former. This means that higher resolution requires more local patches, resulting in exorbitant computational expenses, and meanwhile, the dominance of local image tokens may diminish the global context. In this paper, we dive into the problems and propose a new framework as well as an elaborate optimization strategy. Specifically, we extract contextual information from the global view using a mixture of adapters, based on the observation that different adapters excel at different tasks. With regard to local patches, learnable query embeddings are introduced to reduce image tokens, the most important tokens accounting for the user question will be further selected by a similarity-based selector. Our empirical results demonstrate a `less is more' pattern, where utilizing fewer but more informative local image tokens leads to improved performance. Besides, a significant challenge lies in the training strategy, as simultaneous end-to-end training of the global mining block and local compression block does not yield optimal results. We thus advocate for an alternating training way, ensuring balanced learning between global and local aspects. Finally, we also introduce a challenging dataset with high requirements for image detail, enhancing the training of the local compression layer. The proposed method, termed LMM with Sophisticated Tasks, Local image compression, and Mixture of global Experts (SliME), achieves leading performance across various benchmarks with only 2 million training data.
Document-Level Multi-Event Extraction with Event Proxy Nodes and Hausdorff Distance Minimization
Document-level multi-event extraction aims to extract the structural information from a given document automatically. Most recent approaches usually involve two steps: (1) modeling entity interactions; (2) decoding entity interactions into events. However, such approaches ignore a global view of inter-dependency of multiple events. Moreover, an event is decoded by iteratively merging its related entities as arguments, which might suffer from error propagation and is computationally inefficient. In this paper, we propose an alternative approach for document-level multi-event extraction with event proxy nodes and Hausdorff distance minimization. The event proxy nodes, representing pseudo-events, are able to build connections with other event proxy nodes, essentially capturing global information. The Hausdorff distance makes it possible to compare the similarity between the set of predicted events and the set of ground-truth events. By directly minimizing Hausdorff distance, the model is trained towards the global optimum directly, which improves performance and reduces training time. Experimental results show that our model outperforms previous state-of-the-art method in F1-score on two datasets with only a fraction of training time.
SOC: Semantic-Assisted Object Cluster for Referring Video Object Segmentation
This paper studies referring video object segmentation (RVOS) by boosting video-level visual-linguistic alignment. Recent approaches model the RVOS task as a sequence prediction problem and perform multi-modal interaction as well as segmentation for each frame separately. However, the lack of a global view of video content leads to difficulties in effectively utilizing inter-frame relationships and understanding textual descriptions of object temporal variations. To address this issue, we propose Semantic-assisted Object Cluster (SOC), which aggregates video content and textual guidance for unified temporal modeling and cross-modal alignment. By associating a group of frame-level object embeddings with language tokens, SOC facilitates joint space learning across modalities and time steps. Moreover, we present multi-modal contrastive supervision to help construct well-aligned joint space at the video level. We conduct extensive experiments on popular RVOS benchmarks, and our method outperforms state-of-the-art competitors on all benchmarks by a remarkable margin. Besides, the emphasis on temporal coherence enhances the segmentation stability and adaptability of our method in processing text expressions with temporal variations. Code will be available.
How Inclusive Are Wikipedia's Hyperlinks in Articles Covering Polarizing Topics?
Wikipedia relies on an extensive review process to verify that the content of each individual page is unbiased and presents a neutral point of view. Less attention has been paid to possible biases in the hyperlink structure of Wikipedia, which has a significant influence on the user's exploration process when visiting more than one page. The evaluation of hyperlink bias is challenging because it depends on the global view rather than the text of individual pages. In this paper, we focus on the influence of the interconnect topology between articles describing complementary aspects of polarizing topics. We introduce a novel measure of exposure to diverse information to quantify users' exposure to different aspects of a topic throughout an entire surfing session, rather than just one click ahead. We apply this measure to six polarizing topics (e.g., gun control and gun right), and we identify cases in which the network topology significantly limits the exposure of users to diverse information on the topic, encouraging users to remain in a knowledge bubble. Our findings demonstrate the importance of evaluating Wikipedia's network structure in addition to the extensive review of individual articles.
DeepWalk: Online Learning of Social Representations
We present DeepWalk, a novel approach for learning latent representations of vertices in a network. These latent representations encode social relations in a continuous vector space, which is easily exploited by statistical models. DeepWalk generalizes recent advancements in language modeling and unsupervised feature learning (or deep learning) from sequences of words to graphs. DeepWalk uses local information obtained from truncated random walks to learn latent representations by treating walks as the equivalent of sentences. We demonstrate DeepWalk's latent representations on several multi-label network classification tasks for social networks such as BlogCatalog, Flickr, and YouTube. Our results show that DeepWalk outperforms challenging baselines which are allowed a global view of the network, especially in the presence of missing information. DeepWalk's representations can provide F_1 scores up to 10% higher than competing methods when labeled data is sparse. In some experiments, DeepWalk's representations are able to outperform all baseline methods while using 60% less training data. DeepWalk is also scalable. It is an online learning algorithm which builds useful incremental results, and is trivially parallelizable. These qualities make it suitable for a broad class of real world applications such as network classification, and anomaly detection.
ReGAL: Refactoring Programs to Discover Generalizable Abstractions
While large language models (LLMs) are increasingly being used for program synthesis, they lack the global view needed to develop useful abstractions; they generally predict programs one at a time, often repeating the same functionality. Generating redundant code from scratch is both inefficient and error-prone. To address this, we propose Refactoring for Generalizable Abstraction Learning (ReGAL), a gradient-free method for learning a library of reusable functions via code refactorization, i.e. restructuring code without changing its execution output. ReGAL learns from a small set of existing programs, iteratively verifying and refining its abstractions via execution. We find that the shared function libraries discovered by ReGAL make programs easier to predict across diverse domains. On three datasets (LOGO graphics generation, Date reasoning, and TextCraft, a Minecraft-based text game), both open-source and proprietary LLMs improve in accuracy when predicting programs with ReGAL functions. For CodeLlama-13B, ReGAL results in absolute accuracy increases of 11.5% on graphics, 26.1% on date understanding, and 8.1% on TextCraft, outperforming GPT-3.5 in two of three domains. Our analysis reveals ReGAL's abstractions encapsulate frequently-used subroutines as well as environment dynamics.
Sparse Sampling Transformer with Uncertainty-Driven Ranking for Unified Removal of Raindrops and Rain Streaks
In the real world, image degradations caused by rain often exhibit a combination of rain streaks and raindrops, thereby increasing the challenges of recovering the underlying clean image. Note that the rain streaks and raindrops have diverse shapes, sizes, and locations in the captured image, and thus modeling the correlation relationship between irregular degradations caused by rain artifacts is a necessary prerequisite for image deraining. This paper aims to present an efficient and flexible mechanism to learn and model degradation relationships in a global view, thereby achieving a unified removal of intricate rain scenes. To do so, we propose a Sparse Sampling Transformer based on Uncertainty-Driven Ranking, dubbed UDR-S2Former. Compared to previous methods, our UDR-S2Former has three merits. First, it can adaptively sample relevant image degradation information to model underlying degradation relationships. Second, explicit application of the uncertainty-driven ranking strategy can facilitate the network to attend to degradation features and understand the reconstruction process. Finally, experimental results show that our UDR-S2Former clearly outperforms state-of-the-art methods for all benchmarks.
Aggregated Attributions for Explanatory Analysis of 3D Segmentation Models
Analysis of 3D segmentation models, especially in the context of medical imaging, is often limited to segmentation performance metrics that overlook the crucial aspect of explainability and bias. Currently, effectively explaining these models with saliency maps is challenging due to the high dimensions of input images multiplied by the ever-growing number of segmented class labels. To this end, we introduce Agg^2Exp, a methodology for aggregating fine-grained voxel attributions of the segmentation model's predictions. Unlike classical explanation methods that primarily focus on the local feature attribution, Agg^2Exp enables a more comprehensive global view on the importance of predicted segments in 3D images. Our benchmarking experiments show that gradient-based voxel attributions are more faithful to the model's predictions than perturbation-based explanations. As a concrete use-case, we apply Agg^2Exp to discover knowledge acquired by the Swin UNEt TRansformer model trained on the TotalSegmentator v2 dataset for segmenting anatomical structures in computed tomography medical images. Agg^2Exp facilitates the explanatory analysis of large segmentation models beyond their predictive performance.
EmbodiedScan: A Holistic Multi-Modal 3D Perception Suite Towards Embodied AI
In the realm of computer vision and robotics, embodied agents are expected to explore their environment and carry out human instructions. This necessitates the ability to fully understand 3D scenes given their first-person observations and contextualize them into language for interaction. However, traditional research focuses more on scene-level input and output setups from a global view. To address the gap, we introduce EmbodiedScan, a multi-modal, ego-centric 3D perception dataset and benchmark for holistic 3D scene understanding. It encompasses over 5k scans encapsulating 1M ego-centric RGB-D views, 1M language prompts, 160k 3D-oriented boxes spanning over 760 categories, some of which partially align with LVIS, and dense semantic occupancy with 80 common categories. Building upon this database, we introduce a baseline framework named Embodied Perceptron. It is capable of processing an arbitrary number of multi-modal inputs and demonstrates remarkable 3D perception capabilities, both within the two series of benchmarks we set up, i.e., fundamental 3D perception tasks and language-grounded tasks, and in the wild. Codes, datasets, and benchmarks will be available at https://github.com/OpenRobotLab/EmbodiedScan.
Oasis: Data Curation and Assessment System for Pretraining of Large Language Models
Data is one of the most critical elements in building a large language model. However, existing systems either fail to customize a corpus curation pipeline or neglect to leverage comprehensive corpus assessment for iterative optimization of the curation. To this end, we present a pretraining corpus curation and assessment platform called Oasis -- a one-stop system for data quality improvement and quantification with user-friendly interactive interfaces. Specifically, the interactive modular rule filter module can devise customized rules according to explicit feedback. The debiased neural filter module builds the quality classification dataset in a negative-centric manner to remove the undesired bias. The adaptive document deduplication module could execute large-scale deduplication with limited memory resources. These three parts constitute the customized data curation module. And in the holistic data assessment module, a corpus can be assessed in local and global views, with three evaluation means including human, GPT-4, and heuristic metrics. We exhibit a complete process to use Oasis for the curation and assessment of pretraining data. In addition, an 800GB bilingual corpus curated by Oasis is publicly released.
Unifying the Perspectives of NLP and Software Engineering: A Survey on Language Models for Code
In this work we systematically review the recent advancements in software engineering with language models, covering 70+ models, 40+ evaluation tasks, 180+ datasets, and 900 related works. Unlike previous works, we integrate software engineering (SE) with natural language processing (NLP) by discussing the perspectives of both sides: SE applies language models for development automation, while NLP adopts SE tasks for language model evaluation. We break down code processing models into general language models represented by the GPT family and specialized models that are specifically pretrained on code, often with tailored objectives. We discuss the relations and differences between these models, and highlight the historical transition of code modeling from statistical models and RNNs to pretrained Transformers and LLMs, which is exactly the same course that had been taken by NLP. We also go beyond programming and review LLMs' application in other software engineering activities including requirement engineering, testing, deployment, and operations in an endeavor to provide a global view of NLP in SE, and identify key challenges and potential future directions in this domain. We keep the survey open and updated on GitHub at https://github.com/codefuse-ai/Awesome-Code-LLM.
Sigmoid Loss for Language Image Pre-Training
We propose a simple pairwise sigmoid loss for image-text pre-training. Unlike standard contrastive learning with softmax normalization, the sigmoid loss operates solely on image-text pairs and does not require a global view of the pairwise similarities for normalization. The sigmoid loss simultaneously allows further scaling up the batch size, while also performing better at smaller batch sizes. With only four TPUv4 chips, we can train a Base CLIP model at 4k batch size and a Large LiT model at 20k batch size, the latter achieves 84.5% ImageNet zero-shot accuracy in two days. This disentanglement of the batch size from the loss further allows us to study the impact of examples vs pairs and negative to positive ratio. Finally, we push the batch size to the extreme, up to one million, and find that the benefits of growing batch size quickly diminish, with a more reasonable batch size of 32k being sufficient. We hope our research motivates further explorations in improving the quality and efficiency of language-image pre-training.
UrbanLLaVA: A Multi-modal Large Language Model for Urban Intelligence with Spatial Reasoning and Understanding
Urban research involves a wide range of scenarios and tasks that require the understanding of multi-modal data. Current methods often focus on specific data types and lack a unified framework in urban field for processing them comprehensively. The recent success of multi-modal large language models (MLLMs) presents a promising opportunity to overcome this limitation. In this paper, we introduce UrbanLLaVA, a multi-modal large language model designed to process these four types of data simultaneously and achieve strong performance across diverse urban tasks compared with general MLLMs. In UrbanLLaVA, we first curate a diverse urban instruction dataset encompassing both single-modal and cross-modal urban data, spanning from location view to global view of urban environment. Additionally, we propose a multi-stage training framework that decouples spatial reasoning enhancement from domain knowledge learning, thereby improving the compatibility and downstream performance of UrbanLLaVA across diverse urban tasks. Finally, we also extend existing benchmark for urban research to assess the performance of MLLMs across a wide range of urban tasks. Experimental results from three cities demonstrate that UrbanLLaVA outperforms open-source and proprietary MLLMs in both single-modal tasks and complex cross-modal tasks and shows robust generalization abilities across cities. Source codes and data are openly accessible to the research community via https://github.com/tsinghua-fib-lab/UrbanLLaVA.
No Pixel Left Behind: A Detail-Preserving Architecture for Robust High-Resolution AI-Generated Image Detection
The rapid growth of high-resolution, meticulously crafted AI-generated images poses a significant challenge to existing detection methods, which are often trained and evaluated on low-resolution, automatically generated datasets that do not align with the complexities of high-resolution scenarios. A common practice is to resize or center-crop high-resolution images to fit standard network inputs. However, without full coverage of all pixels, such strategies risk either obscuring subtle, high-frequency artifacts or discarding information from uncovered regions, leading to input information loss. In this paper, we introduce the High-Resolution Detail-Aggregation Network (HiDA-Net), a novel framework that ensures no pixel is left behind. We use the Feature Aggregation Module (FAM), which fuses features from multiple full-resolution local tiles with a down-sampled global view of the image. These local features are aggregated and fused with global representations for final prediction, ensuring that native-resolution details are preserved and utilized for detection. To enhance robustness against challenges such as localized AI manipulations and compression, we introduce Token-wise Forgery Localization (TFL) module for fine-grained spatial sensitivity and JPEG Quality Factor Estimation (QFE) module to disentangle generative artifacts from compression noise explicitly. Furthermore, to facilitate future research, we introduce HiRes-50K, a new challenging benchmark consisting of 50,568 images with up to 64 megapixels. Extensive experiments show that HiDA-Net achieves state-of-the-art, increasing accuracy by over 13% on the challenging Chameleon dataset and 10% on our HiRes-50K.
FoPru: Focal Pruning for Efficient Large Vision-Language Models
Large Vision-Language Models (LVLMs) represent a significant advancement toward achieving superior multimodal capabilities by enabling powerful Large Language Models (LLMs) to understand visual input. Typically, LVLMs utilize visual encoders, such as CLIP, to transform images into visual tokens, which are then aligned with textual tokens through projection layers before being input into the LLM for inference. Although existing LVLMs have achieved significant success, their inference efficiency is still limited by the substantial number of visual tokens and the potential redundancy among them. To mitigate this issue, we propose Focal Pruning (FoPru), a training-free method that prunes visual tokens based on the attention-based token significance derived from the vision encoder. Specifically, we introduce two alternative pruning strategies: 1) the rank strategy, which leverages all token significance scores to retain more critical tokens in a global view; 2) the row strategy, which focuses on preserving continuous key information in images from a local perspective. Finally, the selected tokens are reordered to maintain their original positional relationships. Extensive experiments across various LVLMs and multimodal datasets demonstrate that our method can prune a large number of redundant tokens while maintaining high accuracy, leading to significant improvements in inference efficiency.
MapGPT: Map-Guided Prompting for Unified Vision-and-Language Navigation
Embodied agents equipped with GPT as their brain have exhibited extraordinary thinking and decision-making abilities across various tasks. However, existing zero-shot agents for vision-and-language navigation (VLN) only prompt the GPT to handle excessive environmental information and select potential locations within localized environments, without constructing an effective ''global-view'' (e.g., a commonly-used map) for the agent to understand the overall environment. In this work, we present a novel map-guided GPT-based path-planning agent, dubbed MapGPT, for the zero-shot VLN task. Specifically, we convert a topological map constructed online into prompts to encourage map-guided global exploration, and require the agent to explicitly output and update multi-step path planning to avoid getting stuck in local exploration. Extensive experiments demonstrate that our MapGPT is effective, achieving impressive performance on both the R2R and REVERIE datasets (38.8% and 28.4% success rate, respectively) and showcasing the newly emerged global thinking and path planning capabilities of the GPT model. Unlike previous VLN agents, which require separate parameters fine-tuning or specific prompt design to accommodate various instruction styles across different datasets, our MapGPT is more unified as it can adapt to different instruction styles seamlessly, which is the first of its kind in this field.
Joint2Human: High-quality 3D Human Generation via Compact Spherical Embedding of 3D Joints
3D human generation is increasingly significant in various applications. However, the direct use of 2D generative methods in 3D generation often results in significant loss of local details, while methods that reconstruct geometry from generated images struggle with global view consistency. In this work, we introduce Joint2Human, a novel method that leverages 2D diffusion models to generate detailed 3D human geometry directly, ensuring both global structure and local details. To achieve this, we employ the Fourier occupancy field (FOF) representation, enabling the direct production of 3D shapes as preliminary results using 2D generative models. With the proposed high-frequency enhancer and the multi-view recarving strategy, our method can seamlessly integrate the details from different views into a uniform global shape.To better utilize the 3D human prior and enhance control over the generated geometry, we introduce a compact spherical embedding of 3D joints. This allows for effective application of pose guidance during the generation process. Additionally, our method is capable of generating 3D humans guided by textual inputs. Our experimental results demonstrate the capability of our method to ensure global structure, local details, high resolution, and low computational cost, simultaneously. More results and code can be found on our project page at http://cic.tju.edu.cn/faculty/likun/projects/Joint2Human.
Understanding Quantum Technologies 2025
Understanding Quantum Technologies 2025 is the 8th update of a free open science ebook that provides a 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections, quantum computing energetics and a new subsection of the effects of the Lieb-Robinson limit), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors scientific and engineering approaches and roadmaps), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs and manufacturing process, raw materials), unconventional computing (potential alternatives to quantum and classical computing), quantum computing algorithms, software development tools, resource estimate and benchmark tools, use case and case studies analysis methodologies, application use cases per market, quantum communications and cryptography (including QKD, PQC and QPU interconnect technologies), quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an update to the 2024, 2023, 2022, and 2021 editions published respectively in October 2024, 2023, 2022 and 2021. An update log is provided at the end of the book.
LocalDyGS: Multi-view Global Dynamic Scene Modeling via Adaptive Local Implicit Feature Decoupling
Due to the complex and highly dynamic motions in the real world, synthesizing dynamic videos from multi-view inputs for arbitrary viewpoints is challenging. Previous works based on neural radiance field or 3D Gaussian splatting are limited to modeling fine-scale motion, greatly restricting their application. In this paper, we introduce LocalDyGS, which consists of two parts to adapt our method to both large-scale and fine-scale motion scenes: 1) We decompose a complex dynamic scene into streamlined local spaces defined by seeds, enabling global modeling by capturing motion within each local space. 2) We decouple static and dynamic features for local space motion modeling. A static feature shared across time steps captures static information, while a dynamic residual field provides time-specific features. These are combined and decoded to generate Temporal Gaussians, modeling motion within each local space. As a result, we propose a novel dynamic scene reconstruction framework to model highly dynamic real-world scenes more realistically. Our method not only demonstrates competitive performance on various fine-scale datasets compared to state-of-the-art (SOTA) methods, but also represents the first attempt to model larger and more complex highly dynamic scenes. Project page: https://wujh2001.github.io/LocalDyGS/.
BirdSAT: Cross-View Contrastive Masked Autoencoders for Bird Species Classification and Mapping
We propose a metadata-aware self-supervised learning~(SSL)~framework useful for fine-grained classification and ecological mapping of bird species around the world. Our framework unifies two SSL strategies: Contrastive Learning~(CL) and Masked Image Modeling~(MIM), while also enriching the embedding space with metadata available with ground-level imagery of birds. We separately train uni-modal and cross-modal ViT on a novel cross-view global bird species dataset containing ground-level imagery, metadata (location, time), and corresponding satellite imagery. We demonstrate that our models learn fine-grained and geographically conditioned features of birds, by evaluating on two downstream tasks: fine-grained visual classification~(FGVC) and cross-modal retrieval. Pre-trained models learned using our framework achieve SotA performance on FGVC of iNAT-2021 birds and in transfer learning settings for CUB-200-2011 and NABirds datasets. Moreover, the impressive cross-modal retrieval performance of our model enables the creation of species distribution maps across any geographic region. The dataset and source code will be released at https://github.com/mvrl/BirdSAT}.
Multi-view Pyramid Transformer: Look Coarser to See Broader
We propose Multi-view Pyramid Transformer (MVP), a scalable multi-view transformer architecture that directly reconstructs large 3D scenes from tens to hundreds of images in a single forward pass. Drawing on the idea of ``looking broader to see the whole, looking finer to see the details," MVP is built on two core design principles: 1) a local-to-global inter-view hierarchy that gradually broadens the model's perspective from local views to groups and ultimately the full scene, and 2) a fine-to-coarse intra-view hierarchy that starts from detailed spatial representations and progressively aggregates them into compact, information-dense tokens. This dual hierarchy achieves both computational efficiency and representational richness, enabling fast reconstruction of large and complex scenes. We validate MVP on diverse datasets and show that, when coupled with 3D Gaussian Splatting as the underlying 3D representation, it achieves state-of-the-art generalizable reconstruction quality while maintaining high efficiency and scalability across a wide range of view configurations.
SiMilarity-Enhanced Homophily for Multi-View Heterophilous Graph Clustering
With the increasing prevalence of graph-structured data, multi-view graph clustering has been widely used in various downstream applications. Existing approaches primarily rely on a unified message passing mechanism, which significantly enhances clustering performance. Nevertheless, this mechanism limits its applicability to heterophilous situations, as it is fundamentally predicated on the assumption of homophily, i.e., the connected nodes often belong to the same class. In reality, this assumption does not always hold; a moderately or even mildly homophilous graph is more common than a fully homophilous one due to inevitable heterophilous information in the graph. To address this issue, in this paper, we propose a novel SiMilarity-enhanced Homophily for Multi-view Heterophilous Graph Clustering (SMHGC) approach. By analyzing the relationship between similarity and graph homophily, we propose to enhance the homophily by introducing three similarity terms, i.e., neighbor pattern similarity, node feature similarity, and multi-view global similarity, in a label-free manner. Then, a consensus-based inter- and intra-view fusion paradigm is proposed to fuse the improved homophilous graph from different views and utilize them for clustering. The state-of-the-art experimental results on both multi-view heterophilous and homophilous datasets collectively demonstrate the strong capacity of similarity for unsupervised multi-view heterophilous graph learning. Additionally, the consistent performance across semi-synthetic datasets with varying levels of homophily serves as further evidence of SMHGC's resilience to heterophily.
GenesisTex: Adapting Image Denoising Diffusion to Texture Space
We present GenesisTex, a novel method for synthesizing textures for 3D geometries from text descriptions. GenesisTex adapts the pretrained image diffusion model to texture space by texture space sampling. Specifically, we maintain a latent texture map for each viewpoint, which is updated with predicted noise on the rendering of the corresponding viewpoint. The sampled latent texture maps are then decoded into a final texture map. During the sampling process, we focus on both global and local consistency across multiple viewpoints: global consistency is achieved through the integration of style consistency mechanisms within the noise prediction network, and low-level consistency is achieved by dynamically aligning latent textures. Finally, we apply reference-based inpainting and img2img on denser views for texture refinement. Our approach overcomes the limitations of slow optimization in distillation-based methods and instability in inpainting-based methods. Experiments on meshes from various sources demonstrate that our method surpasses the baseline methods quantitatively and qualitatively.
Multi-scale fMRI time series analysis for understanding neurodegeneration in MCI
In this study, we present a technique that spans multi-scale views (global scale -- meaning brain network-level and local scale -- examining each individual ROI that constitutes the network) applied to resting-state fMRI volumes. Deep learning based classification is utilized in understanding neurodegeneration. The novelty of the proposed approach lies in utilizing two extreme scales of analysis. One branch considers the entire network within graph-analysis framework. Concurrently, the second branch scrutinizes each ROI within a network independently, focusing on evolution of dynamics. For each subject, graph-based approach employs partial correlation to profile the subject in a single graph where each ROI is a node, providing insights into differences in levels of participation. In contrast, non-linear analysis employs recurrence plots to profile a subject as a multichannel 2D image, revealing distinctions in underlying dynamics. The proposed approach is employed for classification of a cohort of 50 healthy control (HC) and 50 Mild Cognitive Impairment (MCI), sourced from ADNI dataset. Results point to: (1) reduced activity in ROIs such as PCC in MCI (2) greater activity in occipital in MCI, which is not seen in HC (3) when analysed for dynamics, all ROIs in MCI show greater predictability in time-series.
Ologs: a categorical framework for knowledge representation
In this paper we introduce the olog, or ontology log, a category-theoretic model for knowledge representation (KR). Grounded in formal mathematics, ologs can be rigorously formulated and cross-compared in ways that other KR models (such as semantic networks) cannot. An olog is similar to a relational database schema; in fact an olog can serve as a data repository if desired. Unlike database schemas, which are generally difficult to create or modify, ologs are designed to be user-friendly enough that authoring or reconfiguring an olog is a matter of course rather than a difficult chore. It is hoped that learning to author ologs is much simpler than learning a database definition language, despite their similarity. We describe ologs carefully and illustrate with many examples. As an application we show that any primitive recursive function can be described by an olog. We also show that ologs can be aligned or connected together into a larger network using functors. The various methods of information flow and institutions can then be used to integrate local and global world-views. We finish by providing several different avenues for future research.
ROMAN: Open-Set Object Map Alignment for Robust View-Invariant Global Localization
Global localization is a fundamental capability required for long-term and drift-free robot navigation. However, current methods fail to relocalize when faced with significantly different viewpoints. We present ROMAN (Robust Object Map Alignment Anywhere), a global localization method capable of localizing in challenging and diverse environments by creating and aligning maps of open-set and view-invariant objects. ROMAN formulates and solves a registration problem between object submaps using a unified graph-theoretic global data association approach with a novel incorporation of a gravity direction prior and object shape and semantic similarity. This work's open-set object mapping and information-rich object association algorithm enables global localization, even in instances when maps are created from robots traveling in opposite directions. Through a set of challenging global localization experiments in indoor, urban, and unstructured/forested environments, we demonstrate that ROMAN achieves higher relative pose estimation accuracy than other image-based pose estimation methods or segment-based registration methods. Additionally, we evaluate ROMAN as a loop closure module in large-scale multi-robot SLAM and show a 35% improvement in trajectory estimation error compared to standard SLAM systems using visual features for loop closures. Code and videos can be found at https://acl.mit.edu/roman.
Human4DiT: Free-view Human Video Generation with 4D Diffusion Transformer
We present a novel approach for generating high-quality, spatio-temporally coherent human videos from a single image under arbitrary viewpoints. Our framework combines the strengths of U-Nets for accurate condition injection and diffusion transformers for capturing global correlations across viewpoints and time. The core is a cascaded 4D transformer architecture that factorizes attention across views, time, and spatial dimensions, enabling efficient modeling of the 4D space. Precise conditioning is achieved by injecting human identity, camera parameters, and temporal signals into the respective transformers. To train this model, we curate a multi-dimensional dataset spanning images, videos, multi-view data and 3D/4D scans, along with a multi-dimensional training strategy. Our approach overcomes the limitations of previous methods based on GAN or UNet-based diffusion models, which struggle with complex motions and viewpoint changes. Through extensive experiments, we demonstrate our method's ability to synthesize realistic, coherent and free-view human videos, paving the way for advanced multimedia applications in areas such as virtual reality and animation. Our project website is https://human4dit.github.io.
Envision3D: One Image to 3D with Anchor Views Interpolation
We present Envision3D, a novel method for efficiently generating high-quality 3D content from a single image. Recent methods that extract 3D content from multi-view images generated by diffusion models show great potential. However, it is still challenging for diffusion models to generate dense multi-view consistent images, which is crucial for the quality of 3D content extraction. To address this issue, we propose a novel cascade diffusion framework, which decomposes the challenging dense views generation task into two tractable stages, namely anchor views generation and anchor views interpolation. In the first stage, we train the image diffusion model to generate global consistent anchor views conditioning on image-normal pairs. Subsequently, leveraging our video diffusion model fine-tuned on consecutive multi-view images, we conduct interpolation on the previous anchor views to generate extra dense views. This framework yields dense, multi-view consistent images, providing comprehensive 3D information. To further enhance the overall generation quality, we introduce a coarse-to-fine sampling strategy for the reconstruction algorithm to robustly extract textured meshes from the generated dense images. Extensive experiments demonstrate that our method is capable of generating high-quality 3D content in terms of texture and geometry, surpassing previous image-to-3D baseline methods.
PointVST: Self-Supervised Pre-training for 3D Point Clouds via View-Specific Point-to-Image Translation
The past few years have witnessed the great success and prevalence of self-supervised representation learning within the language and 2D vision communities. However, such advancements have not been fully migrated to the field of 3D point cloud learning. Different from existing pre-training paradigms designed for deep point cloud feature extractors that fall into the scope of generative modeling or contrastive learning, this paper proposes a translative pre-training framework, namely PointVST, driven by a novel self-supervised pretext task of cross-modal translation from 3D point clouds to their corresponding diverse forms of 2D rendered images. More specifically, we begin with deducing view-conditioned point-wise embeddings through the insertion of the viewpoint indicator, and then adaptively aggregate a view-specific global codeword, which can be further fed into subsequent 2D convolutional translation heads for image generation. Extensive experimental evaluations on various downstream task scenarios demonstrate that our PointVST shows consistent and prominent performance superiority over current state-of-the-art approaches as well as satisfactory domain transfer capability. Our code will be publicly available at https://github.com/keeganhk/PointVST.
COSMOS: Cross-Modality Self-Distillation for Vision Language Pre-training
Vision-Language Models (VLMs) trained with contrastive loss have achieved significant advancements in various vision and language tasks. However, the global nature of contrastive loss makes VLMs focus predominantly on foreground objects, neglecting other crucial information in the image, which limits their effectiveness in downstream tasks. To address these challenges, we propose COSMOS: CrOSs-MOdality Self-distillation for vision-language pre-training that integrates a novel text-cropping strategy and cross-attention module into a self-supervised learning framework. We create global and local views of images and texts (i.e., multi-modal augmentations), which are essential for self-distillation in VLMs. We further introduce a cross-attention module, enabling COSMOS to learn comprehensive cross-modal representations optimized via a cross-modality self-distillation loss. COSMOS consistently outperforms previous strong baselines on various zero-shot downstream tasks, including retrieval, classification, and semantic segmentation. Additionally, it surpasses CLIP-based models trained on larger datasets in visual perception and contextual understanding tasks.
Identifying Climate Targets in National Laws and Policies using Machine Learning
Quantified policy targets are a fundamental element of climate policy, typically characterised by domain-specific and technical language. Current methods for curating comprehensive views of global climate policy targets entail significant manual effort. At present there are few scalable methods for extracting climate targets from national laws or policies, which limits policymakers' and researchers' ability to (1) assess private and public sector alignment with global goals and (2) inform policy decisions. In this paper we present an approach for extracting mentions of climate targets from national laws and policies. We create an expert-annotated dataset identifying three categories of target ('Net Zero', 'Reduction' and 'Other' (e.g. renewable energy targets)) and train a classifier to reliably identify them in text. We investigate bias and equity impacts related to our model and identify specific years and country names as problematic features. Finally, we investigate the characteristics of the dataset produced by running this classifier on the Climate Policy Radar (CPR) dataset of global national climate laws and policies and UNFCCC submissions, highlighting the potential of automated and scalable data collection for existing climate policy databases and supporting further research. Our work represents a significant upgrade in the accessibility of these key climate policy elements for policymakers and researchers. We publish our model at https://huggingface.co/ClimatePolicyRadar/national-climate-targets and related dataset at https://huggingface.co/datasets/ClimatePolicyRadar/national-climate-targets.
$NavA^3$: Understanding Any Instruction, Navigating Anywhere, Finding Anything
Embodied navigation is a fundamental capability of embodied intelligence, enabling robots to move and interact within physical environments. However, existing navigation tasks primarily focus on predefined object navigation or instruction following, which significantly differs from human needs in real-world scenarios involving complex, open-ended scenes. To bridge this gap, we introduce a challenging long-horizon navigation task that requires understanding high-level human instructions and performing spatial-aware object navigation in real-world environments. Existing embodied navigation methods struggle with such tasks due to their limitations in comprehending high-level human instructions and localizing objects with an open vocabulary. In this paper, we propose NavA^3, a hierarchical framework divided into two stages: global and local policies. In the global policy, we leverage the reasoning capabilities of Reasoning-VLM to parse high-level human instructions and integrate them with global 3D scene views. This allows us to reason and navigate to regions most likely to contain the goal object. In the local policy, we have collected a dataset of 1.0 million samples of spatial-aware object affordances to train the NaviAfford model (PointingVLM), which provides robust open-vocabulary object localization and spatial awareness for precise goal identification and navigation in complex environments. Extensive experiments demonstrate that NavA^3 achieves SOTA results in navigation performance and can successfully complete longhorizon navigation tasks across different robot embodiments in real-world settings, paving the way for universal embodied navigation. The dataset and code will be made available. Project website: https://NavigationA3.github.io/.
TiP4GEN: Text to Immersive Panorama 4D Scene Generation
With the rapid advancement and widespread adoption of VR/AR technologies, there is a growing demand for the creation of high-quality, immersive dynamic scenes. However, existing generation works predominantly concentrate on the creation of static scenes or narrow perspective-view dynamic scenes, falling short of delivering a truly 360-degree immersive experience from any viewpoint. In this paper, we introduce TiP4GEN, an advanced text-to-dynamic panorama scene generation framework that enables fine-grained content control and synthesizes motion-rich, geometry-consistent panoramic 4D scenes. TiP4GEN integrates panorama video generation and dynamic scene reconstruction to create 360-degree immersive virtual environments. For video generation, we introduce a Dual-branch Generation Model consisting of a panorama branch and a perspective branch, responsible for global and local view generation, respectively. A bidirectional cross-attention mechanism facilitates comprehensive information exchange between the branches. For scene reconstruction, we propose a Geometry-aligned Reconstruction Model based on 3D Gaussian Splatting. By aligning spatial-temporal point clouds using metric depth maps and initializing scene cameras with estimated poses, our method ensures geometric consistency and temporal coherence for the reconstructed scenes. Extensive experiments demonstrate the effectiveness of our proposed designs and the superiority of TiP4GEN in generating visually compelling and motion-coherent dynamic panoramic scenes. Our project page is at https://ke-xing.github.io/TiP4GEN/.
Learning to Distill Global Representation for Sparse-View CT
Sparse-view computed tomography (CT) -- using a small number of projections for tomographic reconstruction -- enables much lower radiation dose to patients and accelerated data acquisition. The reconstructed images, however, suffer from strong artifacts, greatly limiting their diagnostic value. Current trends for sparse-view CT turn to the raw data for better information recovery. The resultant dual-domain methods, nonetheless, suffer from secondary artifacts, especially in ultra-sparse view scenarios, and their generalization to other scanners/protocols is greatly limited. A crucial question arises: have the image post-processing methods reached the limit? Our answer is not yet. In this paper, we stick to image post-processing methods due to great flexibility and propose global representation (GloRe) distillation framework for sparse-view CT, termed GloReDi. First, we propose to learn GloRe with Fourier convolution, so each element in GloRe has an image-wide receptive field. Second, unlike methods that only use the full-view images for supervision, we propose to distill GloRe from intermediate-view reconstructed images that are readily available but not explored in previous literature. The success of GloRe distillation is attributed to two key components: representation directional distillation to align the GloRe directions, and band-pass-specific contrastive distillation to gain clinically important details. Extensive experiments demonstrate the superiority of the proposed GloReDi over the state-of-the-art methods, including dual-domain ones. The source code is available at https://github.com/longzilicart/GloReDi.
Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis
Photorealistic frontal view synthesis from a single face image has a wide range of applications in the field of face recognition. Although data-driven deep learning methods have been proposed to address this problem by seeking solutions from ample face data, this problem is still challenging because it is intrinsically ill-posed. This paper proposes a Two-Pathway Generative Adversarial Network (TP-GAN) for photorealistic frontal view synthesis by simultaneously perceiving global structures and local details. Four landmark located patch networks are proposed to attend to local textures in addition to the commonly used global encoder-decoder network. Except for the novel architecture, we make this ill-posed problem well constrained by introducing a combination of adversarial loss, symmetry loss and identity preserving loss. The combined loss function leverages both frontal face distribution and pre-trained discriminative deep face models to guide an identity preserving inference of frontal views from profiles. Different from previous deep learning methods that mainly rely on intermediate features for recognition, our method directly leverages the synthesized identity preserving image for downstream tasks like face recognition and attribution estimation. Experimental results demonstrate that our method not only presents compelling perceptual results but also outperforms state-of-the-art results on large pose face recognition.
In the Search for Optimal Multi-view Learning Models for Crop Classification with Global Remote Sensing Data
Studying and analyzing cropland is a difficult task due to its dynamic and heterogeneous growth behavior. Usually, diverse data sources can be collected for its estimation. Although deep learning models have proven to excel in the crop classification task, they face substantial challenges when dealing with multiple inputs, named Multi-View Learning (MVL). The methods used in the MVL scenario can be structured based on the encoder architecture, the fusion strategy, and the optimization technique. The literature has primarily focused on using specific encoder architectures for local regions, lacking a deeper exploration of other components in the MVL methodology. In contrast, we investigate the simultaneous selection of the fusion strategy and encoder architecture, assessing global-scale cropland and crop-type classifications. We use a range of five fusion strategies (Input, Feature, Decision, Ensemble, Hybrid) and five temporal encoders (LSTM, GRU, TempCNN, TAE, L-TAE) as possible configurations in the MVL method. We use the CropHarvest dataset for validation, which provides optical, radar, weather time series, and topographic information as input data. We found that in scenarios with a limited number of labeled samples, a unique configuration is insufficient for all the cases. Instead, a specialized combination should be meticulously sought, including an encoder and fusion strategy. To streamline this search process, we suggest identifying the optimal encoder architecture tailored for a particular fusion strategy, and then determining the most suitable fusion strategy for the classification task. We provide a methodological framework for researchers exploring crop classification through an MVL methodology.
Multi-View Slot Attention Using Paraphrased Texts for Face Anti-Spoofing
Recent face anti-spoofing (FAS) methods have shown remarkable cross-domain performance by employing vision-language models like CLIP. However, existing CLIP-based FAS models do not fully exploit CLIP's patch embedding tokens, failing to detect critical spoofing clues. Moreover, these models rely on a single text prompt per class (e.g., 'live' or 'fake'), which limits generalization. To address these issues, we propose MVP-FAS, a novel framework incorporating two key modules: Multi-View Slot attention (MVS) and Multi-Text Patch Alignment (MTPA). Both modules utilize multiple paraphrased texts to generate generalized features and reduce dependence on domain-specific text. MVS extracts local detailed spatial features and global context from patch embeddings by leveraging diverse texts with multiple perspectives. MTPA aligns patches with multiple text representations to improve semantic robustness. Extensive experiments demonstrate that MVP-FAS achieves superior generalization performance, outperforming previous state-of-the-art methods on cross-domain datasets. Code: https://github.com/Elune001/MVP-FAS.
SynRS3D: A Synthetic Dataset for Global 3D Semantic Understanding from Monocular Remote Sensing Imagery
Global semantic 3D understanding from single-view high-resolution remote sensing (RS) imagery is crucial for Earth Observation (EO). However, this task faces significant challenges due to the high costs of annotations and data collection, as well as geographically restricted data availability. To address these challenges, synthetic data offer a promising solution by being easily accessible and thus enabling the provision of large and diverse datasets. We develop a specialized synthetic data generation pipeline for EO and introduce SynRS3D, the largest synthetic RS 3D dataset. SynRS3D comprises 69,667 high-resolution optical images that cover six different city styles worldwide and feature eight land cover types, precise height information, and building change masks. To further enhance its utility, we develop a novel multi-task unsupervised domain adaptation (UDA) method, RS3DAda, coupled with our synthetic dataset, which facilitates the RS-specific transition from synthetic to real scenarios for land cover mapping and height estimation tasks, ultimately enabling global monocular 3D semantic understanding based on synthetic data. Extensive experiments on various real-world datasets demonstrate the adaptability and effectiveness of our synthetic dataset and proposed RS3DAda method. SynRS3D and related codes will be available.
Structural Multiplane Image: Bridging Neural View Synthesis and 3D Reconstruction
The Multiplane Image (MPI), containing a set of fronto-parallel RGBA layers, is an effective and efficient representation for view synthesis from sparse inputs. Yet, its fixed structure limits the performance, especially for surfaces imaged at oblique angles. We introduce the Structural MPI (S-MPI), where the plane structure approximates 3D scenes concisely. Conveying RGBA contexts with geometrically-faithful structures, the S-MPI directly bridges view synthesis and 3D reconstruction. It can not only overcome the critical limitations of MPI, i.e., discretization artifacts from sloped surfaces and abuse of redundant layers, and can also acquire planar 3D reconstruction. Despite the intuition and demand of applying S-MPI, great challenges are introduced, e.g., high-fidelity approximation for both RGBA layers and plane poses, multi-view consistency, non-planar regions modeling, and efficient rendering with intersected planes. Accordingly, we propose a transformer-based network based on a segmentation model. It predicts compact and expressive S-MPI layers with their corresponding masks, poses, and RGBA contexts. Non-planar regions are inclusively handled as a special case in our unified framework. Multi-view consistency is ensured by sharing global proxy embeddings, which encode plane-level features covering the complete 3D scenes with aligned coordinates. Intensive experiments show that our method outperforms both previous state-of-the-art MPI-based view synthesis methods and planar reconstruction methods.
Global urban visual perception varies across demographics and personalities
Understanding people's preferences is crucial for urban planning, yet current approaches often combine responses from multi-cultural populations, obscuring demographic differences and risking amplifying biases. We conducted a large-scale urban visual perception survey of streetscapes worldwide using street view imagery, examining how demographics -- including gender, age, income, education, race and ethnicity, and, for the first time, personality traits -- shape perceptions among 1,000 participants with balanced demographics from five countries and 45 nationalities. This dataset, Street Perception Evaluation Considering Socioeconomics (SPECS), reveals demographic- and personality-based differences across six traditional indicators (safe, lively, wealthy, beautiful, boring, depressing) and four new ones (live nearby, walk, cycle, green). Location-based sentiments further shape these preferences. Machine learning models trained on existing global datasets tend to overestimate positive indicators and underestimate negative ones compared to human responses, underscoring the need for local context. Our study aspires to rectify the myopic treatment of street perception, which rarely considers demographics or personality traits.
Global Latent Neural Rendering
A recent trend among generalizable novel view synthesis methods is to learn a rendering operator acting over single camera rays. This approach is promising because it removes the need for explicit volumetric rendering, but it effectively treats target images as collections of independent pixels. Here, we propose to learn a global rendering operator acting over all camera rays jointly. We show that the right representation to enable such rendering is a 5-dimensional plane sweep volume consisting of the projection of the input images on a set of planes facing the target camera. Based on this understanding, we introduce our Convolutional Global Latent Renderer (ConvGLR), an efficient convolutional architecture that performs the rendering operation globally in a low-resolution latent space. Experiments on various datasets under sparse and generalizable setups show that our approach consistently outperforms existing methods by significant margins.
SPVLoc: Semantic Panoramic Viewport Matching for 6D Camera Localization in Unseen Environments
In this paper, we present SPVLoc, a global indoor localization method that accurately determines the six-dimensional (6D) camera pose of a query image and requires minimal scene-specific prior knowledge and no scene-specific training. Our approach employs a novel matching procedure to localize the perspective camera's viewport, given as an RGB image, within a set of panoramic semantic layout representations of the indoor environment. The panoramas are rendered from an untextured 3D reference model, which only comprises approximate structural information about room shapes, along with door and window annotations. We demonstrate that a straightforward convolutional network structure can successfully achieve image-to-panorama and ultimately image-to-model matching. Through a viewport classification score, we rank reference panoramas and select the best match for the query image. Then, a 6D relative pose is estimated between the chosen panorama and query image. Our experiments demonstrate that this approach not only efficiently bridges the domain gap but also generalizes well to previously unseen scenes that are not part of the training data. Moreover, it achieves superior localization accuracy compared to the state of the art methods and also estimates more degrees of freedom of the camera pose. Our source code is publicly available at https://fraunhoferhhi.github.io/spvloc .
Fast View Synthesis of Casual Videos
Novel view synthesis from an in-the-wild video is difficult due to challenges like scene dynamics and lack of parallax. While existing methods have shown promising results with implicit neural radiance fields, they are slow to train and render. This paper revisits explicit video representations to synthesize high-quality novel views from a monocular video efficiently. We treat static and dynamic video content separately. Specifically, we build a global static scene model using an extended plane-based scene representation to synthesize temporally coherent novel video. Our plane-based scene representation is augmented with spherical harmonics and displacement maps to capture view-dependent effects and model non-planar complex surface geometry. We opt to represent the dynamic content as per-frame point clouds for efficiency. While such representations are inconsistency-prone, minor temporal inconsistencies are perceptually masked due to motion. We develop a method to quickly estimate such a hybrid video representation and render novel views in real time. Our experiments show that our method can render high-quality novel views from an in-the-wild video with comparable quality to state-of-the-art methods while being 100x faster in training and enabling real-time rendering.
ProFuse: Efficient Cross-View Context Fusion for Open-Vocabulary 3D Gaussian Splatting
We present ProFuse, an efficient context-aware framework for open-vocabulary 3D scene understanding with 3D Gaussian Splatting (3DGS). The pipeline enhances cross-view consistency and intra-mask cohesion within a direct registration setup, adding minimal overhead and requiring no render-supervised fine-tuning. Instead of relying on a pretrained 3DGS scene, we introduce a dense correspondence-guided pre-registration phase that initializes Gaussians with accurate geometry while jointly constructing 3D Context Proposals via cross-view clustering. Each proposal carries a global feature obtained through weighted aggregation of member embeddings, and this feature is fused onto Gaussians during direct registration to maintain per-primitive language coherence across views. With associations established in advance, semantic fusion requires no additional optimization beyond standard reconstruction, and the model retains geometric refinement without densification. ProFuse achieves strong open-vocabulary 3DGS understanding while completing semantic attachment in about five minutes per scene, which is two times faster than SOTA.
Local-to-Global Registration for Bundle-Adjusting Neural Radiance Fields
Neural Radiance Fields (NeRF) have achieved photorealistic novel views synthesis; however, the requirement of accurate camera poses limits its application. Despite analysis-by-synthesis extensions for jointly learning neural 3D representations and registering camera frames exist, they are susceptible to suboptimal solutions if poorly initialized. We propose L2G-NeRF, a Local-to-Global registration method for bundle-adjusting Neural Radiance Fields: first, a pixel-wise flexible alignment, followed by a frame-wise constrained parametric alignment. Pixel-wise local alignment is learned in an unsupervised way via a deep network which optimizes photometric reconstruction errors. Frame-wise global alignment is performed using differentiable parameter estimation solvers on the pixel-wise correspondences to find a global transformation. Experiments on synthetic and real-world data show that our method outperforms the current state-of-the-art in terms of high-fidelity reconstruction and resolving large camera pose misalignment. Our module is an easy-to-use plugin that can be applied to NeRF variants and other neural field applications. The Code and supplementary materials are available at https://rover-xingyu.github.io/L2G-NeRF/.
Toward a Deeper Understanding: RetNet Viewed through Convolution
The success of Vision Transformer (ViT) has been widely reported on a wide range of image recognition tasks. ViT can learn global dependencies superior to CNN, yet CNN's inherent locality can substitute for expensive training resources. Recently, the outstanding performance of RetNet in the field of language modeling has garnered attention, surpassing that of the Transformer with explicit local modeling, shifting researchers' focus towards Transformers in the CV field. This paper investigates the effectiveness of RetNet from a CNN perspective and presents a variant of RetNet tailored to the visual domain. Similar to RetNet we improves ViT's local modeling by applying a weight mask on the original self-attention matrix. A straightforward way to locally adapt the self-attention matrix can be realized by an element-wise learnable weight mask (ELM), for which our preliminary results show promising results. However, the element-wise simple learnable weight mask not only induces a non-trivial additional parameter overhead but also increases the optimization complexity. To this end, this work proposes a novel Gaussian mixture mask (GMM) in which one mask only has two learnable parameters and it can be conveniently used in any ViT variants whose attention mechanism allows the use of masks. Experimental results on multiple small datasets demonstrate that the effectiveness of our proposed Gaussian mask for boosting ViTs for free (almost zero additional parameter or computation cost). Our code can be publicly available at https://github.com/CatworldLee/Gaussian-Mixture-Mask-Attention.
Multi-view Aggregation Network for Dichotomous Image Segmentation
Dichotomous Image Segmentation (DIS) has recently emerged towards high-precision object segmentation from high-resolution natural images. When designing an effective DIS model, the main challenge is how to balance the semantic dispersion of high-resolution targets in the small receptive field and the loss of high-precision details in the large receptive field. Existing methods rely on tedious multiple encoder-decoder streams and stages to gradually complete the global localization and local refinement. Human visual system captures regions of interest by observing them from multiple views. Inspired by it, we model DIS as a multi-view object perception problem and provide a parsimonious multi-view aggregation network (MVANet), which unifies the feature fusion of the distant view and close-up view into a single stream with one encoder-decoder structure. With the help of the proposed multi-view complementary localization and refinement modules, our approach established long-range, profound visual interactions across multiple views, allowing the features of the detailed close-up view to focus on highly slender structures.Experiments on the popular DIS-5K dataset show that our MVANet significantly outperforms state-of-the-art methods in both accuracy and speed. The source code and datasets will be publicly available at https://github.com/qianyu-dlut/MVANet{MVANet}.
EpiDiff: Enhancing Multi-View Synthesis via Localized Epipolar-Constrained Diffusion
Generating multiview images from a single view facilitates the rapid generation of a 3D mesh conditioned on a single image. Recent methods that introduce 3D global representation into diffusion models have shown the potential to generate consistent multiviews, but they have reduced generation speed and face challenges in maintaining generalizability and quality. To address this issue, we propose EpiDiff, a localized interactive multiview diffusion model. At the core of the proposed approach is to insert a lightweight epipolar attention block into the frozen diffusion model, leveraging epipolar constraints to enable cross-view interaction among feature maps of neighboring views. The newly initialized 3D modeling module preserves the original feature distribution of the diffusion model, exhibiting compatibility with a variety of base diffusion models. Experiments show that EpiDiff generates 16 multiview images in just 12 seconds, and it surpasses previous methods in quality evaluation metrics, including PSNR, SSIM and LPIPS. Additionally, EpiDiff can generate a more diverse distribution of views, improving the reconstruction quality from generated multiviews. Please see our project page at https://huanngzh.github.io/EpiDiff/.
InstanceBEV: Unifying Instance and BEV Representation for Global Modeling
Occupancy Grid Maps are widely used in navigation for their ability to represent 3D space occupancy. However, existing methods that utilize multi-view cameras to construct Occupancy Networks for perception modeling suffer from cubic growth in data complexity. Adopting a Bird's-Eye View (BEV) perspective offers a more practical solution for autonomous driving, as it provides higher semantic density and mitigates complex object occlusions. Nonetheless, BEV-based approaches still require extensive engineering optimizations to enable efficient large-scale global modeling. To address this challenge, we propose InstanceBEV, the first method to introduce instance-level dimensionality reduction for BEV, enabling global modeling with transformers without relying on sparsification or acceleration operators. Different from other BEV methods, our approach directly employs transformers to aggregate global features. Compared to 3D object detection models, our method samples global feature maps into 3D space. Experiments on OpenOcc-NuScenes dataset show that InstanceBEV achieves state-of-the-art performance while maintaining a simple, efficient framework without requiring additional optimizations.
MetaOcc: Surround-View 4D Radar and Camera Fusion Framework for 3D Occupancy Prediction with Dual Training Strategies
3D occupancy prediction is crucial for autonomous driving perception. Fusion of 4D radar and camera provides a potential solution of robust occupancy prediction on serve weather with least cost. How to achieve effective multi-modal feature fusion and reduce annotation costs remains significant challenges. In this work, we propose MetaOcc, a novel multi-modal occupancy prediction framework that fuses surround-view cameras and 4D radar for comprehensive environmental perception. We first design a height self-attention module for effective 3D feature extraction from sparse radar points. Then, a local-global fusion mechanism is proposed to adaptively capture modality contributions while handling spatio-temporal misalignments. Temporal alignment and fusion module is employed to further aggregate historical feature. Furthermore, we develop a semi-supervised training procedure leveraging open-set segmentor and geometric constraints for pseudo-label generation, enabling robust perception with limited annotations. Extensive experiments on OmniHD-Scenes dataset demonstrate that MetaOcc achieves state-of-the-art performance, surpassing previous methods by significant margins. Notably, as the first semi-supervised 4D radar and camera fusion-based occupancy prediction approach, MetaOcc maintains 92.5% of the fully-supervised performance while using only 50% of ground truth annotations, establishing a new benchmark for multi-modal 3D occupancy prediction. Code and data are available at https://github.com/LucasYang567/MetaOcc.
VistaDream: Sampling multiview consistent images for single-view scene reconstruction
In this paper, we propose VistaDream a novel framework to reconstruct a 3D scene from a single-view image. Recent diffusion models enable generating high-quality novel-view images from a single-view input image. Most existing methods only concentrate on building the consistency between the input image and the generated images while losing the consistency between the generated images. VistaDream addresses this problem by a two-stage pipeline. In the first stage, VistaDream begins with building a global coarse 3D scaffold by zooming out a little step with inpainted boundaries and an estimated depth map. Then, on this global scaffold, we use iterative diffusion-based RGB-D inpainting to generate novel-view images to inpaint the holes of the scaffold. In the second stage, we further enhance the consistency between the generated novel-view images by a novel training-free Multiview Consistency Sampling (MCS) that introduces multi-view consistency constraints in the reverse sampling process of diffusion models. Experimental results demonstrate that without training or fine-tuning existing diffusion models, VistaDream achieves consistent and high-quality novel view synthesis using just single-view images and outperforms baseline methods by a large margin. The code, videos, and interactive demos are available at https://vistadream-project-page.github.io/.
LIST: Learning Implicitly from Spatial Transformers for Single-View 3D Reconstruction
Accurate reconstruction of both the geometric and topological details of a 3D object from a single 2D image embodies a fundamental challenge in computer vision. Existing explicit/implicit solutions to this problem struggle to recover self-occluded geometry and/or faithfully reconstruct topological shape structures. To resolve this dilemma, we introduce LIST, a novel neural architecture that leverages local and global image features to accurately reconstruct the geometric and topological structure of a 3D object from a single image. We utilize global 2D features to predict a coarse shape of the target object and then use it as a base for higher-resolution reconstruction. By leveraging both local 2D features from the image and 3D features from the coarse prediction, we can predict the signed distance between an arbitrary point and the target surface via an implicit predictor with great accuracy. Furthermore, our model does not require camera estimation or pixel alignment. It provides an uninfluenced reconstruction from the input-view direction. Through qualitative and quantitative analysis, we show the superiority of our model in reconstructing 3D objects from both synthetic and real-world images against the state of the art.
Neural Directional Encoding for Efficient and Accurate View-Dependent Appearance Modeling
Novel-view synthesis of specular objects like shiny metals or glossy paints remains a significant challenge. Not only the glossy appearance but also global illumination effects, including reflections of other objects in the environment, are critical components to faithfully reproduce a scene. In this paper, we present Neural Directional Encoding (NDE), a view-dependent appearance encoding of neural radiance fields (NeRF) for rendering specular objects. NDE transfers the concept of feature-grid-based spatial encoding to the angular domain, significantly improving the ability to model high-frequency angular signals. In contrast to previous methods that use encoding functions with only angular input, we additionally cone-trace spatial features to obtain a spatially varying directional encoding, which addresses the challenging interreflection effects. Extensive experiments on both synthetic and real datasets show that a NeRF model with NDE (1) outperforms the state of the art on view synthesis of specular objects, and (2) works with small networks to allow fast (real-time) inference. The project webpage and source code are available at: https://lwwu2.github.io/nde/.
Faster VGGT with Block-Sparse Global Attention
Efficient and accurate feed-forward multi-view reconstruction has long been an important task in computer vision. Recent transformer-based models like VGGT and pi^3 have achieved impressive results with simple architectures, yet they face an inherent runtime bottleneck, due to the quadratic complexity of the global attention layers, that limits the scalability to large image sets. In this paper, we empirically analyze the global attention matrix of these models and observe that probability mass concentrates on a small subset of patch-patch interactions that correspond to cross-view geometric matches. Motivated by the structured attention and inspired by recent advancement in large language models, we propose a replacement for the dense global attention operation based on highly optimized block-sparse kernels, yielding up to 4times faster inference with comparable task performance. Our retrofit requires no retraining of the backbone, extends to both VGGT and pi^3, and supports large image collections. Evaluations on a comprehensive suite of multi-view benchmarks demonstrate the effectiveness of our approach.
Global-Local Tree Search for Language Guided 3D Scene Generation
Large Vision-Language Models (VLMs), such as GPT-4, have achieved remarkable success across various fields. However, there are few studies on 3D indoor scene generation with VLMs. This paper considers this task as a planning problem subject to spatial and layout common sense constraints. To solve the problem with a VLM, we propose a new global-local tree search algorithm. Globally, the method places each object sequentially and explores multiple placements during each placement process, where the problem space is represented as a tree. To reduce the depth of the tree, we decompose the scene structure hierarchically, i.e. room level, region level, floor object level, and supported object level. The algorithm independently generates the floor objects in different regions and supported objects placed on different floor objects. Locally, we also decompose the sub-task, the placement of each object, into multiple steps. The algorithm searches the tree of problem space. To leverage the VLM model to produce positions of objects, we discretize the top-down view space as a dense grid and fill each cell with diverse emojis to make to cells distinct. We prompt the VLM with the emoji grid and the VLM produces a reasonable location for the object by describing the position with the name of emojis. The quantitative and qualitative experimental results illustrate our approach generates more plausible 3D scenes than state-of-the-art approaches. Our source code is available at https://github.com/dw-dengwei/TreeSearchGen .
ELFNet: Evidential Local-global Fusion for Stereo Matching
Although existing stereo matching models have achieved continuous improvement, they often face issues related to trustworthiness due to the absence of uncertainty estimation. Additionally, effectively leveraging multi-scale and multi-view knowledge of stereo pairs remains unexplored. In this paper, we introduce the Evidential Local-global Fusion (ELF) framework for stereo matching, which endows both uncertainty estimation and confidence-aware fusion with trustworthy heads. Instead of predicting the disparity map alone, our model estimates an evidential-based disparity considering both aleatoric and epistemic uncertainties. With the normal inverse-Gamma distribution as a bridge, the proposed framework realizes intra evidential fusion of multi-level predictions and inter evidential fusion between cost-volume-based and transformer-based stereo matching. Extensive experimental results show that the proposed framework exploits multi-view information effectively and achieves state-of-the-art overall performance both on accuracy and cross-domain generalization. The codes are available at https://github.com/jimmy19991222/ELFNet.
Birth of a Transformer: A Memory Viewpoint
Large language models based on transformers have achieved great empirical successes. However, as they are deployed more widely, there is a growing need to better understand their internal mechanisms in order to make them more reliable. These models appear to store vast amounts of knowledge from their training data, and to adapt quickly to new information provided in their context or prompt. We study how transformers balance these two types of knowledge by considering a synthetic setup where tokens are generated from either global or context-specific bigram distributions. By a careful empirical analysis of the training process on a simplified two-layer transformer, we illustrate the fast learning of global bigrams and the slower development of an "induction head" mechanism for the in-context bigrams. We highlight the role of weight matrices as associative memories, provide theoretical insights on how gradients enable their learning during training, and study the role of data-distributional properties.
RenderFormer: Transformer-based Neural Rendering of Triangle Meshes with Global Illumination
We present RenderFormer, a neural rendering pipeline that directly renders an image from a triangle-based representation of a scene with full global illumination effects and that does not require per-scene training or fine-tuning. Instead of taking a physics-centric approach to rendering, we formulate rendering as a sequence-to-sequence transformation where a sequence of tokens representing triangles with reflectance properties is converted to a sequence of output tokens representing small patches of pixels. RenderFormer follows a two stage pipeline: a view-independent stage that models triangle-to-triangle light transport, and a view-dependent stage that transforms a token representing a bundle of rays to the corresponding pixel values guided by the triangle-sequence from the view-independent stage. Both stages are based on the transformer architecture and are learned with minimal prior constraints. We demonstrate and evaluate RenderFormer on scenes with varying complexity in shape and light transport.
HumanMM: Global Human Motion Recovery from Multi-shot Videos
In this paper, we present a novel framework designed to reconstruct long-sequence 3D human motion in the world coordinates from in-the-wild videos with multiple shot transitions. Such long-sequence in-the-wild motions are highly valuable to applications such as motion generation and motion understanding, but are of great challenge to be recovered due to abrupt shot transitions, partial occlusions, and dynamic backgrounds presented in such videos. Existing methods primarily focus on single-shot videos, where continuity is maintained within a single camera view, or simplify multi-shot alignment in camera space only. In this work, we tackle the challenges by integrating an enhanced camera pose estimation with Human Motion Recovery (HMR) by incorporating a shot transition detector and a robust alignment module for accurate pose and orientation continuity across shots. By leveraging a custom motion integrator, we effectively mitigate the problem of foot sliding and ensure temporal consistency in human pose. Extensive evaluations on our created multi-shot dataset from public 3D human datasets demonstrate the robustness of our method in reconstructing realistic human motion in world coordinates.
AGLA: Mitigating Object Hallucinations in Large Vision-Language Models with Assembly of Global and Local Attention
Despite their great success across various multimodal tasks, Large Vision-Language Models (LVLMs) are facing a prevalent problem with object hallucinations, where the generated textual responses are inconsistent with ground-truth objects in the given image. This paper investigates various LVLMs and pinpoints attention deficiency toward discriminative local image features as one root cause of object hallucinations. Specifically, LVLMs predominantly attend to prompt-independent global image features, while failing to capture prompt-relevant local features, consequently undermining the visual grounding capacity of LVLMs and leading to hallucinations. To this end, we propose Assembly of Global and Local Attention (AGLA), a training-free and plug-and-play approach that mitigates object hallucinations by exploring an ensemble of global features for response generation and local features for visual discrimination simultaneously. Our approach exhibits an image-prompt matching scheme that captures prompt-relevant local features from images, leading to an augmented view of the input image where prompt-relevant content is reserved while irrelevant distractions are masked. With the augmented view, a calibrated decoding distribution can be derived by integrating generative global features from the original image and discriminative local features from the augmented image. Extensive experiments show that AGLA consistently mitigates object hallucinations and enhances general perception capability for LVLMs across various discriminative and generative benchmarks. Our code will be released at https://github.com/Lackel/AGLA.
TransGeo: Transformer Is All You Need for Cross-view Image Geo-localization
The dominant CNN-based methods for cross-view image geo-localization rely on polar transform and fail to model global correlation. We propose a pure transformer-based approach (TransGeo) to address these limitations from a different perspective. TransGeo takes full advantage of the strengths of transformer related to global information modeling and explicit position information encoding. We further leverage the flexibility of transformer input and propose an attention-guided non-uniform cropping method, so that uninformative image patches are removed with negligible drop on performance to reduce computation cost. The saved computation can be reallocated to increase resolution only for informative patches, resulting in performance improvement with no additional computation cost. This "attend and zoom-in" strategy is highly similar to human behavior when observing images. Remarkably, TransGeo achieves state-of-the-art results on both urban and rural datasets, with significantly less computation cost than CNN-based methods. It does not rely on polar transform and infers faster than CNN-based methods. Code is available at https://github.com/Jeff-Zilence/TransGeo2022.
Nexels: Neurally-Textured Surfels for Real-Time Novel View Synthesis with Sparse Geometries
Though Gaussian splatting has achieved impressive results in novel view synthesis, it requires millions of primitives to model highly textured scenes, even when the geometry of the scene is simple. We propose a representation that goes beyond point-based rendering and decouples geometry and appearance in order to achieve a compact representation. We use surfels for geometry and a combination of a global neural field and per-primitive colours for appearance. The neural field textures a fixed number of primitives for each pixel, ensuring that the added compute is low. Our representation matches the perceptual quality of 3D Gaussian splatting while using 9.7times fewer primitives and 5.5times less memory on outdoor scenes and using 31times fewer primitives and 3.7times less memory on indoor scenes. Our representation also renders twice as fast as existing textured primitives while improving upon their visual quality.
Next-Scale Autoregressive Models are Zero-Shot Single-Image Object View Synthesizers
Methods based on diffusion backbones have recently revolutionized novel view synthesis (NVS). However, those models require pretrained 2D diffusion checkpoints (e.g., Stable Diffusion) as the basis for geometrical priors. Since such checkpoints require exorbitant amounts of data and compute to train, this greatly limits the scalability of diffusion-based NVS models. We present Next-Scale Autoregression Conditioned by View (ArchonView), a method that significantly exceeds state-of-the-art methods despite being trained from scratch with 3D rendering data only and no 2D pretraining. We achieve this by incorporating both global (pose-augmented semantics) and local (multi-scale hierarchical encodings) conditioning into a backbone based on the next-scale autoregression paradigm. Our model also exhibits robust performance even for difficult camera poses where previous methods fail, and is several times faster in inference speed compared to diffusion. We experimentally verify that performance scales with model and dataset size, and conduct extensive demonstration of our method's synthesis quality across several tasks. Our code is open-sourced at https://github.com/Shiran-Yuan/ArchonView.
Bridging Text and Vision: A Multi-View Text-Vision Registration Approach for Cross-Modal Place Recognition
Mobile robots necessitate advanced natural language understanding capabilities to accurately identify locations and perform tasks such as package delivery. However, traditional visual place recognition (VPR) methods rely solely on single-view visual information and cannot interpret human language descriptions. To overcome this challenge, we bridge text and vision by proposing a multiview (360{\deg} views of the surroundings) text-vision registration approach called Text4VPR for place recognition task, which is the first method that exclusively utilizes textual descriptions to match a database of images. Text4VPR employs the frozen T5 language model to extract global textual embeddings. Additionally, it utilizes the Sinkhorn algorithm with temperature coefficient to assign local tokens to their respective clusters, thereby aggregating visual descriptors from images. During the training stage, Text4VPR emphasizes the alignment between individual text-image pairs for precise textual description. In the inference stage, Text4VPR uses the Cascaded Cross-Attention Cosine Alignment (CCCA) to address the internal mismatch between text and image groups. Subsequently, Text4VPR performs precisely place match based on the descriptions of text-image groups. On Street360Loc, the first text to image VPR dataset we created, Text4VPR builds a robust baseline, achieving a leading top-1 accuracy of 57% and a leading top-10 accuracy of 92% within a 5-meter radius on the test set, which indicates that localization from textual descriptions to images is not only feasible but also holds significant potential for further advancement, as shown in Figure 1.
S-VolSDF: Sparse Multi-View Stereo Regularization of Neural Implicit Surfaces
Neural rendering of implicit surfaces performs well in 3D vision applications. However, it requires dense input views as supervision. When only sparse input images are available, output quality drops significantly due to the shape-radiance ambiguity problem. We note that this ambiguity can be constrained when a 3D point is visible in multiple views, as is the case in multi-view stereo (MVS). We thus propose to regularize neural rendering optimization with an MVS solution. The use of an MVS probability volume and a generalized cross entropy loss leads to a noise-tolerant optimization process. In addition, neural rendering provides global consistency constraints that guide the MVS depth hypothesis sampling and thus improves MVS performance. Given only three sparse input views, experiments show that our method not only outperforms generic neural rendering models by a large margin but also significantly increases the reconstruction quality of MVS models. Project page: https://hao-yu-wu.github.io/s-volsdf/.
Multi-View Document Representation Learning for Open-Domain Dense Retrieval
Dense retrieval has achieved impressive advances in first-stage retrieval from a large-scale document collection, which is built on bi-encoder architecture to produce single vector representation of query and document. However, a document can usually answer multiple potential queries from different views. So the single vector representation of a document is hard to match with multi-view queries, and faces a semantic mismatch problem. This paper proposes a multi-view document representation learning framework, aiming to produce multi-view embeddings to represent documents and enforce them to align with different queries. First, we propose a simple yet effective method of generating multiple embeddings through viewers. Second, to prevent multi-view embeddings from collapsing to the same one, we further propose a global-local loss with annealed temperature to encourage the multiple viewers to better align with different potential queries. Experiments show our method outperforms recent works and achieves state-of-the-art results.
Detailed Garment Recovery from a Single-View Image
Most recent garment capturing techniques rely on acquiring multiple views of clothing, which may not always be readily available, especially in the case of pre-existing photographs from the web. As an alternative, we pro- pose a method that is able to compute a rich and realistic 3D model of a human body and its outfits from a single photograph with little human in- teraction. Our algorithm is not only able to capture the global shape and geometry of the clothing, it can also extract small but important details of cloth, such as occluded wrinkles and folds. Unlike previous methods using full 3D information (i.e. depth, multi-view images, or sampled 3D geom- etry), our approach achieves detailed garment recovery from a single-view image by using statistical, geometric, and physical priors and a combina- tion of parameter estimation, semantic parsing, shape recovery, and physics- based cloth simulation. We demonstrate the effectiveness of our algorithm by re-purposing the reconstructed garments for virtual try-on and garment transfer applications, as well as cloth animation for digital characters.
GLACE: Global Local Accelerated Coordinate Encoding
Scene coordinate regression (SCR) methods are a family of visual localization methods that directly regress 2D-3D matches for camera pose estimation. They are effective in small-scale scenes but face significant challenges in large-scale scenes that are further amplified in the absence of ground truth 3D point clouds for supervision. Here, the model can only rely on reprojection constraints and needs to implicitly triangulate the points. The challenges stem from a fundamental dilemma: The network has to be invariant to observations of the same landmark at different viewpoints and lighting conditions, etc., but at the same time discriminate unrelated but similar observations. The latter becomes more relevant and severe in larger scenes. In this work, we tackle this problem by introducing the concept of co-visibility to the network. We propose GLACE, which integrates pre-trained global and local encodings and enables SCR to scale to large scenes with only a single small-sized network. Specifically, we propose a novel feature diffusion technique that implicitly groups the reprojection constraints with co-visibility and avoids overfitting to trivial solutions. Additionally, our position decoder parameterizes the output positions for large-scale scenes more effectively. Without using 3D models or depth maps for supervision, our method achieves state-of-the-art results on large-scale scenes with a low-map-size model. On Cambridge landmarks, with a single model, we achieve 17% lower median position error than Poker, the ensemble variant of the state-of-the-art SCR method ACE. Code is available at: https://github.com/cvg/glace.
Spatial Reasoning with Vision-Language Models in Ego-Centric Multi-View Scenes
Understanding 3D spatial relationships remains a major limitation of current Vision-Language Models (VLMs). Prior work has addressed this issue by creating spatial question-answering (QA) datasets based on single images or indoor videos. However, real-world embodied AI agents such as robots and self-driving cars typically rely on ego-centric, multi-view observations. To this end, we introduce Ego3D-Bench, a new benchmark designed to evaluate the spatial reasoning abilities of VLMs using ego-centric, multi-view outdoor data. Ego3D-Bench comprises over 8,600 QA pairs, created with significant involvement from human annotators to ensure quality and diversity. We benchmark 16 SOTA VLMs, including GPT-4o, Gemini1.5-Pro, InternVL3, and Qwen2.5-VL. Our results reveal a notable performance gap between human level scores and VLM performance, highlighting that current VLMs still fall short of human level spatial understanding. To bridge this gap, we propose Ego3D-VLM, a post-training framework that enhances 3D spatial reasoning of VLMs. Ego3D-VLM generates cognitive map based on estimated global 3D coordinates, resulting in 12% average improvement on multi-choice QA and 56% average improvement on absolute distance estimation. Ego3D-VLM is modular and can be integrated with any existing VLM. Together, Ego3D-Bench and Ego3D-VLM offer valuable tools for advancing toward human level spatial understanding in real-world, multi-view environments.
MVDiffusion: Enabling Holistic Multi-view Image Generation with Correspondence-Aware Diffusion
This paper introduces MVDiffusion, a simple yet effective multi-view image generation method for scenarios where pixel-to-pixel correspondences are available, such as perspective crops from panorama or multi-view images given geometry (depth maps and poses). Unlike prior models that rely on iterative image warping and inpainting, MVDiffusion concurrently generates all images with a global awareness, encompassing high resolution and rich content, effectively addressing the error accumulation prevalent in preceding models. MVDiffusion specifically incorporates a correspondence-aware attention mechanism, enabling effective cross-view interaction. This mechanism underpins three pivotal modules: 1) a generation module that produces low-resolution images while maintaining global correspondence, 2) an interpolation module that densifies spatial coverage between images, and 3) a super-resolution module that upscales into high-resolution outputs. In terms of panoramic imagery, MVDiffusion can generate high-resolution photorealistic images up to 1024times1024 pixels. For geometry-conditioned multi-view image generation, MVDiffusion demonstrates the first method capable of generating a textured map of a scene mesh. The project page is at https://mvdiffusion.github.io.
PSHuman: Photorealistic Single-view Human Reconstruction using Cross-Scale Diffusion
Detailed and photorealistic 3D human modeling is essential for various applications and has seen tremendous progress. However, full-body reconstruction from a monocular RGB image remains challenging due to the ill-posed nature of the problem and sophisticated clothing topology with self-occlusions. In this paper, we propose PSHuman, a novel framework that explicitly reconstructs human meshes utilizing priors from the multiview diffusion model. It is found that directly applying multiview diffusion on single-view human images leads to severe geometric distortions, especially on generated faces. To address it, we propose a cross-scale diffusion that models the joint probability distribution of global full-body shape and local facial characteristics, enabling detailed and identity-preserved novel-view generation without any geometric distortion. Moreover, to enhance cross-view body shape consistency of varied human poses, we condition the generative model on parametric models like SMPL-X, which provide body priors and prevent unnatural views inconsistent with human anatomy. Leveraging the generated multi-view normal and color images, we present SMPLX-initialized explicit human carving to recover realistic textured human meshes efficiently. Extensive experimental results and quantitative evaluations on CAPE and THuman2.1 datasets demonstrate PSHumans superiority in geometry details, texture fidelity, and generalization capability.
Enhancing Low-Resource Relation Representations through Multi-View Decoupling
Recently, prompt-tuning with pre-trained language models (PLMs) has demonstrated the significantly enhancing ability of relation extraction (RE) tasks. However, in low-resource scenarios, where the available training data is scarce, previous prompt-based methods may still perform poorly for prompt-based representation learning due to a superficial understanding of the relation. To this end, we highlight the importance of learning high-quality relation representation in low-resource scenarios for RE, and propose a novel prompt-based relation representation method, named MVRE (Multi-View Relation Extraction), to better leverage the capacity of PLMs to improve the performance of RE within the low-resource prompt-tuning paradigm. Specifically, MVRE decouples each relation into different perspectives to encompass multi-view relation representations for maximizing the likelihood during relation inference. Furthermore, we also design a Global-Local loss and a Dynamic-Initialization method for better alignment of the multi-view relation-representing virtual words, containing the semantics of relation labels during the optimization learning process and initialization. Extensive experiments on three benchmark datasets show that our method can achieve state-of-the-art in low-resource settings.
Cross-Ray Neural Radiance Fields for Novel-view Synthesis from Unconstrained Image Collections
Neural Radiance Fields (NeRF) is a revolutionary approach for rendering scenes by sampling a single ray per pixel and it has demonstrated impressive capabilities in novel-view synthesis from static scene images. However, in practice, we usually need to recover NeRF from unconstrained image collections, which poses two challenges: 1) the images often have dynamic changes in appearance because of different capturing time and camera settings; 2) the images may contain transient objects such as humans and cars, leading to occlusion and ghosting artifacts. Conventional approaches seek to address these challenges by locally utilizing a single ray to synthesize a color of a pixel. In contrast, humans typically perceive appearance and objects by globally utilizing information across multiple pixels. To mimic the perception process of humans, in this paper, we propose Cross-Ray NeRF (CR-NeRF) that leverages interactive information across multiple rays to synthesize occlusion-free novel views with the same appearances as the images. Specifically, to model varying appearances, we first propose to represent multiple rays with a novel cross-ray feature and then recover the appearance by fusing global statistics, i.e., feature covariance of the rays and the image appearance. Moreover, to avoid occlusion introduced by transient objects, we propose a transient objects handler and introduce a grid sampling strategy for masking out the transient objects. We theoretically find that leveraging correlation across multiple rays promotes capturing more global information. Moreover, extensive experimental results on large real-world datasets verify the effectiveness of CR-NeRF.
ReconViaGen: Towards Accurate Multi-view 3D Object Reconstruction via Generation
Existing multi-view 3D object reconstruction methods heavily rely on sufficient overlap between input views, where occlusions and sparse coverage in practice frequently yield severe reconstruction incompleteness. Recent advancements in diffusion-based 3D generative techniques offer the potential to address these limitations by leveraging learned generative priors to hallucinate invisible parts of objects, thereby generating plausible 3D structures. However, the stochastic nature of the inference process limits the accuracy and reliability of generation results, preventing existing reconstruction frameworks from integrating such 3D generative priors. In this work, we comprehensively analyze the reasons why diffusion-based 3D generative methods fail to achieve high consistency, including (a) the insufficiency in constructing and leveraging cross-view connections when extracting multi-view image features as conditions, and (b) the poor controllability of iterative denoising during local detail generation, which easily leads to plausible but inconsistent fine geometric and texture details with inputs. Accordingly, we propose ReconViaGen to innovatively integrate reconstruction priors into the generative framework and devise several strategies that effectively address these issues. Extensive experiments demonstrate that our ReconViaGen can reconstruct complete and accurate 3D models consistent with input views in both global structure and local details.Project page: https://jiahao620.github.io/reconviagen.
Stylos: Multi-View 3D Stylization with Single-Forward Gaussian Splatting
We present Stylos, a single-forward 3D Gaussian framework for 3D style transfer that operates on unposed content, from a single image to a multi-view collection, conditioned on a separate reference style image. Stylos synthesizes a stylized 3D Gaussian scene without per-scene optimization or precomputed poses, achieving geometry-aware, view-consistent stylization that generalizes to unseen categories, scenes, and styles. At its core, Stylos adopts a Transformer backbone with two pathways: geometry predictions retain self-attention to preserve geometric fidelity, while style is injected via global cross-attention to enforce visual consistency across views. With the addition of a voxel-based 3D style loss that aligns aggregated scene features to style statistics, Stylos enforces view-consistent stylization while preserving geometry. Experiments across multiple datasets demonstrate that Stylos delivers high-quality zero-shot stylization, highlighting the effectiveness of global style-content coupling, the proposed 3D style loss, and the scalability of our framework from single view to large-scale multi-view settings.
Outdoor Monocular SLAM with Global Scale-Consistent 3D Gaussian Pointmaps
3D Gaussian Splatting (3DGS) has become a popular solution in SLAM due to its high-fidelity and real-time novel view synthesis performance. However, some previous 3DGS SLAM methods employ a differentiable rendering pipeline for tracking, lack geometric priors in outdoor scenes. Other approaches introduce separate tracking modules, but they accumulate errors with significant camera movement, leading to scale drift. To address these challenges, we propose a robust RGB-only outdoor 3DGS SLAM method: S3PO-GS. Technically, we establish a self-consistent tracking module anchored in the 3DGS pointmap, which avoids cumulative scale drift and achieves more precise and robust tracking with fewer iterations. Additionally, we design a patch-based pointmap dynamic mapping module, which introduces geometric priors while avoiding scale ambiguity. This significantly enhances tracking accuracy and the quality of scene reconstruction, making it particularly suitable for complex outdoor environments. Our experiments on the Waymo, KITTI, and DL3DV datasets demonstrate that S3PO-GS achieves state-of-the-art results in novel view synthesis and outperforms other 3DGS SLAM methods in tracking accuracy. Project page: https://3dagentworld.github.io/S3PO-GS/.
WonderFree: Enhancing Novel View Quality and Cross-View Consistency for 3D Scene Exploration
Interactive 3D scene generation from a single image has gained significant attention due to its potential to create immersive virtual worlds. However, a key challenge in current 3D generation methods is the limited explorability, which cannot render high-quality images during larger maneuvers beyond the original viewpoint, particularly when attempting to move forward into unseen areas. To address this challenge, we propose WonderFree, the first model that enables users to interactively generate 3D worlds with the freedom to explore from arbitrary angles and directions. Specifically, we decouple this challenge into two key subproblems: novel view quality, which addresses visual artifacts and floating issues in novel views, and cross-view consistency, which ensures spatial consistency across different viewpoints. To enhance rendering quality in novel views, we introduce WorldRestorer, a data-driven video restoration model designed to eliminate floaters and artifacts. In addition, a data collection pipeline is presented to automatically gather training data for WorldRestorer, ensuring it can handle scenes with varying styles needed for 3D scene generation. Furthermore, to improve cross-view consistency, we propose ConsistView, a multi-view joint restoration mechanism that simultaneously restores multiple perspectives while maintaining spatiotemporal coherence. Experimental results demonstrate that WonderFree not only enhances rendering quality across diverse viewpoints but also significantly improves global coherence and consistency. These improvements are confirmed by CLIP-based metrics and a user study showing a 77.20% preference for WonderFree over WonderWorld enabling a seamless and immersive 3D exploration experience. The code, model, and data will be publicly available.
MVCNet: Multi-View Contrastive Network for Motor Imagery Classification
Electroencephalography (EEG)-based brain-computer interfaces (BCIs) enable neural interaction by decoding brain activity for external communication. Motor imagery (MI) decoding has received significant attention due to its intuitive mechanism. However, most existing models rely on single-stream architectures and overlook the multi-view nature of EEG signals, leading to limited performance and generalization. We propose a multi-view contrastive network (MVCNet), a dual-branch architecture that parallelly integrates CNN and Transformer models to capture both local spatial-temporal features and global temporal dependencies. To enhance the informativeness of training data, MVCNet incorporates a unified augmentation pipeline across time, frequency, and spatial domains. Two contrastive modules are further introduced: a cross-view contrastive module that enforces consistency of original and augmented views, and a cross-model contrastive module that aligns features extracted from both branches. Final representations are fused and jointly optimized by contrastive and classification losses. Experiments on five public MI datasets across three scenarios demonstrate that MVCNet consistently outperforms seven state-of-the-art MI decoding networks, highlighting its effectiveness and generalization ability. MVCNet provides a robust solution for MI decoding by integrating multi-view information and dual-branch modeling, contributing to the development of more reliable BCI systems.
GI-GS: Global Illumination Decomposition on Gaussian Splatting for Inverse Rendering
We present GI-GS, a novel inverse rendering framework that leverages 3D Gaussian Splatting (3DGS) and deferred shading to achieve photo-realistic novel view synthesis and relighting. In inverse rendering, accurately modeling the shading processes of objects is essential for achieving high-fidelity results. Therefore, it is critical to incorporate global illumination to account for indirect lighting that reaches an object after multiple bounces across the scene. Previous 3DGS-based methods have attempted to model indirect lighting by characterizing indirect illumination as learnable lighting volumes or additional attributes of each Gaussian, while using baked occlusion to represent shadow effects. These methods, however, fail to accurately model the complex physical interactions between light and objects, making it impossible to construct realistic indirect illumination during relighting. To address this limitation, we propose to calculate indirect lighting using efficient path tracing with deferred shading. In our framework, we first render a G-buffer to capture the detailed geometry and material properties of the scene. Then, we perform physically-based rendering (PBR) only for direct lighting. With the G-buffer and previous rendering results, the indirect lighting can be calculated through a lightweight path tracing. Our method effectively models indirect lighting under any given lighting conditions, thereby achieving better novel view synthesis and relighting. Quantitative and qualitative results show that our GI-GS outperforms existing baselines in both rendering quality and efficiency.
Wild-GS: Real-Time Novel View Synthesis from Unconstrained Photo Collections
Photographs captured in unstructured tourist environments frequently exhibit variable appearances and transient occlusions, challenging accurate scene reconstruction and inducing artifacts in novel view synthesis. Although prior approaches have integrated the Neural Radiance Field (NeRF) with additional learnable modules to handle the dynamic appearances and eliminate transient objects, their extensive training demands and slow rendering speeds limit practical deployments. Recently, 3D Gaussian Splatting (3DGS) has emerged as a promising alternative to NeRF, offering superior training and inference efficiency along with better rendering quality. This paper presents Wild-GS, an innovative adaptation of 3DGS optimized for unconstrained photo collections while preserving its efficiency benefits. Wild-GS determines the appearance of each 3D Gaussian by their inherent material attributes, global illumination and camera properties per image, and point-level local variance of reflectance. Unlike previous methods that model reference features in image space, Wild-GS explicitly aligns the pixel appearance features to the corresponding local Gaussians by sampling the triplane extracted from the reference image. This novel design effectively transfers the high-frequency detailed appearance of the reference view to 3D space and significantly expedites the training process. Furthermore, 2D visibility maps and depth regularization are leveraged to mitigate the transient effects and constrain the geometry, respectively. Extensive experiments demonstrate that Wild-GS achieves state-of-the-art rendering performance and the highest efficiency in both training and inference among all the existing techniques.
EMDB: The Electromagnetic Database of Global 3D Human Pose and Shape in the Wild
We present EMDB, the Electromagnetic Database of Global 3D Human Pose and Shape in the Wild. EMDB is a novel dataset that contains high-quality 3D SMPL pose and shape parameters with global body and camera trajectories for in-the-wild videos. We use body-worn, wireless electromagnetic (EM) sensors and a hand-held iPhone to record a total of 58 minutes of motion data, distributed over 81 indoor and outdoor sequences and 10 participants. Together with accurate body poses and shapes, we also provide global camera poses and body root trajectories. To construct EMDB, we propose a multi-stage optimization procedure, which first fits SMPL to the 6-DoF EM measurements and then refines the poses via image observations. To achieve high-quality results, we leverage a neural implicit avatar model to reconstruct detailed human surface geometry and appearance, which allows for improved alignment and smoothness via a dense pixel-level objective. Our evaluations, conducted with a multi-view volumetric capture system, indicate that EMDB has an expected accuracy of 2.3 cm positional and 10.6 degrees angular error, surpassing the accuracy of previous in-the-wild datasets. We evaluate existing state-of-the-art monocular RGB methods for camera-relative and global pose estimation on EMDB. EMDB is publicly available under https://ait.ethz.ch/emdb
Bird's-Eye-View Scene Graph for Vision-Language Navigation
Vision-language navigation (VLN), which entails an agent to navigate 3D environments following human instructions, has shown great advances. However, current agents are built upon panoramic observations, which hinders their ability to perceive 3D scene geometry and easily leads to ambiguous selection of panoramic view. To address these limitations, we present a BEV Scene Graph (BSG), which leverages multi-step BEV representations to encode scene layouts and geometric cues of indoor environment under the supervision of 3D detection. During navigation, BSG builds a local BEV representation at each step and maintains a BEV-based global scene map, which stores and organizes all the online collected local BEV representations according to their topological relations. Based on BSG, the agent predicts a local BEV grid-level decision score and a global graph-level decision score, combined with a sub-view selection score on panoramic views, for more accurate action prediction. Our approach significantly outperforms state-of-the-art methods on REVERIE, R2R, and R4R, showing the potential of BEV perception in VLN.
MV-Map: Offboard HD-Map Generation with Multi-view Consistency
While bird's-eye-view (BEV) perception models can be useful for building high-definition maps (HD-Maps) with less human labor, their results are often unreliable and demonstrate noticeable inconsistencies in the predicted HD-Maps from different viewpoints. This is because BEV perception is typically set up in an 'onboard' manner, which restricts the computation and consequently prevents algorithms from reasoning multiple views simultaneously. This paper overcomes these limitations and advocates a more practical 'offboard' HD-Map generation setup that removes the computation constraints, based on the fact that HD-Maps are commonly reusable infrastructures built offline in data centers. To this end, we propose a novel offboard pipeline called MV-Map that capitalizes multi-view consistency and can handle an arbitrary number of frames with the key design of a 'region-centric' framework. In MV-Map, the target HD-Maps are created by aggregating all the frames of onboard predictions, weighted by the confidence scores assigned by an 'uncertainty network'. To further enhance multi-view consistency, we augment the uncertainty network with the global 3D structure optimized by a voxelized neural radiance field (Voxel-NeRF). Extensive experiments on nuScenes show that our MV-Map significantly improves the quality of HD-Maps, further highlighting the importance of offboard methods for HD-Map generation.
VPTracker: Global Vision-Language Tracking via Visual Prompt and MLLM
Vision-Language Tracking aims to continuously localize objects described by a visual template and a language description. Existing methods, however, are typically limited to local search, making them prone to failures under viewpoint changes, occlusions, and rapid target movements. In this work, we introduce the first global tracking framework based on Multimodal Large Language Models (VPTracker), exploiting their powerful semantic reasoning to locate targets across the entire image space. While global search improves robustness and reduces drift, it also introduces distractions from visually or semantically similar objects. To address this, we propose a location-aware visual prompting mechanism that incorporates spatial priors into the MLLM. Specifically, we construct a region-level prompt based on the target's previous location, enabling the model to prioritize region-level recognition and resort to global inference only when necessary. This design retains the advantages of global tracking while effectively suppressing interference from distracting visual content. Extensive experiments show that our approach significantly enhances tracking stability and target disambiguation under challenging scenarios, opening a new avenue for integrating MLLMs into visual tracking. Code is available at https://github.com/jcwang0602/VPTracker.
HOTFormerLoc: Hierarchical Octree Transformer for Versatile Lidar Place Recognition Across Ground and Aerial Views
We present HOTFormerLoc, a novel and versatile Hierarchical Octree-based TransFormer, for large-scale 3D place recognition in both ground-to-ground and ground-to-aerial scenarios across urban and forest environments. We propose an octree-based multi-scale attention mechanism that captures spatial and semantic features across granularities. To address the variable density of point distributions from spinning lidar, we present cylindrical octree attention windows to reflect the underlying distribution during attention. We introduce relay tokens to enable efficient global-local interactions and multi-scale representation learning at reduced computational cost. Our pyramid attentional pooling then synthesises a robust global descriptor for end-to-end place recognition in challenging environments. In addition, we introduce CS-Wild-Places, a novel 3D cross-source dataset featuring point cloud data from aerial and ground lidar scans captured in dense forests. Point clouds in CS-Wild-Places contain representational gaps and distinctive attributes such as varying point densities and noise patterns, making it a challenging benchmark for cross-view localisation in the wild. HOTFormerLoc achieves a top-1 average recall improvement of 5.5% - 11.5% on the CS-Wild-Places benchmark. Furthermore, it consistently outperforms SOTA 3D place recognition methods, with an average performance gain of 4.9% on well-established urban and forest datasets. The code and CS-Wild-Places benchmark is available at https://csiro-robotics.github.io/HOTFormerLoc.
EigenPlaces: Training Viewpoint Robust Models for Visual Place Recognition
Visual Place Recognition is a task that aims to predict the place of an image (called query) based solely on its visual features. This is typically done through image retrieval, where the query is matched to the most similar images from a large database of geotagged photos, using learned global descriptors. A major challenge in this task is recognizing places seen from different viewpoints. To overcome this limitation, we propose a new method, called EigenPlaces, to train our neural network on images from different point of views, which embeds viewpoint robustness into the learned global descriptors. The underlying idea is to cluster the training data so as to explicitly present the model with different views of the same points of interest. The selection of this points of interest is done without the need for extra supervision. We then present experiments on the most comprehensive set of datasets in literature, finding that EigenPlaces is able to outperform previous state of the art on the majority of datasets, while requiring 60\% less GPU memory for training and using 50\% smaller descriptors. The code and trained models for EigenPlaces are available at {\url{https://github.com/gmberton/EigenPlaces}}, while results with any other baseline can be computed with the codebase at {\url{https://github.com/gmberton/auto_VPR}}.
ImageDream: Image-Prompt Multi-view Diffusion for 3D Generation
We introduce "ImageDream," an innovative image-prompt, multi-view diffusion model for 3D object generation. ImageDream stands out for its ability to produce 3D models of higher quality compared to existing state-of-the-art, image-conditioned methods. Our approach utilizes a canonical camera coordination for the objects in images, improving visual geometry accuracy. The model is designed with various levels of control at each block inside the diffusion model based on the input image, where global control shapes the overall object layout and local control fine-tunes the image details. The effectiveness of ImageDream is demonstrated through extensive evaluations using a standard prompt list. For more information, visit our project page at https://Image-Dream.github.io.
FlexWorld: Progressively Expanding 3D Scenes for Flexiable-View Synthesis
Generating flexible-view 3D scenes, including 360{\deg} rotation and zooming, from single images is challenging due to a lack of 3D data. To this end, we introduce FlexWorld, a novel framework consisting of two key components: (1) a strong video-to-video (V2V) diffusion model to generate high-quality novel view images from incomplete input rendered from a coarse scene, and (2) a progressive expansion process to construct a complete 3D scene. In particular, leveraging an advanced pre-trained video model and accurate depth-estimated training pairs, our V2V model can generate novel views under large camera pose variations. Building upon it, FlexWorld progressively generates new 3D content and integrates it into the global scene through geometry-aware scene fusion. Extensive experiments demonstrate the effectiveness of FlexWorld in generating high-quality novel view videos and flexible-view 3D scenes from single images, achieving superior visual quality under multiple popular metrics and datasets compared to existing state-of-the-art methods. Qualitatively, we highlight that FlexWorld can generate high-fidelity scenes with flexible views like 360{\deg} rotations and zooming. Project page: https://ml-gsai.github.io/FlexWorld.
FlexPainter: Flexible and Multi-View Consistent Texture Generation
Texture map production is an important part of 3D modeling and determines the rendering quality. Recently, diffusion-based methods have opened a new way for texture generation. However, restricted control flexibility and limited prompt modalities may prevent creators from producing desired results. Furthermore, inconsistencies between generated multi-view images often lead to poor texture generation quality. To address these issues, we introduce FlexPainter, a novel texture generation pipeline that enables flexible multi-modal conditional guidance and achieves highly consistent texture generation. A shared conditional embedding space is constructed to perform flexible aggregation between different input modalities. Utilizing such embedding space, we present an image-based CFG method to decompose structural and style information, achieving reference image-based stylization. Leveraging the 3D knowledge within the image diffusion prior, we first generate multi-view images simultaneously using a grid representation to enhance global understanding. Meanwhile, we propose a view synchronization and adaptive weighting module during diffusion sampling to further ensure local consistency. Finally, a 3D-aware texture completion model combined with a texture enhancement model is used to generate seamless, high-resolution texture maps. Comprehensive experiments demonstrate that our framework significantly outperforms state-of-the-art methods in both flexibility and generation quality.
Progressively Optimized Local Radiance Fields for Robust View Synthesis
We present an algorithm for reconstructing the radiance field of a large-scale scene from a single casually captured video. The task poses two core challenges. First, most existing radiance field reconstruction approaches rely on accurate pre-estimated camera poses from Structure-from-Motion algorithms, which frequently fail on in-the-wild videos. Second, using a single, global radiance field with finite representational capacity does not scale to longer trajectories in an unbounded scene. For handling unknown poses, we jointly estimate the camera poses with radiance field in a progressive manner. We show that progressive optimization significantly improves the robustness of the reconstruction. For handling large unbounded scenes, we dynamically allocate new local radiance fields trained with frames within a temporal window. This further improves robustness (e.g., performs well even under moderate pose drifts) and allows us to scale to large scenes. Our extensive evaluation on the Tanks and Temples dataset and our collected outdoor dataset, Static Hikes, show that our approach compares favorably with the state-of-the-art.
MOVIS: Enhancing Multi-Object Novel View Synthesis for Indoor Scenes
Repurposing pre-trained diffusion models has been proven to be effective for NVS. However, these methods are mostly limited to a single object; directly applying such methods to compositional multi-object scenarios yields inferior results, especially incorrect object placement and inconsistent shape and appearance under novel views. How to enhance and systematically evaluate the cross-view consistency of such models remains under-explored. To address this issue, we propose MOVIS to enhance the structural awareness of the view-conditioned diffusion model for multi-object NVS in terms of model inputs, auxiliary tasks, and training strategy. First, we inject structure-aware features, including depth and object mask, into the denoising U-Net to enhance the model's comprehension of object instances and their spatial relationships. Second, we introduce an auxiliary task requiring the model to simultaneously predict novel view object masks, further improving the model's capability in differentiating and placing objects. Finally, we conduct an in-depth analysis of the diffusion sampling process and carefully devise a structure-guided timestep sampling scheduler during training, which balances the learning of global object placement and fine-grained detail recovery. To systematically evaluate the plausibility of synthesized images, we propose to assess cross-view consistency and novel view object placement alongside existing image-level NVS metrics. Extensive experiments on challenging synthetic and realistic datasets demonstrate that our method exhibits strong generalization capabilities and produces consistent novel view synthesis, highlighting its potential to guide future 3D-aware multi-object NVS tasks.
Blur2Sharp: Human Novel Pose and View Synthesis with Generative Prior Refinement
The creation of lifelike human avatars capable of realistic pose variation and viewpoint flexibility remains a fundamental challenge in computer vision and graphics. Current approaches typically yield either geometrically inconsistent multi-view images or sacrifice photorealism, resulting in blurry outputs under diverse viewing angles and complex motions. To address these issues, we propose Blur2Sharp, a novel framework integrating 3D-aware neural rendering and diffusion models to generate sharp, geometrically consistent novel-view images from only a single reference view. Our method employs a dual-conditioning architecture: initially, a Human NeRF model generates geometrically coherent multi-view renderings for target poses, explicitly encoding 3D structural guidance. Subsequently, a diffusion model conditioned on these renderings refines the generated images, preserving fine-grained details and structural fidelity. We further enhance visual quality through hierarchical feature fusion, incorporating texture, normal, and semantic priors extracted from parametric SMPL models to simultaneously improve global coherence and local detail accuracy. Extensive experiments demonstrate that Blur2Sharp consistently surpasses state-of-the-art techniques in both novel pose and view generation tasks, particularly excelling under challenging scenarios involving loose clothing and occlusions.
Understanding Multi-View Transformers
Multi-view transformers such as DUSt3R are revolutionizing 3D vision by solving 3D tasks in a feed-forward manner. However, contrary to previous optimization-based pipelines, the inner mechanisms of multi-view transformers are unclear. Their black-box nature makes further improvements beyond data scaling challenging and complicates usage in safety- and reliability-critical applications. Here, we present an approach for probing and visualizing 3D representations from the residual connections of the multi-view transformers' layers. In this manner, we investigate a variant of the DUSt3R model, shedding light on the development of its latent state across blocks, the role of the individual layers, and suggest how it differs from methods with stronger inductive biases of explicit global pose. Finally, we show that the investigated variant of DUSt3R estimates correspondences that are refined with reconstructed geometry. The code used for the analysis is available at https://github.com/JulienGaubil/und3rstand .
MIC-BEV: Multi-Infrastructure Camera Bird's-Eye-View Transformer with Relation-Aware Fusion for 3D Object Detection
Infrastructure-based perception plays a crucial role in intelligent transportation systems, offering global situational awareness and enabling cooperative autonomy. However, existing camera-based detection models often underperform in such scenarios due to challenges such as multi-view infrastructure setup, diverse camera configurations, degraded visual inputs, and various road layouts. We introduce MIC-BEV, a Transformer-based bird's-eye-view (BEV) perception framework for infrastructure-based multi-camera 3D object detection. MIC-BEV flexibly supports a variable number of cameras with heterogeneous intrinsic and extrinsic parameters and demonstrates strong robustness under sensor degradation. The proposed graph-enhanced fusion module in MIC-BEV integrates multi-view image features into the BEV space by exploiting geometric relationships between cameras and BEV cells alongside latent visual cues. To support training and evaluation, we introduce M2I, a synthetic dataset for infrastructure-based object detection, featuring diverse camera configurations, road layouts, and environmental conditions. Extensive experiments on both M2I and the real-world dataset RoScenes demonstrate that MIC-BEV achieves state-of-the-art performance in 3D object detection. It also remains robust under challenging conditions, including extreme weather and sensor degradation. These results highlight the potential of MIC-BEV for real-world deployment. The dataset and source code are available at: https://github.com/HandsomeYun/MIC-BEV.
From Local Details to Global Context: Advancing Vision-Language Models with Attention-Based Selection
Pretrained vision-language models (VLMs), e.g., CLIP, demonstrate impressive zero-shot capabilities on downstream tasks. Prior research highlights the crucial role of visual augmentation techniques, like random cropping, in alignment with fine-grained class descriptions generated by large language models (LLMs), significantly enhancing zero-shot performance by incorporating multi-view information. However, the inherent randomness of these augmentations can inevitably introduce background artifacts and cause models to overly focus on local details, compromising global semantic understanding. To address these issues, we propose an Attention-Based Selection (ABS) method from local details to global context, which applies attention-guided cropping in both raw images and feature space, supplement global semantic information through strategic feature selection. Additionally, we introduce a soft matching technique to effectively filter LLM descriptions for better alignment. ABS achieves state-of-the-art performance on out-of-distribution generalization and zero-shot classification tasks. Notably, ABS is training-free and even rivals few-shot and test-time adaptation methods. Our code is available at https://github.com/BIT-DA/ABS{darkgreen{https://github.com/BIT-DA/ABS}}.
World-Grounded Human Motion Recovery via Gravity-View Coordinates
We present a novel method for recovering world-grounded human motion from monocular video. The main challenge lies in the ambiguity of defining the world coordinate system, which varies between sequences. Previous approaches attempt to alleviate this issue by predicting relative motion in an autoregressive manner, but are prone to accumulating errors. Instead, we propose estimating human poses in a novel Gravity-View (GV) coordinate system, which is defined by the world gravity and the camera view direction. The proposed GV system is naturally gravity-aligned and uniquely defined for each video frame, largely reducing the ambiguity of learning image-pose mapping. The estimated poses can be transformed back to the world coordinate system using camera rotations, forming a global motion sequence. Additionally, the per-frame estimation avoids error accumulation in the autoregressive methods. Experiments on in-the-wild benchmarks demonstrate that our method recovers more realistic motion in both the camera space and world-grounded settings, outperforming state-of-the-art methods in both accuracy and speed. The code is available at https://zju3dv.github.io/gvhmr/.
MV-VTON: Multi-View Virtual Try-On with Diffusion Models
The goal of image-based virtual try-on is to generate an image of the target person naturally wearing the given clothing. However, existing methods solely focus on the frontal try-on using the frontal clothing. When the views of the clothing and person are significantly inconsistent, particularly when the person's view is non-frontal, the results are unsatisfactory. To address this challenge, we introduce Multi-View Virtual Try-ON (MV-VTON), which aims to reconstruct the dressing results from multiple views using the given clothes. Given that single-view clothes provide insufficient information for MV-VTON, we instead employ two images, i.e., the frontal and back views of the clothing, to encompass the complete view as much as possible. Moreover, we adopt diffusion models that have demonstrated superior abilities to perform our MV-VTON. In particular, we propose a view-adaptive selection method where hard-selection and soft-selection are applied to the global and local clothing feature extraction, respectively. This ensures that the clothing features are roughly fit to the person's view. Subsequently, we suggest joint attention blocks to align and fuse clothing features with person features. Additionally, we collect a MV-VTON dataset MVG, in which each person has multiple photos with diverse views and poses. Experiments show that the proposed method not only achieves state-of-the-art results on MV-VTON task using our MVG dataset, but also has superiority on frontal-view virtual try-on task using VITON-HD and DressCode datasets.
VideoMV: Consistent Multi-View Generation Based on Large Video Generative Model
Generating multi-view images based on text or single-image prompts is a critical capability for the creation of 3D content. Two fundamental questions on this topic are what data we use for training and how to ensure multi-view consistency. This paper introduces a novel framework that makes fundamental contributions to both questions. Unlike leveraging images from 2D diffusion models for training, we propose a dense consistent multi-view generation model that is fine-tuned from off-the-shelf video generative models. Images from video generative models are more suitable for multi-view generation because the underlying network architecture that generates them employs a temporal module to enforce frame consistency. Moreover, the video data sets used to train these models are abundant and diverse, leading to a reduced train-finetuning domain gap. To enhance multi-view consistency, we introduce a 3D-Aware Denoising Sampling, which first employs a feed-forward reconstruction module to get an explicit global 3D model, and then adopts a sampling strategy that effectively involves images rendered from the global 3D model into the denoising sampling loop to improve the multi-view consistency of the final images. As a by-product, this module also provides a fast way to create 3D assets represented by 3D Gaussians within a few seconds. Our approach can generate 24 dense views and converges much faster in training than state-of-the-art approaches (4 GPU hours versus many thousand GPU hours) with comparable visual quality and consistency. By further fine-tuning, our approach outperforms existing state-of-the-art methods in both quantitative metrics and visual effects. Our project page is aigc3d.github.io/VideoMV.
NVS-Adapter: Plug-and-Play Novel View Synthesis from a Single Image
Transfer learning of large-scale Text-to-Image (T2I) models has recently shown impressive potential for Novel View Synthesis (NVS) of diverse objects from a single image. While previous methods typically train large models on multi-view datasets for NVS, fine-tuning the whole parameters of T2I models not only demands a high cost but also reduces the generalization capacity of T2I models in generating diverse images in a new domain. In this study, we propose an effective method, dubbed NVS-Adapter, which is a plug-and-play module for a T2I model, to synthesize novel multi-views of visual objects while fully exploiting the generalization capacity of T2I models. NVS-Adapter consists of two main components; view-consistency cross-attention learns the visual correspondences to align the local details of view features, and global semantic conditioning aligns the semantic structure of generated views with the reference view. Experimental results demonstrate that the NVS-Adapter can effectively synthesize geometrically consistent multi-views and also achieve high performance on benchmarks without full fine-tuning of T2I models. The code and data are publicly available in ~https://postech-cvlab.github.io/nvsadapter/{https://postech-cvlab.github.io/nvsadapter/}.
SVDFormer: Complementing Point Cloud via Self-view Augmentation and Self-structure Dual-generator
In this paper, we propose a novel network, SVDFormer, to tackle two specific challenges in point cloud completion: understanding faithful global shapes from incomplete point clouds and generating high-accuracy local structures. Current methods either perceive shape patterns using only 3D coordinates or import extra images with well-calibrated intrinsic parameters to guide the geometry estimation of the missing parts. However, these approaches do not always fully leverage the cross-modal self-structures available for accurate and high-quality point cloud completion. To this end, we first design a Self-view Fusion Network that leverages multiple-view depth image information to observe incomplete self-shape and generate a compact global shape. To reveal highly detailed structures, we then introduce a refinement module, called Self-structure Dual-generator, in which we incorporate learned shape priors and geometric self-similarities for producing new points. By perceiving the incompleteness of each point, the dual-path design disentangles refinement strategies conditioned on the structural type of each point. SVDFormer absorbs the wisdom of self-structures, avoiding any additional paired information such as color images with precisely calibrated camera intrinsic parameters. Comprehensive experiments indicate that our method achieves state-of-the-art performance on widely-used benchmarks. Code will be available at https://github.com/czvvd/SVDFormer.
VIMI: Vehicle-Infrastructure Multi-view Intermediate Fusion for Camera-based 3D Object Detection
In autonomous driving, Vehicle-Infrastructure Cooperative 3D Object Detection (VIC3D) makes use of multi-view cameras from both vehicles and traffic infrastructure, providing a global vantage point with rich semantic context of road conditions beyond a single vehicle viewpoint. Two major challenges prevail in VIC3D: 1) inherent calibration noise when fusing multi-view images, caused by time asynchrony across cameras; 2) information loss when projecting 2D features into 3D space. To address these issues, We propose a novel 3D object detection framework, Vehicles-Infrastructure Multi-view Intermediate fusion (VIMI). First, to fully exploit the holistic perspectives from both vehicles and infrastructure, we propose a Multi-scale Cross Attention (MCA) module that fuses infrastructure and vehicle features on selective multi-scales to correct the calibration noise introduced by camera asynchrony. Then, we design a Camera-aware Channel Masking (CCM) module that uses camera parameters as priors to augment the fused features. We further introduce a Feature Compression (FC) module with channel and spatial compression blocks to reduce the size of transmitted features for enhanced efficiency. Experiments show that VIMI achieves 15.61% overall AP_3D and 21.44% AP_BEV on the new VIC3D dataset, DAIR-V2X-C, significantly outperforming state-of-the-art early fusion and late fusion methods with comparable transmission cost.
Making Vision Transformers Efficient from A Token Sparsification View
The quadratic computational complexity to the number of tokens limits the practical applications of Vision Transformers (ViTs). Several works propose to prune redundant tokens to achieve efficient ViTs. However, these methods generally suffer from (i) dramatic accuracy drops, (ii) application difficulty in the local vision transformer, and (iii) non-general-purpose networks for downstream tasks. In this work, we propose a novel Semantic Token ViT (STViT), for efficient global and local vision transformers, which can also be revised to serve as backbone for downstream tasks. The semantic tokens represent cluster centers, and they are initialized by pooling image tokens in space and recovered by attention, which can adaptively represent global or local semantic information. Due to the cluster properties, a few semantic tokens can attain the same effect as vast image tokens, for both global and local vision transformers. For instance, only 16 semantic tokens on DeiT-(Tiny,Small,Base) can achieve the same accuracy with more than 100% inference speed improvement and nearly 60% FLOPs reduction; on Swin-(Tiny,Small,Base), we can employ 16 semantic tokens in each window to further speed it up by around 20% with slight accuracy increase. Besides great success in image classification, we also extend our method to video recognition. In addition, we design a STViT-R(ecover) network to restore the detailed spatial information based on the STViT, making it work for downstream tasks, which is powerless for previous token sparsification methods. Experiments demonstrate that our method can achieve competitive results compared to the original networks in object detection and instance segmentation, with over 30% FLOPs reduction for backbone. Code is available at http://github.com/changsn/STViT-R
CoBEVT: Cooperative Bird's Eye View Semantic Segmentation with Sparse Transformers
Bird's eye view (BEV) semantic segmentation plays a crucial role in spatial sensing for autonomous driving. Although recent literature has made significant progress on BEV map understanding, they are all based on single-agent camera-based systems. These solutions sometimes have difficulty handling occlusions or detecting distant objects in complex traffic scenes. Vehicle-to-Vehicle (V2V) communication technologies have enabled autonomous vehicles to share sensing information, dramatically improving the perception performance and range compared to single-agent systems. In this paper, we propose CoBEVT, the first generic multi-agent multi-camera perception framework that can cooperatively generate BEV map predictions. To efficiently fuse camera features from multi-view and multi-agent data in an underlying Transformer architecture, we design a fused axial attention module (FAX), which captures sparsely local and global spatial interactions across views and agents. The extensive experiments on the V2V perception dataset, OPV2V, demonstrate that CoBEVT achieves state-of-the-art performance for cooperative BEV semantic segmentation. Moreover, CoBEVT is shown to be generalizable to other tasks, including 1) BEV segmentation with single-agent multi-camera and 2) 3D object detection with multi-agent LiDAR systems, achieving state-of-the-art performance with real-time inference speed. The code is available at https://github.com/DerrickXuNu/CoBEVT.
MoDec-GS: Global-to-Local Motion Decomposition and Temporal Interval Adjustment for Compact Dynamic 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) has made significant strides in scene representation and neural rendering, with intense efforts focused on adapting it for dynamic scenes. Despite delivering remarkable rendering quality and speed, existing methods struggle with storage demands and representing complex real-world motions. To tackle these issues, we propose MoDecGS, a memory-efficient Gaussian splatting framework designed for reconstructing novel views in challenging scenarios with complex motions. We introduce GlobaltoLocal Motion Decomposition (GLMD) to effectively capture dynamic motions in a coarsetofine manner. This approach leverages Global Canonical Scaffolds (Global CS) and Local Canonical Scaffolds (Local CS), extending static Scaffold representation to dynamic video reconstruction. For Global CS, we propose Global Anchor Deformation (GAD) to efficiently represent global dynamics along complex motions, by directly deforming the implicit Scaffold attributes which are anchor position, offset, and local context features. Next, we finely adjust local motions via the Local Gaussian Deformation (LGD) of Local CS explicitly. Additionally, we introduce Temporal Interval Adjustment (TIA) to automatically control the temporal coverage of each Local CS during training, allowing MoDecGS to find optimal interval assignments based on the specified number of temporal segments. Extensive evaluations demonstrate that MoDecGS achieves an average 70% reduction in model size over stateoftheart methods for dynamic 3D Gaussians from realworld dynamic videos while maintaining or even improving rendering quality.
Flying with Photons: Rendering Novel Views of Propagating Light
We present an imaging and neural rendering technique that seeks to synthesize videos of light propagating through a scene from novel, moving camera viewpoints. Our approach relies on a new ultrafast imaging setup to capture a first-of-its kind, multi-viewpoint video dataset with picosecond-level temporal resolution. Combined with this dataset, we introduce an efficient neural volume rendering framework based on the transient field. This field is defined as a mapping from a 3D point and 2D direction to a high-dimensional, discrete-time signal that represents time-varying radiance at ultrafast timescales. Rendering with transient fields naturally accounts for effects due to the finite speed of light, including viewpoint-dependent appearance changes caused by light propagation delays to the camera. We render a range of complex effects, including scattering, specular reflection, refraction, and diffraction. Additionally, we demonstrate removing viewpoint-dependent propagation delays using a time warping procedure, rendering of relativistic effects, and video synthesis of direct and global components of light transport.
Compatibility of Fundamental Matrices for Complete Viewing Graphs
This paper studies the problem of recovering cameras from a set of fundamental matrices. A set of fundamental matrices is said to be compatible if a set of cameras exists for which they are the fundamental matrices. We focus on the complete graph, where fundamental matrices for each pair of cameras are given. Previous work has established necessary and sufficient conditions for compatibility as rank and eigenvalue conditions on the n-view fundamental matrix obtained by concatenating the individual fundamental matrices. In this work, we show that the eigenvalue condition is redundant. We provide explicit homogeneous polynomials that describe necessary and sufficient conditions for compatibility in terms of the fundamental matrices and their epipoles. In this direction, we find that quadruple-wise compatibility is enough to ensure global compatibility for any number of cameras. We demonstrate that for four cameras, compatibility is generically described by triple-wise conditions and one additional equation involving all fundamental matrices.
BEVPlace: Learning LiDAR-based Place Recognition using Bird's Eye View Images
Place recognition is a key module for long-term SLAM systems. Current LiDAR-based place recognition methods usually use representations of point clouds such as unordered points or range images. These methods achieve high recall rates of retrieval, but their performance may degrade in the case of view variation or scene changes. In this work, we explore the potential of a different representation in place recognition, i.e. bird's eye view (BEV) images. We observe that the structural contents of BEV images are less influenced by rotations and translations of point clouds. We validate that, without any delicate design, a simple VGGNet trained on BEV images achieves comparable performance with the state-of-the-art place recognition methods in scenes of slight viewpoint changes. For more robust place recognition, we design a rotation-invariant network called BEVPlace. We use group convolution to extract rotation-equivariant local features from the images and NetVLAD for global feature aggregation. In addition, we observe that the distance between BEV features is correlated with the geometry distance of point clouds. Based on the observation, we develop a method to estimate the position of the query cloud, extending the usage of place recognition. The experiments conducted on large-scale public datasets show that our method 1) achieves state-of-the-art performance in terms of recall rates, 2) is robust to view changes, 3) shows strong generalization ability, and 4) can estimate the positions of query point clouds. Source codes are publicly available at https://github.com/zjuluolun/BEVPlace.
