Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeVANE-Bench: Video Anomaly Evaluation Benchmark for Conversational LMMs
The recent developments in Large Multi-modal Video Models (Video-LMMs) have significantly enhanced our ability to interpret and analyze video data. Despite their impressive capabilities, current Video-LMMs have not been evaluated for anomaly detection tasks, which is critical to their deployment in practical scenarios e.g., towards identifying deepfakes, manipulated video content, traffic accidents and crimes. In this paper, we introduce VANE-Bench, a benchmark designed to assess the proficiency of Video-LMMs in detecting and localizing anomalies and inconsistencies in videos. Our dataset comprises an array of videos synthetically generated using existing state-of-the-art text-to-video generation models, encompassing a variety of subtle anomalies and inconsistencies grouped into five categories: unnatural transformations, unnatural appearance, pass-through, disappearance and sudden appearance. Additionally, our benchmark features real-world samples from existing anomaly detection datasets, focusing on crime-related irregularities, atypical pedestrian behavior, and unusual events. The task is structured as a visual question-answering challenge to gauge the models' ability to accurately detect and localize the anomalies within the videos. We evaluate nine existing Video-LMMs, both open and closed sources, on this benchmarking task and find that most of the models encounter difficulties in effectively identifying the subtle anomalies. In conclusion, our research offers significant insights into the current capabilities of Video-LMMs in the realm of anomaly detection, highlighting the importance of our work in evaluating and improving these models for real-world applications. Our code and data is available at https://hananshafi.github.io/vane-benchmark/
Lie Group Decompositions for Equivariant Neural Networks
Invariance and equivariance to geometrical transformations have proven to be very useful inductive biases when training (convolutional) neural network models, especially in the low-data regime. Much work has focused on the case where the symmetry group employed is compact or abelian, or both. Recent work has explored enlarging the class of transformations used to the case of Lie groups, principally through the use of their Lie algebra, as well as the group exponential and logarithm maps. The applicability of such methods to larger transformation groups is limited by the fact that depending on the group of interest G, the exponential map may not be surjective. Further limitations are encountered when G is neither compact nor abelian. Using the structure and geometry of Lie groups and their homogeneous spaces, we present a framework by which it is possible to work with such groups primarily focusing on the Lie groups G = GL^{+}(n, R) and G = SL(n, R), as well as their representation as affine transformations R^{n} rtimes G. Invariant integration as well as a global parametrization is realized by decomposing the `larger` groups into subgroups and submanifolds which can be handled individually. Under this framework, we show how convolution kernels can be parametrized to build models equivariant with respect to affine transformations. We evaluate the robustness and out-of-distribution generalisation capability of our model on the standard affine-invariant benchmark classification task, where we outperform all previous equivariant models as well as all Capsule Network proposals.
GroupViT: Semantic Segmentation Emerges from Text Supervision
Grouping and recognition are important components of visual scene understanding, e.g., for object detection and semantic segmentation. With end-to-end deep learning systems, grouping of image regions usually happens implicitly via top-down supervision from pixel-level recognition labels. Instead, in this paper, we propose to bring back the grouping mechanism into deep networks, which allows semantic segments to emerge automatically with only text supervision. We propose a hierarchical Grouping Vision Transformer (GroupViT), which goes beyond the regular grid structure representation and learns to group image regions into progressively larger arbitrary-shaped segments. We train GroupViT jointly with a text encoder on a large-scale image-text dataset via contrastive losses. With only text supervision and without any pixel-level annotations, GroupViT learns to group together semantic regions and successfully transfers to the task of semantic segmentation in a zero-shot manner, i.e., without any further fine-tuning. It achieves a zero-shot accuracy of 52.3% mIoU on the PASCAL VOC 2012 and 22.4% mIoU on PASCAL Context datasets, and performs competitively to state-of-the-art transfer-learning methods requiring greater levels of supervision. We open-source our code at https://github.com/NVlabs/GroupViT .
Group Diffusion Transformers are Unsupervised Multitask Learners
While large language models (LLMs) have revolutionized natural language processing with their task-agnostic capabilities, visual generation tasks such as image translation, style transfer, and character customization still rely heavily on supervised, task-specific datasets. In this work, we introduce Group Diffusion Transformers (GDTs), a novel framework that unifies diverse visual generation tasks by redefining them as a group generation problem. In this approach, a set of related images is generated simultaneously, optionally conditioned on a subset of the group. GDTs build upon diffusion transformers with minimal architectural modifications by concatenating self-attention tokens across images. This allows the model to implicitly capture cross-image relationships (e.g., identities, styles, layouts, surroundings, and color schemes) through caption-based correlations. Our design enables scalable, unsupervised, and task-agnostic pretraining using extensive collections of image groups sourced from multimodal internet articles, image galleries, and video frames. We evaluate GDTs on a comprehensive benchmark featuring over 200 instructions across 30 distinct visual generation tasks, including picture book creation, font design, style transfer, sketching, colorization, drawing sequence generation, and character customization. Our models achieve competitive zero-shot performance without any additional fine-tuning or gradient updates. Furthermore, ablation studies confirm the effectiveness of key components such as data scaling, group size, and model design. These results demonstrate the potential of GDTs as scalable, general-purpose visual generation systems.
Geometric Clifford Algebra Networks
We propose Geometric Clifford Algebra Networks (GCANs) for modeling dynamical systems. GCANs are based on symmetry group transformations using geometric (Clifford) algebras. We first review the quintessence of modern (plane-based) geometric algebra, which builds on isometries encoded as elements of the Pin(p,q,r) group. We then propose the concept of group action layers, which linearly combine object transformations using pre-specified group actions. Together with a new activation and normalization scheme, these layers serve as adjustable geometric templates that can be refined via gradient descent. Theoretical advantages are strongly reflected in the modeling of three-dimensional rigid body transformations as well as large-scale fluid dynamics simulations, showing significantly improved performance over traditional methods.
RITA: Group Attention is All You Need for Timeseries Analytics
Timeseries analytics is of great importance in many real-world applications. Recently, the Transformer model, popular in natural language processing, has been leveraged to learn high quality feature embeddings from timeseries, core to the performance of various timeseries analytics tasks. However, the quadratic time and space complexities limit Transformers' scalability, especially for long timeseries. To address these issues, we develop a timeseries analytics tool, RITA, which uses a novel attention mechanism, named group attention, to address this scalability issue. Group attention dynamically clusters the objects based on their similarity into a small number of groups and approximately computes the attention at the coarse group granularity. It thus significantly reduces the time and space complexity, yet provides a theoretical guarantee on the quality of the computed attention. The dynamic scheduler of RITA continuously adapts the number of groups and the batch size in the training process, ensuring group attention always uses the fewest groups needed to meet the approximation quality requirement. Extensive experiments on various timeseries datasets and analytics tasks demonstrate that RITA outperforms the state-of-the-art in accuracy and is significantly faster -- with speedups of up to 63X.
Learning Symmetrization for Equivariance with Orbit Distance Minimization
We present a general framework for symmetrizing an arbitrary neural-network architecture and making it equivariant with respect to a given group. We build upon the proposals of Kim et al. (2023); Kaba et al. (2023) for symmetrization, and improve them by replacing their conversion of neural features into group representations, with an optimization whose loss intuitively measures the distance between group orbits. This change makes our approach applicable to a broader range of matrix groups, such as the Lorentz group O(1, 3), than these two proposals. We experimentally show our method's competitiveness on the SO(2) image classification task, and also its increased generality on the task with O(1, 3). Our implementation will be made accessible at https://github.com/tiendatnguyen-vision/Orbit-symmetrize.
GARField: Group Anything with Radiance Fields
Grouping is inherently ambiguous due to the multiple levels of granularity in which one can decompose a scene -- should the wheels of an excavator be considered separate or part of the whole? We present Group Anything with Radiance Fields (GARField), an approach for decomposing 3D scenes into a hierarchy of semantically meaningful groups from posed image inputs. To do this we embrace group ambiguity through physical scale: by optimizing a scale-conditioned 3D affinity feature field, a point in the world can belong to different groups of different sizes. We optimize this field from a set of 2D masks provided by Segment Anything (SAM) in a way that respects coarse-to-fine hierarchy, using scale to consistently fuse conflicting masks from different viewpoints. From this field we can derive a hierarchy of possible groupings via automatic tree construction or user interaction. We evaluate GARField on a variety of in-the-wild scenes and find it effectively extracts groups at many levels: clusters of objects, objects, and various subparts. GARField inherently represents multi-view consistent groupings and produces higher fidelity groups than the input SAM masks. GARField's hierarchical grouping could have exciting downstream applications such as 3D asset extraction or dynamic scene understanding. See the project website at https://www.garfield.studio/
GTrans: Grouping and Fusing Transformer Layers for Neural Machine Translation
Transformer structure, stacked by a sequence of encoder and decoder network layers, achieves significant development in neural machine translation. However, vanilla Transformer mainly exploits the top-layer representation, assuming the lower layers provide trivial or redundant information and thus ignoring the bottom-layer feature that is potentially valuable. In this work, we propose the Group-Transformer model (GTrans) that flexibly divides multi-layer representations of both encoder and decoder into different groups and then fuses these group features to generate target words. To corroborate the effectiveness of the proposed method, extensive experiments and analytic experiments are conducted on three bilingual translation benchmarks and two multilingual translation tasks, including the IWLST-14, IWLST-17, LDC, WMT-14 and OPUS-100 benchmark. Experimental and analytical results demonstrate that our model outperforms its Transformer counterparts by a consistent gain. Furthermore, it can be successfully scaled up to 60 encoder layers and 36 decoder layers.
On the Continuity of Rotation Representations in Neural Networks
In neural networks, it is often desirable to work with various representations of the same space. For example, 3D rotations can be represented with quaternions or Euler angles. In this paper, we advance a definition of a continuous representation, which can be helpful for training deep neural networks. We relate this to topological concepts such as homeomorphism and embedding. We then investigate what are continuous and discontinuous representations for 2D, 3D, and n-dimensional rotations. We demonstrate that for 3D rotations, all representations are discontinuous in the real Euclidean spaces of four or fewer dimensions. Thus, widely used representations such as quaternions and Euler angles are discontinuous and difficult for neural networks to learn. We show that the 3D rotations have continuous representations in 5D and 6D, which are more suitable for learning. We also present continuous representations for the general case of the n-dimensional rotation group SO(n). While our main focus is on rotations, we also show that our constructions apply to other groups such as the orthogonal group and similarity transforms. We finally present empirical results, which show that our continuous rotation representations outperform discontinuous ones for several practical problems in graphics and vision, including a simple autoencoder sanity test, a rotation estimator for 3D point clouds, and an inverse kinematics solver for 3D human poses.
Gaussian Grouping: Segment and Edit Anything in 3D Scenes
The recent Gaussian Splatting achieves high-quality and real-time novel-view synthesis of the 3D scenes. However, it is solely concentrated on the appearance and geometry modeling, while lacking in fine-grained object-level scene understanding. To address this issue, we propose Gaussian Grouping, which extends Gaussian Splatting to jointly reconstruct and segment anything in open-world 3D scenes. We augment each Gaussian with a compact Identity Encoding, allowing the Gaussians to be grouped according to their object instance or stuff membership in the 3D scene. Instead of resorting to expensive 3D labels, we supervise the Identity Encodings during the differentiable rendering by leveraging the 2D mask predictions by SAM, along with introduced 3D spatial consistency regularization. Comparing to the implicit NeRF representation, we show that the discrete and grouped 3D Gaussians can reconstruct, segment and edit anything in 3D with high visual quality, fine granularity and efficiency. Based on Gaussian Grouping, we further propose a local Gaussian Editing scheme, which shows efficacy in versatile scene editing applications, including 3D object removal, inpainting, colorization and scene recomposition. Our code and models will be at https://github.com/lkeab/gaussian-grouping.
Semantically Structured Image Compression via Irregular Group-Based Decoupling
Image compression techniques typically focus on compressing rectangular images for human consumption, however, resulting in transmitting redundant content for downstream applications. To overcome this limitation, some previous works propose to semantically structure the bitstream, which can meet specific application requirements by selective transmission and reconstruction. Nevertheless, they divide the input image into multiple rectangular regions according to semantics and ignore avoiding information interaction among them, causing waste of bitrate and distorted reconstruction of region boundaries. In this paper, we propose to decouple an image into multiple groups with irregular shapes based on a customized group mask and compress them independently. Our group mask describes the image at a finer granularity, enabling significant bitrate saving by reducing the transmission of redundant content. Moreover, to ensure the fidelity of selective reconstruction, this paper proposes the concept of group-independent transform that maintain the independence among distinct groups. And we instantiate it by the proposed Group-Independent Swin-Block (GI Swin-Block). Experimental results demonstrate that our framework structures the bitstream with negligible cost, and exhibits superior performance on both visual quality and intelligent task supporting.
Beyond Uniform Query Distribution: Key-Driven Grouped Query Attention
The Transformer architecture has revolutionized deep learning through its Self-Attention mechanism, which effectively captures contextual information. However, the memory footprint of Self-Attention presents significant challenges for long-sequence tasks. Grouped Query Attention (GQA) addresses this issue by grouping queries and mean-pooling the corresponding key-value heads - reducing the number of overall parameters and memory requirements in a flexible manner without adversely compromising model accuracy. In this work, we introduce enhancements to GQA, focusing on two novel approaches that deviate from the static nature of grouping: Key-Distributed GQA (KDGQA) and Dynamic Key-Distributed GQA (DGQA), which leverage information from the norms of the key heads to inform query allocation. Specifically, KDGQA looks at the ratios of the norms of the key heads during each forward pass, while DGQA examines the ratios of the norms as they evolve through training. Additionally, we present Perturbed GQA (PGQA) as a case-study, which introduces variability in (static) group formation via subtracting noise from the attention maps. Our experiments with up-trained Vision Transformers, for Image Classification on datasets such as CIFAR-10, CIFAR-100, Food101, and Tiny ImageNet, demonstrate the promise of these variants in improving upon the original GQA through more informed and adaptive grouping mechanisms: specifically ViT-L experiences accuracy gains of up to 8% when utilizing DGQA in comparison to GQA and other variants. We further analyze the impact of the number of Key-Value Heads on performance, underscoring the importance of utilizing query-key affinities. Code is available on GitHub.
Long-Range Grouping Transformer for Multi-View 3D Reconstruction
Nowadays, transformer networks have demonstrated superior performance in many computer vision tasks. In a multi-view 3D reconstruction algorithm following this paradigm, self-attention processing has to deal with intricate image tokens including massive information when facing heavy amounts of view input. The curse of information content leads to the extreme difficulty of model learning. To alleviate this problem, recent methods compress the token number representing each view or discard the attention operations between the tokens from different views. Obviously, they give a negative impact on performance. Therefore, we propose long-range grouping attention (LGA) based on the divide-and-conquer principle. Tokens from all views are grouped for separate attention operations. The tokens in each group are sampled from all views and can provide macro representation for the resided view. The richness of feature learning is guaranteed by the diversity among different groups. An effective and efficient encoder can be established which connects inter-view features using LGA and extract intra-view features using the standard self-attention layer. Moreover, a novel progressive upsampling decoder is also designed for voxel generation with relatively high resolution. Hinging on the above, we construct a powerful transformer-based network, called LRGT. Experimental results on ShapeNet verify our method achieves SOTA accuracy in multi-view reconstruction. Code will be available at https://github.com/LiyingCV/Long-Range-Grouping-Transformer.
Knowledge Graph Embedding with 3D Compound Geometric Transformations
The cascade of 2D geometric transformations were exploited to model relations between entities in a knowledge graph (KG), leading to an effective KG embedding (KGE) model, CompoundE. Furthermore, the rotation in the 3D space was proposed as a new KGE model, Rotate3D, by leveraging its non-commutative property. Inspired by CompoundE and Rotate3D, we leverage 3D compound geometric transformations, including translation, rotation, scaling, reflection, and shear and propose a family of KGE models, named CompoundE3D, in this work. CompoundE3D allows multiple design variants to match rich underlying characteristics of a KG. Since each variant has its own advantages on a subset of relations, an ensemble of multiple variants can yield superior performance. The effectiveness and flexibility of CompoundE3D are experimentally verified on four popular link prediction datasets.
LieTransformer: Equivariant self-attention for Lie Groups
Group equivariant neural networks are used as building blocks of group invariant neural networks, which have been shown to improve generalisation performance and data efficiency through principled parameter sharing. Such works have mostly focused on group equivariant convolutions, building on the result that group equivariant linear maps are necessarily convolutions. In this work, we extend the scope of the literature to self-attention, that is emerging as a prominent building block of deep learning models. We propose the LieTransformer, an architecture composed of LieSelfAttention layers that are equivariant to arbitrary Lie groups and their discrete subgroups. We demonstrate the generality of our approach by showing experimental results that are competitive to baseline methods on a wide range of tasks: shape counting on point clouds, molecular property regression and modelling particle trajectories under Hamiltonian dynamics.
Group Generalized Mean Pooling for Vision Transformer
Vision Transformer (ViT) extracts the final representation from either class token or an average of all patch tokens, following the architecture of Transformer in Natural Language Processing (NLP) or Convolutional Neural Networks (CNNs) in computer vision. However, studies for the best way of aggregating the patch tokens are still limited to average pooling, while widely-used pooling strategies, such as max and GeM pooling, can be considered. Despite their effectiveness, the existing pooling strategies do not consider the architecture of ViT and the channel-wise difference in the activation maps, aggregating the crucial and trivial channels with the same importance. In this paper, we present Group Generalized Mean (GGeM) pooling as a simple yet powerful pooling strategy for ViT. GGeM divides the channels into groups and computes GeM pooling with a shared pooling parameter per group. As ViT groups the channels via a multi-head attention mechanism, grouping the channels by GGeM leads to lower head-wise dependence while amplifying important channels on the activation maps. Exploiting GGeM shows 0.1%p to 0.7%p performance boosts compared to the baselines and achieves state-of-the-art performance for ViT-Base and ViT-Large models in ImageNet-1K classification task. Moreover, GGeM outperforms the existing pooling strategies on image retrieval and multi-modal representation learning tasks, demonstrating the superiority of GGeM for a variety of tasks. GGeM is a simple algorithm in that only a few lines of code are necessary for implementation.
A micro Lie theory for state estimation in robotics
A Lie group is an old mathematical abstract object dating back to the XIX century, when mathematician Sophus Lie laid the foundations of the theory of continuous transformation groups. As it often happens, its usage has spread over diverse areas of science and technology many years later. In robotics, we are recently experiencing an important trend in its usage, at least in the fields of estimation, and particularly in motion estimation for navigation. Yet for a vast majority of roboticians, Lie groups are highly abstract constructions and therefore difficult to understand and to use. This may be due to the fact that most of the literature on Lie theory is written by and for mathematicians and physicists, who might be more used than us to the deep abstractions this theory deals with. In estimation for robotics it is often not necessary to exploit the full capacity of the theory, and therefore an effort of selection of materials is required. In this paper, we will walk through the most basic principles of the Lie theory, with the aim of conveying clear and useful ideas, and leave a significant corpus of the Lie theory behind. Even with this mutilation, the material included here has proven to be extremely useful in modern estimation algorithms for robotics, especially in the fields of SLAM, visual odometry, and the like. Alongside this micro Lie theory, we provide a chapter with a few application examples, and a vast reference of formulas for the major Lie groups used in robotics, including most jacobian matrices and the way to easily manipulate them. We also present a new C++ template-only library implementing all the functionality described here.
Steerable Transformers
In this work we introduce Steerable Transformers, an extension of the Vision Transformer mechanism that maintains equivariance to the special Euclidean group SE(d). We propose an equivariant attention mechanism that operates on features extracted by steerable convolutions. Operating in Fourier space, our network utilizes Fourier space non-linearities. Our experiments in both two and three dimensions show that adding a steerable transformer encoder layer to a steerable convolution network enhances performance.
Group Downsampling with Equivariant Anti-aliasing
Downsampling layers are crucial building blocks in CNN architectures, which help to increase the receptive field for learning high-level features and reduce the amount of memory/computation in the model. In this work, we study the generalization of the uniform downsampling layer for group equivariant architectures, e.g., G-CNNs. That is, we aim to downsample signals (feature maps) on general finite groups with anti-aliasing. This involves the following: (a) Given a finite group and a downsampling rate, we present an algorithm to form a suitable choice of subgroup. (b) Given a group and a subgroup, we study the notion of bandlimited-ness and propose how to perform anti-aliasing. Notably, our method generalizes the notion of downsampling based on classical sampling theory. When the signal is on a cyclic group, i.e., periodic, our method recovers the standard downsampling of an ideal low-pass filter followed by a subsampling operation. Finally, we conducted experiments on image classification tasks demonstrating that the proposed downsampling operation improves accuracy, better preserves equivariance, and reduces model size when incorporated into G-equivariant networks
Fast, Expressive SE(n) Equivariant Networks through Weight-Sharing in Position-Orientation Space
Based on the theory of homogeneous spaces we derive geometrically optimal edge attributes to be used within the flexible message-passing framework. We formalize the notion of weight sharing in convolutional networks as the sharing of message functions over point-pairs that should be treated equally. We define equivalence classes of point-pairs that are identical up to a transformation in the group and derive attributes that uniquely identify these classes. Weight sharing is then obtained by conditioning message functions on these attributes. As an application of the theory, we develop an efficient equivariant group convolutional network for processing 3D point clouds. The theory of homogeneous spaces tells us how to do group convolutions with feature maps over the homogeneous space of positions R^3, position and orientations R^3 {times} S^2, and the group SE(3) itself. Among these, R^3 {times} S^2 is an optimal choice due to the ability to represent directional information, which R^3 methods cannot, and it significantly enhances computational efficiency compared to indexing features on the full SE(3) group. We support this claim with state-of-the-art results -- in accuracy and speed -- on five different benchmarks in 2D and 3D, including interatomic potential energy prediction, trajectory forecasting in N-body systems, and generating molecules via equivariant diffusion models.
Frame Averaging for Invariant and Equivariant Network Design
Many machine learning tasks involve learning functions that are known to be invariant or equivariant to certain symmetries of the input data. However, it is often challenging to design neural network architectures that respect these symmetries while being expressive and computationally efficient. For example, Euclidean motion invariant/equivariant graph or point cloud neural networks. We introduce Frame Averaging (FA), a general purpose and systematic framework for adapting known (backbone) architectures to become invariant or equivariant to new symmetry types. Our framework builds on the well known group averaging operator that guarantees invariance or equivariance but is intractable. In contrast, we observe that for many important classes of symmetries, this operator can be replaced with an averaging operator over a small subset of the group elements, called a frame. We show that averaging over a frame guarantees exact invariance or equivariance while often being much simpler to compute than averaging over the entire group. Furthermore, we prove that FA-based models have maximal expressive power in a broad setting and in general preserve the expressive power of their backbone architectures. Using frame averaging, we propose a new class of universal Graph Neural Networks (GNNs), universal Euclidean motion invariant point cloud networks, and Euclidean motion invariant Message Passing (MP) GNNs. We demonstrate the practical effectiveness of FA on several applications including point cloud normal estimation, beyond 2-WL graph separation, and n-body dynamics prediction, achieving state-of-the-art results in all of these benchmarks.
Flow Equivariant Recurrent Neural Networks
Data arrives at our senses as a continuous stream, smoothly transforming from one instant to the next. These smooth transformations can be viewed as continuous symmetries of the environment that we inhabit, defining equivalence relations between stimuli over time. In machine learning, neural network architectures that respect symmetries of their data are called equivariant and have provable benefits in terms of generalization ability and sample efficiency. To date, however, equivariance has been considered only for static transformations and feed-forward networks, limiting its applicability to sequence models, such as recurrent neural networks (RNNs), and corresponding time-parameterized sequence transformations. In this work, we extend equivariant network theory to this regime of `flows' -- one-parameter Lie subgroups capturing natural transformations over time, such as visual motion. We begin by showing that standard RNNs are generally not flow equivariant: their hidden states fail to transform in a geometrically structured manner for moving stimuli. We then show how flow equivariance can be introduced, and demonstrate that these models significantly outperform their non-equivariant counterparts in terms of training speed, length generalization, and velocity generalization, on both next step prediction and sequence classification. We present this work as a first step towards building sequence models that respect the time-parameterized symmetries which govern the world around us.
Group Representational Position Encoding
We present GRAPE (Group RepresentAtional Position Encoding), a unified framework for positional encoding based on group actions. GRAPE brings together two families of mechanisms: (i) multiplicative rotations (Multiplicative GRAPE) in SO(d) and (ii) additive logit biases (Additive GRAPE) arising from unipotent actions in the general linear group GL. In Multiplicative GRAPE, a position n in Z (or t in R) acts as G(n)=exp(n,ω,L) with a rank-2 skew generator L in R^{d times d}, yielding a relative, compositional, norm-preserving map with a closed-form matrix exponential. RoPE is recovered exactly when the d/2 planes are the canonical coordinate pairs with log-uniform spectrum. Learned commuting subspaces and compact non-commuting mixtures strictly extend this geometry to capture cross-subspace feature coupling at O(d) and O(r d) cost per head, respectively. In Additive GRAPE, additive logits arise as rank-1 (or low-rank) unipotent actions, recovering ALiBi and the Forgetting Transformer (FoX) as exact special cases while preserving an exact relative law and streaming cacheability. Altogether, GRAPE supplies a principled design space for positional geometry in long-context models, subsuming RoPE and ALiBi as special cases. Project Page: https://github.com/model-architectures/GRAPE.
A Lie Group Approach to Riemannian Batch Normalization
Manifold-valued measurements exist in numerous applications within computer vision and machine learning. Recent studies have extended Deep Neural Networks (DNNs) to manifolds, and concomitantly, normalization techniques have also been adapted to several manifolds, referred to as Riemannian normalization. Nonetheless, most of the existing Riemannian normalization methods have been derived in an ad hoc manner and only apply to specific manifolds. This paper establishes a unified framework for Riemannian Batch Normalization (RBN) techniques on Lie groups. Our framework offers the theoretical guarantee of controlling both the Riemannian mean and variance. Empirically, we focus on Symmetric Positive Definite (SPD) manifolds, which possess three distinct types of Lie group structures. Using the deformation concept, we generalize the existing Lie groups on SPD manifolds into three families of parameterized Lie groups. Specific normalization layers induced by these Lie groups are then proposed for SPD neural networks. We demonstrate the effectiveness of our approach through three sets of experiments: radar recognition, human action recognition, and electroencephalography (EEG) classification. The code is available at https://github.com/GitZH-Chen/LieBN.git.
Visual Anagrams: Generating Multi-View Optical Illusions with Diffusion Models
We address the problem of synthesizing multi-view optical illusions: images that change appearance upon a transformation, such as a flip or rotation. We propose a simple, zero-shot method for obtaining these illusions from off-the-shelf text-to-image diffusion models. During the reverse diffusion process, we estimate the noise from different views of a noisy image, and then combine these noise estimates together and denoise the image. A theoretical analysis suggests that this method works precisely for views that can be written as orthogonal transformations, of which permutations are a subset. This leads to the idea of a visual anagram--an image that changes appearance under some rearrangement of pixels. This includes rotations and flips, but also more exotic pixel permutations such as a jigsaw rearrangement. Our approach also naturally extends to illusions with more than two views. We provide both qualitative and quantitative results demonstrating the effectiveness and flexibility of our method. Please see our project webpage for additional visualizations and results: https://dangeng.github.io/visual_anagrams/
Neural Fourier Transform: A General Approach to Equivariant Representation Learning
Symmetry learning has proven to be an effective approach for extracting the hidden structure of data, with the concept of equivariance relation playing the central role. However, most of the current studies are built on architectural theory and corresponding assumptions on the form of data. We propose Neural Fourier Transform (NFT), a general framework of learning the latent linear action of the group without assuming explicit knowledge of how the group acts on data. We present the theoretical foundations of NFT and show that the existence of a linear equivariant feature, which has been assumed ubiquitously in equivariance learning, is equivalent to the existence of a group invariant kernel on the dataspace. We also provide experimental results to demonstrate the application of NFT in typical scenarios with varying levels of knowledge about the acting group.
LION: Linear Group RNN for 3D Object Detection in Point Clouds
The benefit of transformers in large-scale 3D point cloud perception tasks, such as 3D object detection, is limited by their quadratic computation cost when modeling long-range relationships. In contrast, linear RNNs have low computational complexity and are suitable for long-range modeling. Toward this goal, we propose a simple and effective window-based framework built on LInear grOup RNN (i.e., perform linear RNN for grouped features) for accurate 3D object detection, called LION. The key property is to allow sufficient feature interaction in a much larger group than transformer-based methods. However, effectively applying linear group RNN to 3D object detection in highly sparse point clouds is not trivial due to its limitation in handling spatial modeling. To tackle this problem, we simply introduce a 3D spatial feature descriptor and integrate it into the linear group RNN operators to enhance their spatial features rather than blindly increasing the number of scanning orders for voxel features. To further address the challenge in highly sparse point clouds, we propose a 3D voxel generation strategy to densify foreground features thanks to linear group RNN as a natural property of auto-regressive models. Extensive experiments verify the effectiveness of the proposed components and the generalization of our LION on different linear group RNN operators including Mamba, RWKV, and RetNet. Furthermore, it is worth mentioning that our LION-Mamba achieves state-of-the-art on Waymo, nuScenes, Argoverse V2, and ONCE dataset. Last but not least, our method supports kinds of advanced linear RNN operators (e.g., RetNet, RWKV, Mamba, xLSTM and TTT) on small but popular KITTI dataset for a quick experience with our linear RNN-based framework.
ParCo: Part-Coordinating Text-to-Motion Synthesis
We study a challenging task: text-to-motion synthesis, aiming to generate motions that align with textual descriptions and exhibit coordinated movements. Currently, the part-based methods introduce part partition into the motion synthesis process to achieve finer-grained generation. However, these methods encounter challenges such as the lack of coordination between different part motions and difficulties for networks to understand part concepts. Moreover, introducing finer-grained part concepts poses computational complexity challenges. In this paper, we propose Part-Coordinating Text-to-Motion Synthesis (ParCo), endowed with enhanced capabilities for understanding part motions and communication among different part motion generators, ensuring a coordinated and fined-grained motion synthesis. Specifically, we discretize whole-body motion into multiple part motions to establish the prior concept of different parts. Afterward, we employ multiple lightweight generators designed to synthesize different part motions and coordinate them through our part coordination module. Our approach demonstrates superior performance on common benchmarks with economic computations, including HumanML3D and KIT-ML, providing substantial evidence of its effectiveness. Code is available at https://github.com/qrzou/ParCo .
Group Equivariant Fourier Neural Operators for Partial Differential Equations
We consider solving partial differential equations (PDEs) with Fourier neural operators (FNOs), which operate in the frequency domain. Since the laws of physics do not depend on the coordinate system used to describe them, it is desirable to encode such symmetries in the neural operator architecture for better performance and easier learning. While encoding symmetries in the physical domain using group theory has been studied extensively, how to capture symmetries in the frequency domain is under-explored. In this work, we extend group convolutions to the frequency domain and design Fourier layers that are equivariant to rotations, translations, and reflections by leveraging the equivariance property of the Fourier transform. The resulting G-FNO architecture generalizes well across input resolutions and performs well in settings with varying levels of symmetry. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS).
An Algorithm for Computing with Brauer's Group Equivariant Neural Network Layers
The learnable, linear neural network layers between tensor power spaces of R^{n} that are equivariant to the orthogonal group, O(n), the special orthogonal group, SO(n), and the symplectic group, Sp(n), were characterised in arXiv:2212.08630. We present an algorithm for multiplying a vector by any weight matrix for each of these groups, using category theoretic constructions to implement the procedure. We achieve a significant reduction in computational cost compared with a naive implementation by making use of Kronecker product matrices to perform the multiplication. We show that our approach extends to the symmetric group, S_n, recovering the algorithm of arXiv:2303.06208 in the process.
Achieving Sample and Computational Efficient Reinforcement Learning by Action Space Reduction via Grouping
Reinforcement learning often needs to deal with the exponential growth of states and actions when exploring optimal control in high-dimensional spaces (often known as the curse of dimensionality). In this work, we address this issue by learning the inherent structure of action-wise similar MDP to appropriately balance the performance degradation versus sample/computational complexity. In particular, we partition the action spaces into multiple groups based on the similarity in transition distribution and reward function, and build a linear decomposition model to capture the difference between the intra-group transition kernel and the intra-group rewards. Both our theoretical analysis and experiments reveal a surprising and counter-intuitive result: while a more refined grouping strategy can reduce the approximation error caused by treating actions in the same group as identical, it also leads to increased estimation error when the size of samples or the computation resources is limited. This finding highlights the grouping strategy as a new degree of freedom that can be optimized to minimize the overall performance loss. To address this issue, we formulate a general optimization problem for determining the optimal grouping strategy, which strikes a balance between performance loss and sample/computational complexity. We further propose a computationally efficient method for selecting a nearly-optimal grouping strategy, which maintains its computational complexity independent of the size of the action space.
Examples of renormalization group transformations for image sets
Using the example of configurations generated with the worm algorithm for the two-dimensional Ising model, we propose renormalization group (RG) transformations, inspired by the tensor RG, that can be applied to sets of images. We relate criticality to the logarithmic divergence of the largest principal component. We discuss the changes in link occupation under the RG transformation, suggest ways to obtain data collapse, and compare with the two state tensor RG approximation near the fixed point.
Symmetry-Aware Robot Design with Structured Subgroups
Robot design aims at learning to create robots that can be easily controlled and perform tasks efficiently. Previous works on robot design have proven its ability to generate robots for various tasks. However, these works searched the robots directly from the vast design space and ignored common structures, resulting in abnormal robots and poor performance. To tackle this problem, we propose a Symmetry-Aware Robot Design (SARD) framework that exploits the structure of the design space by incorporating symmetry searching into the robot design process. Specifically, we represent symmetries with the subgroups of the dihedral group and search for the optimal symmetry in structured subgroups. Then robots are designed under the searched symmetry. In this way, SARD can design efficient symmetric robots while covering the original design space, which is theoretically analyzed. We further empirically evaluate SARD on various tasks, and the results show its superior efficiency and generalizability.
Iterative SE(3)-Transformers
When manipulating three-dimensional data, it is possible to ensure that rotational and translational symmetries are respected by applying so-called SE(3)-equivariant models. Protein structure prediction is a prominent example of a task which displays these symmetries. Recent work in this area has successfully made use of an SE(3)-equivariant model, applying an iterative SE(3)-equivariant attention mechanism. Motivated by this application, we implement an iterative version of the SE(3)-Transformer, an SE(3)-equivariant attention-based model for graph data. We address the additional complications which arise when applying the SE(3)-Transformer in an iterative fashion, compare the iterative and single-pass versions on a toy problem, and consider why an iterative model may be beneficial in some problem settings. We make the code for our implementation available to the community.
Taming LLMs by Scaling Learning Rates with Gradient Grouping
Training large language models (LLMs) poses challenges due to their massive scale and heterogeneous architectures. While adaptive optimizers like AdamW help address gradient variations, they still struggle with efficient and effective parameter-wise learning rate estimation, resulting in training instability, slow convergence, and poor compatibility with parameter-efficient fine-tuning (PEFT) techniques. This work introduces Scaling with Gradient Grouping (SGG), an optimizer wrapper that improves adaptive learning rate estimation by dynamic grouping and group-specific scaling. SGG first groups gradient statistics in each layer into clusters and then applies cluster-specific scaling to calibrate learning rates for each parameter, thus imposing collective group-wise constraints while maintaining precise per-parameter adaptation. Experiments on diverse (M)LLM benchmarks show that SGG integrates seamlessly with existing optimizers, and offers consistent gains and faster convergence over baselines, with various model sizes. Its stability across varying batch sizes and learning rates establishes SGG as a robust choice for LLM optimization.
Multi-Agent MDP Homomorphic Networks
This paper introduces Multi-Agent MDP Homomorphic Networks, a class of networks that allows distributed execution using only local information, yet is able to share experience between global symmetries in the joint state-action space of cooperative multi-agent systems. In cooperative multi-agent systems, complex symmetries arise between different configurations of the agents and their local observations. For example, consider a group of agents navigating: rotating the state globally results in a permutation of the optimal joint policy. Existing work on symmetries in single agent reinforcement learning can only be generalized to the fully centralized setting, because such approaches rely on the global symmetry in the full state-action spaces, and these can result in correspondences across agents. To encode such symmetries while still allowing distributed execution we propose a factorization that decomposes global symmetries into local transformations. Our proposed factorization allows for distributing the computation that enforces global symmetries over local agents and local interactions. We introduce a multi-agent equivariant policy network based on this factorization. We show empirically on symmetric multi-agent problems that globally symmetric distributable policies improve data efficiency compared to non-equivariant baselines.
UMERegRobust - Universal Manifold Embedding Compatible Features for Robust Point Cloud Registration
In this paper, we adopt the Universal Manifold Embedding (UME) framework for the estimation of rigid transformations and extend it, so that it can accommodate scenarios involving partial overlap and differently sampled point clouds. UME is a methodology designed for mapping observations of the same object, related by rigid transformations, into a single low-dimensional linear subspace. This process yields a transformation-invariant representation of the observations, with its matrix form representation being covariant (i.e. equivariant) with the transformation. We extend the UME framework by introducing a UME-compatible feature extraction method augmented with a unique UME contrastive loss and a sampling equalizer. These components are integrated into a comprehensive and robust registration pipeline, named UMERegRobust. We propose the RotKITTI registration benchmark, specifically tailored to evaluate registration methods for scenarios involving large rotations. UMERegRobust achieves better than state-of-the-art performance on the KITTI benchmark, especially when strict precision of (1{\deg}, 10cm) is considered (with an average gain of +9%), and notably outperform SOTA methods on the RotKITTI benchmark (with +45% gain compared the most recent SOTA method).
Scaling Image Tokenizers with Grouped Spherical Quantization
Vision tokenizers have gained a lot of attraction due to their scalability and compactness; previous works depend on old-school GAN-based hyperparameters, biased comparisons, and a lack of comprehensive analysis of the scaling behaviours. To tackle those issues, we introduce Grouped Spherical Quantization (GSQ), featuring spherical codebook initialization and lookup regularization to constrain codebook latent to a spherical surface. Our empirical analysis of image tokenizer training strategies demonstrates that GSQ-GAN achieves superior reconstruction quality over state-of-the-art methods with fewer training iterations, providing a solid foundation for scaling studies. Building on this, we systematically examine the scaling behaviours of GSQ, specifically in latent dimensionality, codebook size, and compression ratios, and their impact on model performance. Our findings reveal distinct behaviours at high and low spatial compression levels, underscoring challenges in representing high-dimensional latent spaces. We show that GSQ can restructure high-dimensional latent into compact, low-dimensional spaces, thus enabling efficient scaling with improved quality. As a result, GSQ-GAN achieves a 16x down-sampling with a reconstruction FID (rFID) of 0.50.
Automatic Data Augmentation via Invariance-Constrained Learning
Underlying data structures, such as symmetries or invariances to transformations, are often exploited to improve the solution of learning tasks. However, embedding these properties in models or learning algorithms can be challenging and computationally intensive. Data augmentation, on the other hand, induces these symmetries during training by applying multiple transformations to the input data. Despite its ubiquity, its effectiveness depends on the choices of which transformations to apply, when to do so, and how often. In fact, there is both empirical and theoretical evidence that the indiscriminate use of data augmentation can introduce biases that outweigh its benefits. This work tackles these issues by automatically adapting the data augmentation while solving the learning task. To do so, it formulates data augmentation as an invariance-constrained learning problem and leverages Monte Carlo Markov Chain (MCMC) sampling to solve it. The result is a practical algorithm that not only does away with a priori searches for augmentation distributions, but also dynamically controls if and when data augmentation is applied. Our experiments illustrate the performance of this method, which achieves state-of-the-art results in automatic data augmentation benchmarks for CIFAR datasets. Furthermore, this approach can be used to gather insights on the actual symmetries underlying a learning task.
Knowledge Graph Embedding by Normalizing Flows
A key to knowledge graph embedding (KGE) is to choose a proper representation space, e.g., point-wise Euclidean space and complex vector space. In this paper, we propose a unified perspective of embedding and introduce uncertainty into KGE from the view of group theory. Our model can incorporate existing models (i.e., generality), ensure the computation is tractable (i.e., efficiency) and enjoy the expressive power of complex random variables (i.e., expressiveness). The core idea is that we embed entities/relations as elements of a symmetric group, i.e., permutations of a set. Permutations of different sets can reflect different properties of embedding. And the group operation of symmetric groups is easy to compute. In specific, we show that the embedding of many existing models, point vectors, can be seen as elements of a symmetric group. To reflect uncertainty, we first embed entities/relations as permutations of a set of random variables. A permutation can transform a simple random variable into a complex random variable for greater expressiveness, called a normalizing flow. We then define scoring functions by measuring the similarity of two normalizing flows, namely NFE. We construct several instantiating models and prove that they are able to learn logical rules. Experimental results demonstrate the effectiveness of introducing uncertainty and our model. The code is available at https://github.com/changyi7231/NFE.
Music-Driven Group Choreography
Music-driven choreography is a challenging problem with a wide variety of industrial applications. Recently, many methods have been proposed to synthesize dance motions from music for a single dancer. However, generating dance motion for a group remains an open problem. In this paper, we present rm AIOZ-GDANCE, a new large-scale dataset for music-driven group dance generation. Unlike existing datasets that only support single dance, our new dataset contains group dance videos, hence supporting the study of group choreography. We propose a semi-autonomous labeling method with humans in the loop to obtain the 3D ground truth for our dataset. The proposed dataset consists of 16.7 hours of paired music and 3D motion from in-the-wild videos, covering 7 dance styles and 16 music genres. We show that naively applying single dance generation technique to creating group dance motion may lead to unsatisfactory results, such as inconsistent movements and collisions between dancers. Based on our new dataset, we propose a new method that takes an input music sequence and a set of 3D positions of dancers to efficiently produce multiple group-coherent choreographies. We propose new evaluation metrics for measuring group dance quality and perform intensive experiments to demonstrate the effectiveness of our method. Our project facilitates future research on group dance generation and is available at: https://aioz-ai.github.io/AIOZ-GDANCE/
Cluster Explanation via Polyhedral Descriptions
Clustering is an unsupervised learning problem that aims to partition unlabelled data points into groups with similar features. Traditional clustering algorithms provide limited insight into the groups they find as their main focus is accuracy and not the interpretability of the group assignments. This has spurred a recent line of work on explainable machine learning for clustering. In this paper we focus on the cluster description problem where, given a dataset and its partition into clusters, the task is to explain the clusters. We introduce a new approach to explain clusters by constructing polyhedra around each cluster while minimizing either the complexity of the resulting polyhedra or the number of features used in the description. We formulate the cluster description problem as an integer program and present a column generation approach to search over an exponential number of candidate half-spaces that can be used to build the polyhedra. To deal with large datasets, we introduce a novel grouping scheme that first forms smaller groups of data points and then builds the polyhedra around the grouped data, a strategy which out-performs simply sub-sampling data. Compared to state of the art cluster description algorithms, our approach is able to achieve competitive interpretability with improved description accuracy.
Equivariant Transformer Networks
How can prior knowledge on the transformation invariances of a domain be incorporated into the architecture of a neural network? We propose Equivariant Transformers (ETs), a family of differentiable image-to-image mappings that improve the robustness of models towards pre-defined continuous transformation groups. Through the use of specially-derived canonical coordinate systems, ETs incorporate functions that are equivariant by construction with respect to these transformations. We show empirically that ETs can be flexibly composed to improve model robustness towards more complicated transformation groups in several parameters. On a real-world image classification task, ETs improve the sample efficiency of ResNet classifiers, achieving relative improvements in error rate of up to 15% in the limited data regime while increasing model parameter count by less than 1%.
Geometric Algebra Attention Networks for Small Point Clouds
Much of the success of deep learning is drawn from building architectures that properly respect underlying symmetry and structure in the data on which they operate - a set of considerations that have been united under the banner of geometric deep learning. Often problems in the physical sciences deal with relatively small sets of points in two- or three-dimensional space wherein translation, rotation, and permutation equivariance are important or even vital for models to be useful in practice. In this work, we present rotation- and permutation-equivariant architectures for deep learning on these small point clouds, composed of a set of products of terms from the geometric algebra and reductions over those products using an attention mechanism. The geometric algebra provides valuable mathematical structure by which to combine vector, scalar, and other types of geometric inputs in a systematic way to account for rotation invariance or covariance, while attention yields a powerful way to impose permutation equivariance. We demonstrate the usefulness of these architectures by training models to solve sample problems relevant to physics, chemistry, and biology.
FlatFormer: Flattened Window Attention for Efficient Point Cloud Transformer
Transformer, as an alternative to CNN, has been proven effective in many modalities (e.g., texts and images). For 3D point cloud transformers, existing efforts focus primarily on pushing their accuracy to the state-of-the-art level. However, their latency lags behind sparse convolution-based models (3x slower), hindering their usage in resource-constrained, latency-sensitive applications (such as autonomous driving). This inefficiency comes from point clouds' sparse and irregular nature, whereas transformers are designed for dense, regular workloads. This paper presents FlatFormer to close this latency gap by trading spatial proximity for better computational regularity. We first flatten the point cloud with window-based sorting and partition points into groups of equal sizes rather than windows of equal shapes. This effectively avoids expensive structuring and padding overheads. We then apply self-attention within groups to extract local features, alternate sorting axis to gather features from different directions, and shift windows to exchange features across groups. FlatFormer delivers state-of-the-art accuracy on Waymo Open Dataset with 4.6x speedup over (transformer-based) SST and 1.4x speedup over (sparse convolutional) CenterPoint. This is the first point cloud transformer that achieves real-time performance on edge GPUs and is faster than sparse convolutional methods while achieving on-par or even superior accuracy on large-scale benchmarks.
GMML is All you Need
Vision transformers have generated significant interest in the computer vision community because of their flexibility in exploiting contextual information, whether it is sharply confined local, or long range global. However, they are known to be data hungry. This has motivated the research in self-supervised transformer pretraining, which does not need to decode the semantic information conveyed by labels to link it to the image properties, but rather focuses directly on extracting a concise representation of the image data that reflects the notion of similarity, and is invariant to nuisance factors. The key vehicle for the self-learning process used by the majority of self-learning methods is the generation of multiple views of the training data and the creation of pretext tasks which use these views to define the notion of image similarity, and data integrity. However, this approach lacks the natural propensity to extract contextual information. We propose group masked model learning (GMML), a self-supervised learning (SSL) mechanism for pretraining vision transformers with the ability to extract the contextual information present in all the concepts in an image. GMML achieves this by manipulating randomly groups of connected tokens, ensuingly covering a meaningful part of a semantic concept, and then recovering the hidden semantic information from the visible part of the concept. GMML implicitly introduces a novel data augmentation process. Unlike most of the existing SSL approaches, GMML does not require momentum encoder, nor rely on careful implementation details such as large batches and gradient stopping, which are all artefacts of most of the current self-supervised learning techniques. The source code is publicly available for the community to train on bigger corpora: https://github.com/Sara-Ahmed/GMML.
Skeleton-based Group Activity Recognition via Spatial-Temporal Panoramic Graph
Group Activity Recognition aims to understand collective activities from videos. Existing solutions primarily rely on the RGB modality, which encounters challenges such as background variations, occlusions, motion blurs, and significant computational overhead. Meanwhile, current keypoint-based methods offer a lightweight and informative representation of human motions but necessitate accurate individual annotations and specialized interaction reasoning modules. To address these limitations, we design a panoramic graph that incorporates multi-person skeletons and objects to encapsulate group activity, offering an effective alternative to RGB video. This panoramic graph enables Graph Convolutional Network (GCN) to unify intra-person, inter-person, and person-object interactive modeling through spatial-temporal graph convolutions. In practice, we develop a novel pipeline that extracts skeleton coordinates using pose estimation and tracking algorithms and employ Multi-person Panoramic GCN (MP-GCN) to predict group activities. Extensive experiments on Volleyball and NBA datasets demonstrate that the MP-GCN achieves state-of-the-art performance in both accuracy and efficiency. Notably, our method outperforms RGB-based approaches by using only estimated 2D keypoints as input. Code is available at https://github.com/mgiant/MP-GCN
From Bricks to Bridges: Product of Invariances to Enhance Latent Space Communication
It has been observed that representations learned by distinct neural networks conceal structural similarities when the models are trained under similar inductive biases. From a geometric perspective, identifying the classes of transformations and the related invariances that connect these representations is fundamental to unlocking applications, such as merging, stitching, and reusing different neural modules. However, estimating task-specific transformations a priori can be challenging and expensive due to several factors (e.g., weights initialization, training hyperparameters, or data modality). To this end, we introduce a versatile method to directly incorporate a set of invariances into the representations, constructing a product space of invariant components on top of the latent representations without requiring prior knowledge about the optimal invariance to infuse. We validate our solution on classification and reconstruction tasks, observing consistent latent similarity and downstream performance improvements in a zero-shot stitching setting. The experimental analysis comprises three modalities (vision, text, and graphs), twelve pretrained foundational models, nine benchmarks, and several architectures trained from scratch.
Change is Hard: A Closer Look at Subpopulation Shift
Machine learning models often perform poorly on subgroups that are underrepresented in the training data. Yet, little is understood on the variation in mechanisms that cause subpopulation shifts, and how algorithms generalize across such diverse shifts at scale. In this work, we provide a fine-grained analysis of subpopulation shift. We first propose a unified framework that dissects and explains common shifts in subgroups. We then establish a comprehensive benchmark of 20 state-of-the-art algorithms evaluated on 12 real-world datasets in vision, language, and healthcare domains. With results obtained from training over 10,000 models, we reveal intriguing observations for future progress in this space. First, existing algorithms only improve subgroup robustness over certain types of shifts but not others. Moreover, while current algorithms rely on group-annotated validation data for model selection, we find that a simple selection criterion based on worst-class accuracy is surprisingly effective even without any group information. Finally, unlike existing works that solely aim to improve worst-group accuracy (WGA), we demonstrate the fundamental tradeoff between WGA and other important metrics, highlighting the need to carefully choose testing metrics. Code and data are available at: https://github.com/YyzHarry/SubpopBench.
FuseGPT: Learnable Layers Fusion of Generative Pre-trained Transformers
Generative Pre-trained Transformers (GPTs) have demonstrated remarkable performance across diverse domains through the extensive scaling of model parameters. Recent works observe the redundancy across the transformer blocks and develop compression methods by structured pruning of the unimportant blocks. However, such straightforward elimination will always provide irreversible performance degradation. In this paper, we propose FuseGPT, a novel methodology to recycle the pruned transformer blocks to further recover the model performance. Firstly we introduce a new importance detection metric, Macro Influence (MI), to detect the long-term influence of each transformer block by calculating their loss of information after removal. Then we propose group-level layers fusion, which adopts the parameters in layers of the unimportant blocks and injects them into the corresponding layers inside the neighboring blocks. The fusion is not one-off but through iterative parameter updates by lightweight group-level fine-tuning. Specifically, these injected parameters are frozen but weighted with learnable rank decomposition matrices to reduce the overhead during fine-tuning. Our approach not only works well on large language models but also on large multimodal models. The experiments have shown that, by using modest amounts of data, FuseGPT can outperform previous works in both perplexity and zero-shot task performance.
Representation Learning by Learning to Count
We introduce a novel method for representation learning that uses an artificial supervision signal based on counting visual primitives. This supervision signal is obtained from an equivariance relation, which does not require any manual annotation. We relate transformations of images to transformations of the representations. More specifically, we look for the representation that satisfies such relation rather than the transformations that match a given representation. In this paper, we use two image transformations in the context of counting: scaling and tiling. The first transformation exploits the fact that the number of visual primitives should be invariant to scale. The second transformation allows us to equate the total number of visual primitives in each tile to that in the whole image. These two transformations are combined in one constraint and used to train a neural network with a contrastive loss. The proposed task produces representations that perform on par or exceed the state of the art in transfer learning benchmarks.
Approximately Piecewise E(3) Equivariant Point Networks
Integrating a notion of symmetry into point cloud neural networks is a provably effective way to improve their generalization capability. Of particular interest are E(3) equivariant point cloud networks where Euclidean transformations applied to the inputs are preserved in the outputs. Recent efforts aim to extend networks that are E(3) equivariant, to accommodate inputs made of multiple parts, each of which exhibits local E(3) symmetry. In practical settings, however, the partitioning into individually transforming regions is unknown a priori. Errors in the partition prediction would unavoidably map to errors in respecting the true input symmetry. Past works have proposed different ways to predict the partition, which may exhibit uncontrolled errors in their ability to maintain equivariance to the actual partition. To this end, we introduce APEN: a general framework for constructing approximate piecewise-E(3) equivariant point networks. Our primary insight is that functions that are equivariant with respect to a finer partition will also maintain equivariance in relation to the true partition. Leveraging this observation, we propose a design where the equivariance approximation error at each layers can be bounded solely in terms of (i) uncertainty quantification of the partition prediction, and (ii) bounds on the probability of failing to suggest a proper subpartition of the ground truth one. We demonstrate the effectiveness of APEN using two data types exemplifying part-based symmetry: (i) real-world scans of room scenes containing multiple furniture-type objects; and, (ii) human motions, characterized by articulated parts exhibiting rigid movement. Our empirical results demonstrate the advantage of integrating piecewise E(3) symmetry into network design, showing a distinct improvement in generalization compared to prior works for both classification and segmentation tasks.
Revisiting Transformation Invariant Geometric Deep Learning: Are Initial Representations All You Need?
Geometric deep learning, i.e., designing neural networks to handle the ubiquitous geometric data such as point clouds and graphs, have achieved great successes in the last decade. One critical inductive bias is that the model can maintain invariance towards various transformations such as translation, rotation, and scaling. The existing graph neural network (GNN) approaches can only maintain permutation-invariance, failing to guarantee invariance with respect to other transformations. Besides GNNs, other works design sophisticated transformation-invariant layers, which are computationally expensive and difficult to be extended. To solve this problem, we revisit why the existing neural networks cannot maintain transformation invariance when handling geometric data. Our findings show that transformation-invariant and distance-preserving initial representations are sufficient to achieve transformation invariance rather than needing sophisticated neural layer designs. Motivated by these findings, we propose Transformation Invariant Neural Networks (TinvNN), a straightforward and general framework for geometric data. Specifically, we realize transformation-invariant and distance-preserving initial point representations by modifying multi-dimensional scaling before feeding the representations into neural networks. We prove that TinvNN can strictly guarantee transformation invariance, being general and flexible enough to be combined with the existing neural networks. Extensive experimental results on point cloud analysis and combinatorial optimization demonstrate the effectiveness and general applicability of our proposed method. Based on the experimental results, we advocate that TinvNN should be considered a new starting point and an essential baseline for further studies of transformation-invariant geometric deep learning.
GASP: Gaussian Splatting for Physic-Based Simulations
Physics simulation is paramount for modeling and utilizing 3D scenes in various real-world applications. However, integrating with state-of-the-art 3D scene rendering techniques such as Gaussian Splatting (GS) remains challenging. Existing models use additional meshing mechanisms, including triangle or tetrahedron meshing, marching cubes, or cage meshes. Alternatively, we can modify the physics-grounded Newtonian dynamics to align with 3D Gaussian components. Current models take the first-order approximation of a deformation map, which locally approximates the dynamics by linear transformations. In contrast, our GS for Physics-Based Simulations (GASP) pipeline uses parametrized flat Gaussian distributions. Consequently, the problem of modeling Gaussian components using the physics engine is reduced to working with 3D points. In our work, we present additional rules for manipulating Gaussians, demonstrating how to adapt the pipeline to incorporate meshes, control Gaussian sizes during simulations, and enhance simulation efficiency. This is achieved through the Gaussian grouping strategy, which implements hierarchical structuring and enables simulations to be performed exclusively on selected Gaussians. The resulting solution can be integrated into any physics engine that can be treated as a black box. As demonstrated in our studies, the proposed pipeline exhibits superior performance on a diverse range of benchmark datasets designed for 3D object rendering. The project webpage, which includes additional visualizations, can be found at https://waczjoan.github.io/GASP.
Perceptual Group Tokenizer: Building Perception with Iterative Grouping
Human visual recognition system shows astonishing capability of compressing visual information into a set of tokens containing rich representations without label supervision. One critical driving principle behind it is perceptual grouping. Despite being widely used in computer vision in the early 2010s, it remains a mystery whether perceptual grouping can be leveraged to derive a neural visual recognition backbone that generates as powerful representations. In this paper, we propose the Perceptual Group Tokenizer, a model that entirely relies on grouping operations to extract visual features and perform self-supervised representation learning, where a series of grouping operations are used to iteratively hypothesize the context for pixels or superpixels to refine feature representations. We show that the proposed model can achieve competitive performance compared to state-of-the-art vision architectures, and inherits desirable properties including adaptive computation without re-training, and interpretability. Specifically, Perceptual Group Tokenizer achieves 80.3% on ImageNet-1K self-supervised learning benchmark with linear probe evaluation, marking a new progress under this paradigm.
Regularizing Towards Soft Equivariance Under Mixed Symmetries
Datasets often have their intrinsic symmetries, and particular deep-learning models called equivariant or invariant models have been developed to exploit these symmetries. However, if some or all of these symmetries are only approximate, which frequently happens in practice, these models may be suboptimal due to the architectural restrictions imposed on them. We tackle this issue of approximate symmetries in a setup where symmetries are mixed, i.e., they are symmetries of not single but multiple different types and the degree of approximation varies across these types. Instead of proposing a new architectural restriction as in most of the previous approaches, we present a regularizer-based method for building a model for a dataset with mixed approximate symmetries. The key component of our method is what we call equivariance regularizer for a given type of symmetries, which measures how much a model is equivariant with respect to the symmetries of the type. Our method is trained with these regularizers, one per each symmetry type, and the strength of the regularizers is automatically tuned during training, leading to the discovery of the approximation levels of some candidate symmetry types without explicit supervision. Using synthetic function approximation and motion forecasting tasks, we demonstrate that our method achieves better accuracy than prior approaches while discovering the approximate symmetry levels correctly.
Generative Adversarial Symmetry Discovery
Despite the success of equivariant neural networks in scientific applications, they require knowing the symmetry group a priori. However, it may be difficult to know which symmetry to use as an inductive bias in practice. Enforcing the wrong symmetry could even hurt the performance. In this paper, we propose a framework, LieGAN, to automatically discover equivariances from a dataset using a paradigm akin to generative adversarial training. Specifically, a generator learns a group of transformations applied to the data, which preserve the original distribution and fool the discriminator. LieGAN represents symmetry as interpretable Lie algebra basis and can discover various symmetries such as the rotation group SO(n), restricted Lorentz group SO(1,3)^+ in trajectory prediction and top-quark tagging tasks. The learned symmetry can also be readily used in several existing equivariant neural networks to improve accuracy and generalization in prediction.
Coordinate Transformer: Achieving Single-stage Multi-person Mesh Recovery from Videos
Multi-person 3D mesh recovery from videos is a critical first step towards automatic perception of group behavior in virtual reality, physical therapy and beyond. However, existing approaches rely on multi-stage paradigms, where the person detection and tracking stages are performed in a multi-person setting, while temporal dynamics are only modeled for one person at a time. Consequently, their performance is severely limited by the lack of inter-person interactions in the spatial-temporal mesh recovery, as well as by detection and tracking defects. To address these challenges, we propose the Coordinate transFormer (CoordFormer) that directly models multi-person spatial-temporal relations and simultaneously performs multi-mesh recovery in an end-to-end manner. Instead of partitioning the feature map into coarse-scale patch-wise tokens, CoordFormer leverages a novel Coordinate-Aware Attention to preserve pixel-level spatial-temporal coordinate information. Additionally, we propose a simple, yet effective Body Center Attention mechanism to fuse position information. Extensive experiments on the 3DPW dataset demonstrate that CoordFormer significantly improves the state-of-the-art, outperforming the previously best results by 4.2%, 8.8% and 4.7% according to the MPJPE, PAMPJPE, and PVE metrics, respectively, while being 40% faster than recent video-based approaches. The released code can be found at https://github.com/Li-Hao-yuan/CoordFormer.
Efficient Multi-modal Large Language Models via Visual Token Grouping
The development of Multi-modal Large Language Models (MLLMs) enhances Large Language Models (LLMs) with the ability to perceive data formats beyond text, significantly advancing a range of downstream applications, such as visual question answering and image captioning. However, the substantial computational costs associated with processing high-resolution images and videos pose a barrier to their broader adoption. To address this challenge, compressing vision tokens in MLLMs has emerged as a promising approach to reduce inference costs. While existing methods conduct token reduction in the feature alignment phase. In this paper, we introduce VisToG, a novel grouping mechanism that leverages the capabilities of pre-trained vision encoders to group similar image segments without the need for segmentation masks. Specifically, we concatenate semantic tokens to represent image semantic segments after the linear projection layer before feeding into the vision encoder. Besides, with the isolated attention we adopt, VisToG can identify and eliminate redundant visual tokens utilizing the prior knowledge in the pre-trained vision encoder, which effectively reduces computational demands. Extensive experiments demonstrate the effectiveness of VisToG, maintaining 98.1% of the original performance while achieving a reduction of over 27\% inference time.
KinMo: Kinematic-aware Human Motion Understanding and Generation
Controlling human motion based on text presents an important challenge in computer vision. Traditional approaches often rely on holistic action descriptions for motion synthesis, which struggle to capture subtle movements of local body parts. This limitation restricts the ability to isolate and manipulate specific movements. To address this, we propose a novel motion representation that decomposes motion into distinct body joint group movements and interactions from a kinematic perspective. We design an automatic dataset collection pipeline that enhances the existing text-motion benchmark by incorporating fine-grained local joint-group motion and interaction descriptions. To bridge the gap between text and motion domains, we introduce a hierarchical motion semantics approach that progressively fuses joint-level interaction information into the global action-level semantics for modality alignment. With this hierarchy, we introduce a coarse-to-fine motion synthesis procedure for various generation and editing downstream applications. Our quantitative and qualitative experiments demonstrate that the proposed formulation enhances text-motion retrieval by improving joint-spatial understanding, and enables more precise joint-motion generation and control. Project Page: {\smallhttps://andypinxinliu.github.io/KinMo/}
Weighted Grouped Query Attention in Transformers
The attention mechanism forms the foundational blocks for transformer language models. Recent approaches show that scaling the model achieves human-level performance. However, with increasing demands for scaling and constraints on hardware memory, the inference costs of these models remain high. To reduce the inference time, Multi-Query Attention (MQA) and Grouped-Query Attention (GQA) were proposed in (Shazeer, 2019) and (Ainslieet al., 2023) respectively. In this paper, we propose a variation of Grouped-Query Attention, termed Weighted Grouped-Query Attention (WGQA). We introduced new learnable parameters for each key and value head in the T5 decoder attention blocks, enabling the model to take a weighted average during finetuning. Our model achieves an average of 0.53% improvement over GQA, and the performance converges to traditional Multi-head attention (MHA) with no additional overhead during inference. We evaluated the introduction of these parameters and subsequent finetuning informs the model about the grouping mechanism during training, thereby enhancing performance. Additionally, we demonstrate the scaling laws in our analysis by comparing the results between T5-small and T5-base architecture.
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt Tensor Products
Developing equivariant neural networks for the E(3) group plays an important role in modeling 3D data across real-world applications. Enforcing this equivariance primarily involves the tensor products of irreducible representations (irreps). However, the computational complexity of such operations increases significantly as higher-order tensors are used. In this work, we propose a systematic approach to substantially accelerate the computation of the tensor products of irreps. We mathematically connect the commonly used Clebsch-Gordan coefficients to the Gaunt coefficients, which are integrals of products of three spherical harmonics. Through Gaunt coefficients, the tensor product of irreps becomes equivalent to the multiplication between spherical functions represented by spherical harmonics. This perspective further allows us to change the basis for the equivariant operations from spherical harmonics to a 2D Fourier basis. Consequently, the multiplication between spherical functions represented by a 2D Fourier basis can be efficiently computed via the convolution theorem and Fast Fourier Transforms. This transformation reduces the complexity of full tensor products of irreps from O(L^6) to O(L^3), where L is the max degree of irreps. Leveraging this approach, we introduce the Gaunt Tensor Product, which serves as a new method to construct efficient equivariant operations across different model architectures. Our experiments on the Open Catalyst Project and 3BPA datasets demonstrate both the increased efficiency and improved performance of our approach.
Generating particle physics Lagrangians with transformers
In physics, Lagrangians provide a systematic way to describe laws governing physical systems. In the context of particle physics, they encode the interactions and behavior of the fundamental building blocks of our universe. By treating Lagrangians as complex, rule-based constructs similar to linguistic expressions, we trained a transformer model -- proven to be effective in natural language tasks -- to predict the Lagrangian corresponding to a given list of particles. We report on the transformer's performance in constructing Lagrangians respecting the Standard Model SU(3)times SU(2)times U(1) gauge symmetries. The resulting model is shown to achieve high accuracies (over 90\%) with Lagrangians up to six matter fields, with the capacity to generalize beyond the training distribution, albeit within architectural constraints. We show through an analysis of input embeddings that the model has internalized concepts such as group representations and conjugation operations as it learned to generate Lagrangians. We make the model and training datasets available to the community. An interactive demonstration can be found at: https://huggingface.co/spaces/JoseEliel/generate-lagrangians.
FIT: Far-reaching Interleaved Transformers
We present FIT: a transformer-based architecture with efficient self-attention and adaptive computation. Unlike original transformers, which operate on a single sequence of data tokens, we divide the data tokens into groups, with each group being a shorter sequence of tokens. We employ two types of transformer layers: local layers operate on data tokens within each group, while global layers operate on a smaller set of introduced latent tokens. These layers, comprising the same set of self-attention and feed-forward layers as standard transformers, are interleaved, and cross-attention is used to facilitate information exchange between data and latent tokens within the same group. The attention complexity is O(n^2) locally within each group of size n, but can reach O(L^{{4}/{3}}) globally for sequence length of L. The efficiency can be further enhanced by relying more on global layers that perform adaptive computation using a smaller set of latent tokens. FIT is a versatile architecture and can function as an encoder, diffusion decoder, or autoregressive decoder. We provide initial evidence demonstrating its effectiveness in high-resolution image understanding and generation tasks. Notably, FIT exhibits potential in performing end-to-end training on gigabit-scale data, such as 6400times6400 images, or 160K tokens (after patch tokenization), within a memory capacity of 16GB, without requiring specific optimizations or model parallelism.
Identification of Systematic Errors of Image Classifiers on Rare Subgroups
Despite excellent average-case performance of many image classifiers, their performance can substantially deteriorate on semantically coherent subgroups of the data that were under-represented in the training data. These systematic errors can impact both fairness for demographic minority groups as well as robustness and safety under domain shift. A major challenge is to identify such subgroups with subpar performance when the subgroups are not annotated and their occurrence is very rare. We leverage recent advances in text-to-image models and search in the space of textual descriptions of subgroups ("prompts") for subgroups where the target model has low performance on the prompt-conditioned synthesized data. To tackle the exponentially growing number of subgroups, we employ combinatorial testing. We denote this procedure as PromptAttack as it can be interpreted as an adversarial attack in a prompt space. We study subgroup coverage and identifiability with PromptAttack in a controlled setting and find that it identifies systematic errors with high accuracy. Thereupon, we apply PromptAttack to ImageNet classifiers and identify novel systematic errors on rare subgroups.
Brauer's Group Equivariant Neural Networks
We provide a full characterisation of all of the possible group equivariant neural networks whose layers are some tensor power of R^{n} for three symmetry groups that are missing from the machine learning literature: O(n), the orthogonal group; SO(n), the special orthogonal group; and Sp(n), the symplectic group. In particular, we find a spanning set of matrices for the learnable, linear, equivariant layer functions between such tensor power spaces in the standard basis of R^{n} when the group is O(n) or SO(n), and in the symplectic basis of R^{n} when the group is Sp(n).
Group-robust Sample Reweighting for Subpopulation Shifts via Influence Functions
Machine learning models often have uneven performance among subpopulations (a.k.a., groups) in the data distributions. This poses a significant challenge for the models to generalize when the proportions of the groups shift during deployment. To improve robustness to such shifts, existing approaches have developed strategies that train models or perform hyperparameter tuning using the group-labeled data to minimize the worst-case loss over groups. However, a non-trivial amount of high-quality labels is often required to obtain noticeable improvements. Given the costliness of the labels, we propose to adopt a different paradigm to enhance group label efficiency: utilizing the group-labeled data as a target set to optimize the weights of other group-unlabeled data. We introduce Group-robust Sample Reweighting (GSR), a two-stage approach that first learns the representations from group-unlabeled data, and then tinkers the model by iteratively retraining its last layer on the reweighted data using influence functions. Our GSR is theoretically sound, practically lightweight, and effective in improving the robustness to subpopulation shifts. In particular, GSR outperforms the previous state-of-the-art approaches that require the same amount or even more group labels.
RotaTouille: Rotation Equivariant Deep Learning for Contours
Contours or closed planar curves are common in many domains. For example, they appear as object boundaries in computer vision, isolines in meteorology, and the orbits of rotating machinery. In many cases when learning from contour data, planar rotations of the input will result in correspondingly rotated outputs. It is therefore desirable that deep learning models be rotationally equivariant. In addition, contours are typically represented as an ordered sequence of edge points, where the choice of starting point is arbitrary. It is therefore also desirable for deep learning methods to be equivariant under cyclic shifts. We present RotaTouille, a deep learning framework for learning from contour data that achieves both rotation and cyclic shift equivariance through complex-valued circular convolution. We further introduce and characterize equivariant non-linearities, coarsening layers, and global pooling layers to obtain invariant representations for downstream tasks. Finally, we demonstrate the effectiveness of RotaTouille through experiments in shape classification, reconstruction, and contour regression.
Graphically Structured Diffusion Models
We introduce a framework for automatically defining and learning deep generative models with problem-specific structure. We tackle problem domains that are more traditionally solved by algorithms such as sorting, constraint satisfaction for Sudoku, and matrix factorization. Concretely, we train diffusion models with an architecture tailored to the problem specification. This problem specification should contain a graphical model describing relationships between variables, and often benefits from explicit representation of subcomputations. Permutation invariances can also be exploited. Across a diverse set of experiments we improve the scaling relationship between problem dimension and our model's performance, in terms of both training time and final accuracy. Our code can be found at https://github.com/plai-group/gsdm.
Unsupervised Manifold Linearizing and Clustering
We consider the problem of simultaneously clustering and learning a linear representation of data lying close to a union of low-dimensional manifolds, a fundamental task in machine learning and computer vision. When the manifolds are assumed to be linear subspaces, this reduces to the classical problem of subspace clustering, which has been studied extensively over the past two decades. Unfortunately, many real-world datasets such as natural images can not be well approximated by linear subspaces. On the other hand, numerous works have attempted to learn an appropriate transformation of the data, such that data is mapped from a union of general non-linear manifolds to a union of linear subspaces (with points from the same manifold being mapped to the same subspace). However, many existing works have limitations such as assuming knowledge of the membership of samples to clusters, requiring high sampling density, or being shown theoretically to learn trivial representations. In this paper, we propose to optimize the Maximal Coding Rate Reduction metric with respect to both the data representation and a novel doubly stochastic cluster membership, inspired by state-of-the-art subspace clustering results. We give a parameterization of such a representation and membership, allowing efficient mini-batching and one-shot initialization. Experiments on CIFAR-10, -20, -100, and TinyImageNet-200 datasets show that the proposed method is much more accurate and scalable than state-of-the-art deep clustering methods, and further learns a latent linear representation of the data.
AMT: All-Pairs Multi-Field Transforms for Efficient Frame Interpolation
We present All-Pairs Multi-Field Transforms (AMT), a new network architecture for video frame interpolation. It is based on two essential designs. First, we build bidirectional correlation volumes for all pairs of pixels, and use the predicted bilateral flows to retrieve correlations for updating both flows and the interpolated content feature. Second, we derive multiple groups of fine-grained flow fields from one pair of updated coarse flows for performing backward warping on the input frames separately. Combining these two designs enables us to generate promising task-oriented flows and reduce the difficulties in modeling large motions and handling occluded areas during frame interpolation. These qualities promote our model to achieve state-of-the-art performance on various benchmarks with high efficiency. Moreover, our convolution-based model competes favorably compared to Transformer-based models in terms of accuracy and efficiency. Our code is available at https://github.com/MCG-NKU/AMT.
Group Pose: A Simple Baseline for End-to-End Multi-person Pose Estimation
In this paper, we study the problem of end-to-end multi-person pose estimation. State-of-the-art solutions adopt the DETR-like framework, and mainly develop the complex decoder, e.g., regarding pose estimation as keypoint box detection and combining with human detection in ED-Pose, hierarchically predicting with pose decoder and joint (keypoint) decoder in PETR. We present a simple yet effective transformer approach, named Group Pose. We simply regard K-keypoint pose estimation as predicting a set of Ntimes K keypoint positions, each from a keypoint query, as well as representing each pose with an instance query for scoring N pose predictions. Motivated by the intuition that the interaction, among across-instance queries of different types, is not directly helpful, we make a simple modification to decoder self-attention. We replace single self-attention over all the Ntimes(K+1) queries with two subsequent group self-attentions: (i) N within-instance self-attention, with each over K keypoint queries and one instance query, and (ii) (K+1) same-type across-instance self-attention, each over N queries of the same type. The resulting decoder removes the interaction among across-instance type-different queries, easing the optimization and thus improving the performance. Experimental results on MS COCO and CrowdPose show that our approach without human box supervision is superior to previous methods with complex decoders, and even is slightly better than ED-Pose that uses human box supervision. https://github.com/Michel-liu/GroupPose-Paddle{rm Paddle} and https://github.com/Michel-liu/GroupPose{rm PyTorch} code are available.
Scene-Aware Feature Matching
Current feature matching methods focus on point-level matching, pursuing better representation learning of individual features, but lacking further understanding of the scene. This results in significant performance degradation when handling challenging scenes such as scenes with large viewpoint and illumination changes. To tackle this problem, we propose a novel model named SAM, which applies attentional grouping to guide Scene-Aware feature Matching. SAM handles multi-level features, i.e., image tokens and group tokens, with attention layers, and groups the image tokens with the proposed token grouping module. Our model can be trained by ground-truth matches only and produce reasonable grouping results. With the sense-aware grouping guidance, SAM is not only more accurate and robust but also more interpretable than conventional feature matching models. Sufficient experiments on various applications, including homography estimation, pose estimation, and image matching, demonstrate that our model achieves state-of-the-art performance.
Immersions of complexes of groups
Given a complex of groups, we construct a new class of complex of groups that records its local data and offer a functorial perspective on the statement that complexes of groups are locally developable. We also construct a new notion of an immersion of complexes of groups and establish that a locally isometric immersion of a complex of groups into a non-positively curved complex of groups is pi_1-injective. Furthermore, the domain complex of groups is developable and the induced map on geometric realizations of developments is an isometric embedding.
seq-JEPA: Autoregressive Predictive Learning of Invariant-Equivariant World Models
Current self-supervised algorithms commonly rely on transformations such as data augmentation and masking to learn visual representations. This is achieved by enforcing invariance or equivariance with respect to these transformations after encoding two views of an image. This dominant two-view paradigm often limits the flexibility of learned representations for downstream adaptation by creating performance trade-offs between high-level invariance-demanding tasks such as image classification and more fine-grained equivariance-related tasks. In this work, we proposes seq-JEPA, a world modeling framework that introduces architectural inductive biases into joint-embedding predictive architectures to resolve this trade-off. Without relying on dual equivariance predictors or loss terms, seq-JEPA simultaneously learns two architecturally segregated representations: one equivariant to specified transformations and another invariant to them. To do so, our model processes short sequences of different views (observations) of inputs. Each encoded view is concatenated with an embedding of the relative transformation (action) that produces the next observation in the sequence. These view-action pairs are passed through a transformer encoder that outputs an aggregate representation. A predictor head then conditions this aggregate representation on the upcoming action to predict the representation of the next observation. Empirically, seq-JEPA demonstrates strong performance on both equivariant and invariant benchmarks without sacrificing one for the other. Furthermore, it excels at tasks that inherently require aggregating a sequence of observations, such as path integration across actions and predictive learning across eye movements.
Homomorphisms between multidimensional constant-shape substitutions
We study a class of Z^{d}-substitutive subshifts, including a large family of constant-length substitutions, and homomorphisms between them, i.e., factors modulo isomorphisms of Z^{d}. We prove that any measurable factor map and even any homomorphism associated to a matrix commuting with the expansion matrix, induces a continuous one. We also get strong restrictions on the normalizer group, proving that any endomorphism is invertible, the normalizer group is virtually generated by the shift action and the quotient of the normalizer group by the automorphisms is restricted by the digit tile of the substitution.
A Characterization Theorem for Equivariant Networks with Point-wise Activations
Equivariant neural networks have shown improved performance, expressiveness and sample complexity on symmetrical domains. But for some specific symmetries, representations, and choice of coordinates, the most common point-wise activations, such as ReLU, are not equivariant, hence they cannot be employed in the design of equivariant neural networks. The theorem we present in this paper describes all possible combinations of finite-dimensional representations, choice of coordinates and point-wise activations to obtain an exactly equivariant layer, generalizing and strengthening existing characterizations. Notable cases of practical relevance are discussed as corollaries. Indeed, we prove that rotation-equivariant networks can only be invariant, as it happens for any network which is equivariant with respect to connected compact groups. Then, we discuss implications of our findings when applied to important instances of exactly equivariant networks. First, we completely characterize permutation equivariant networks such as Invariant Graph Networks with point-wise nonlinearities and their geometric counterparts, highlighting a plethora of models whose expressive power and performance are still unknown. Second, we show that feature spaces of disentangled steerable convolutional neural networks are trivial representations.
PSUMNet: Unified Modality Part Streams are All You Need for Efficient Pose-based Action Recognition
Pose-based action recognition is predominantly tackled by approaches which treat the input skeleton in a monolithic fashion, i.e. joints in the pose tree are processed as a whole. However, such approaches ignore the fact that action categories are often characterized by localized action dynamics involving only small subsets of part joint groups involving hands (e.g. `Thumbs up') or legs (e.g. `Kicking'). Although part-grouping based approaches exist, each part group is not considered within the global pose frame, causing such methods to fall short. Further, conventional approaches employ independent modality streams (e.g. joint, bone, joint velocity, bone velocity) and train their network multiple times on these streams, which massively increases the number of training parameters. To address these issues, we introduce PSUMNet, a novel approach for scalable and efficient pose-based action recognition. At the representation level, we propose a global frame based part stream approach as opposed to conventional modality based streams. Within each part stream, the associated data from multiple modalities is unified and consumed by the processing pipeline. Experimentally, PSUMNet achieves state of the art performance on the widely used NTURGB+D 60/120 dataset and dense joint skeleton dataset NTU 60-X/120-X. PSUMNet is highly efficient and outperforms competing methods which use 100%-400% more parameters. PSUMNet also generalizes to the SHREC hand gesture dataset with competitive performance. Overall, PSUMNet's scalability, performance and efficiency makes it an attractive choice for action recognition and for deployment on compute-restricted embedded and edge devices. Code and pretrained models can be accessed at https://github.com/skelemoa/psumnet
BT^2: Backward-compatible Training with Basis Transformation
Modern retrieval system often requires recomputing the representation of every piece of data in the gallery when updating to a better representation model. This process is known as backfilling and can be especially costly in the real world where the gallery often contains billions of samples. Recently, researchers have proposed the idea of Backward Compatible Training (BCT) where the new representation model can be trained with an auxiliary loss to make it backward compatible with the old representation. In this way, the new representation can be directly compared with the old representation, in principle avoiding the need for any backfilling. However, followup work shows that there is an inherent tradeoff where a backward compatible representation model cannot simultaneously maintain the performance of the new model itself. This paper reports our ``not-so-surprising'' finding that adding extra dimensions to the representation can help here. However, we also found that naively increasing the dimension of the representation did not work. To deal with this, we propose Backward-compatible Training with a novel Basis Transformation (BT^2). A basis transformation (BT) is basically a learnable set of parameters that applies an orthonormal transformation. Such a transformation possesses an important property whereby the original information contained in its input is retained in its output. We show in this paper how a BT can be utilized to add only the necessary amount of additional dimensions. We empirically verify the advantage of BT^2 over other state-of-the-art methods in a wide range of settings. We then further extend BT^2 to other challenging yet more practical settings, including significant change in model architecture (CNN to Transformers), modality change, and even a series of updates in the model architecture mimicking the evolution of deep learning models.
UniGraspTransformer: Simplified Policy Distillation for Scalable Dexterous Robotic Grasping
We introduce UniGraspTransformer, a universal Transformer-based network for dexterous robotic grasping that simplifies training while enhancing scalability and performance. Unlike prior methods such as UniDexGrasp++, which require complex, multi-step training pipelines, UniGraspTransformer follows a streamlined process: first, dedicated policy networks are trained for individual objects using reinforcement learning to generate successful grasp trajectories; then, these trajectories are distilled into a single, universal network. Our approach enables UniGraspTransformer to scale effectively, incorporating up to 12 self-attention blocks for handling thousands of objects with diverse poses. Additionally, it generalizes well to both idealized and real-world inputs, evaluated in state-based and vision-based settings. Notably, UniGraspTransformer generates a broader range of grasping poses for objects in various shapes and orientations, resulting in more diverse grasp strategies. Experimental results demonstrate significant improvements over state-of-the-art, UniDexGrasp++, across various object categories, achieving success rate gains of 3.5%, 7.7%, and 10.1% on seen objects, unseen objects within seen categories, and completely unseen objects, respectively, in the vision-based setting. Project page: https://dexhand.github.io/UniGraspTransformer.
Power Transform Revisited: Numerically Stable, and Federated
Power transforms are popular parametric techniques for making data more Gaussian-like, and are widely used as preprocessing steps in statistical analysis and machine learning. However, we find that direct implementations of power transforms suffer from severe numerical instabilities, which can lead to incorrect results or even crashes. In this paper, we provide a comprehensive analysis of the sources of these instabilities and propose effective remedies. We further extend power transforms to the federated learning setting, addressing both numerical and distributional challenges that arise in this context. Experiments on real-world datasets demonstrate that our methods are both effective and robust, substantially improving stability compared to existing approaches.
Aggregated Pyramid Vision Transformer: Split-transform-merge Strategy for Image Recognition without Convolutions
With the achievements of Transformer in the field of natural language processing, the encoder-decoder and the attention mechanism in Transformer have been applied to computer vision. Recently, in multiple tasks of computer vision (image classification, object detection, semantic segmentation, etc.), state-of-the-art convolutional neural networks have introduced some concepts of Transformer. This proves that Transformer has a good prospect in the field of image recognition. After Vision Transformer was proposed, more and more works began to use self-attention to completely replace the convolutional layer. This work is based on Vision Transformer, combined with the pyramid architecture, using Split-transform-merge to propose the group encoder and name the network architecture Aggregated Pyramid Vision Transformer (APVT). We perform image classification tasks on the CIFAR-10 dataset and object detection tasks on the COCO 2017 dataset. Compared with other network architectures that use Transformer as the backbone, APVT has excellent results while reducing the computational cost. We hope this improved strategy can provide a reference for future Transformer research in computer vision.
MotionShop: Zero-Shot Motion Transfer in Video Diffusion Models with Mixture of Score Guidance
In this work, we propose the first motion transfer approach in diffusion transformer through Mixture of Score Guidance (MSG), a theoretically-grounded framework for motion transfer in diffusion models. Our key theoretical contribution lies in reformulating conditional score to decompose motion score and content score in diffusion models. By formulating motion transfer as a mixture of potential energies, MSG naturally preserves scene composition and enables creative scene transformations while maintaining the integrity of transferred motion patterns. This novel sampling operates directly on pre-trained video diffusion models without additional training or fine-tuning. Through extensive experiments, MSG demonstrates successful handling of diverse scenarios including single object, multiple objects, and cross-object motion transfer as well as complex camera motion transfer. Additionally, we introduce MotionBench, the first motion transfer dataset consisting of 200 source videos and 1000 transferred motions, covering single/multi-object transfers, and complex camera motions.
A Group with Exactly One Noncommutator
The question of whether there exists a finite group of order at least three in which every element except one is a commutator has remained unresolved in group theory. In this article, we address this open problem by developing an algorithmic approach that leverages several group theoretic properties of such groups. Specifically, we utilize a result of Frobenius and various necessary properties of such groups, combined with Plesken and Holt's extensive enumeration of finite perfect groups, to systematically examine all finite groups up to a certain order for the desired property. The computational core of our work is implemented using the computer system GAP (Groups, Algorithms, and Programming). We discover two nonisomorphic groups of order 368,640 that exhibit the desired property. Our investigation also establishes that this order is the minimum order for such a group to exist. As a result, this study provides a positive answer to Problem 17.76 in the Kourovka Notebook. In addition to the algorithmic framework, this paper provides a structural description of one of the two groups found.
Sum-of-Parts: Self-Attributing Neural Networks with End-to-End Learning of Feature Groups
Self-attributing neural networks (SANNs) present a potential path towards interpretable models for high-dimensional problems, but often face significant trade-offs in performance. In this work, we formally prove a lower bound on errors of per-feature SANNs, whereas group-based SANNs can achieve zero error and thus high performance. Motivated by these insights, we propose Sum-of-Parts (SOP), a framework that transforms any differentiable model into a group-based SANN, where feature groups are learned end-to-end without group supervision. SOP achieves state-of-the-art performance for SANNs on vision and language tasks, and we validate that the groups are interpretable on a range of quantitative and semantic metrics. We further validate the utility of SOP explanations in model debugging and cosmological scientific discovery. Our code is available at https://github.com/BrachioLab/sop
Wyckoff Transformer: Generation of Symmetric Crystals
Crystal symmetry plays a fundamental role in determining its physical, chemical, and electronic properties such as electrical and thermal conductivity, optical and polarization behavior, and mechanical strength. Almost all known crystalline materials have internal symmetry. However, this is often inadequately addressed by existing generative models, making the consistent generation of stable and symmetrically valid crystal structures a significant challenge. We introduce WyFormer, a generative model that directly tackles this by formally conditioning on space group symmetry. It achieves this by using Wyckoff positions as the basis for an elegant, compressed, and discrete structure representation. To model the distribution, we develop a permutation-invariant autoregressive model based on the Transformer encoder and an absence of positional encoding. Extensive experimentation demonstrates WyFormer's compelling combination of attributes: it achieves best-in-class symmetry-conditioned generation, incorporates a physics-motivated inductive bias, produces structures with competitive stability, predicts material properties with competitive accuracy even without atomic coordinates, and exhibits unparalleled inference speed.
Unsupervised Learning under Latent Label Shift
What sorts of structure might enable a learner to discover classes from unlabeled data? Traditional approaches rely on feature-space similarity and heroic assumptions on the data. In this paper, we introduce unsupervised learning under Latent Label Shift (LLS), where we have access to unlabeled data from multiple domains such that the label marginals p_d(y) can shift across domains but the class conditionals p(x|y) do not. This work instantiates a new principle for identifying classes: elements that shift together group together. For finite input spaces, we establish an isomorphism between LLS and topic modeling: inputs correspond to words, domains to documents, and labels to topics. Addressing continuous data, we prove that when each label's support contains a separable region, analogous to an anchor word, oracle access to p(d|x) suffices to identify p_d(y) and p_d(y|x) up to permutation. Thus motivated, we introduce a practical algorithm that leverages domain-discriminative models as follows: (i) push examples through domain discriminator p(d|x); (ii) discretize the data by clustering examples in p(d|x) space; (iii) perform non-negative matrix factorization on the discrete data; (iv) combine the recovered p(y|d) with the discriminator outputs p(d|x) to compute p_d(y|x) ; forall d. With semi-synthetic experiments, we show that our algorithm can leverage domain information to improve upon competitive unsupervised classification methods. We reveal a failure mode of standard unsupervised classification methods when feature-space similarity does not indicate true groupings, and show empirically that our method better handles this case. Our results establish a deep connection between distribution shift and topic modeling, opening promising lines for future work.
CrowdMoGen: Zero-Shot Text-Driven Collective Motion Generation
Crowd Motion Generation is essential in entertainment industries such as animation and games as well as in strategic fields like urban simulation and planning. This new task requires an intricate integration of control and generation to realistically synthesize crowd dynamics under specific spatial and semantic constraints, whose challenges are yet to be fully explored. On the one hand, existing human motion generation models typically focus on individual behaviors, neglecting the complexities of collective behaviors. On the other hand, recent methods for multi-person motion generation depend heavily on pre-defined scenarios and are limited to a fixed, small number of inter-person interactions, thus hampering their practicality. To overcome these challenges, we introduce CrowdMoGen, a zero-shot text-driven framework that harnesses the power of Large Language Model (LLM) to incorporate the collective intelligence into the motion generation framework as guidance, thereby enabling generalizable planning and generation of crowd motions without paired training data. Our framework consists of two key components: 1) Crowd Scene Planner that learns to coordinate motions and dynamics according to specific scene contexts or introduced perturbations, and 2) Collective Motion Generator that efficiently synthesizes the required collective motions based on the holistic plans. Extensive quantitative and qualitative experiments have validated the effectiveness of our framework, which not only fills a critical gap by providing scalable and generalizable solutions for Crowd Motion Generation task but also achieves high levels of realism and flexibility.
Random Field Augmentations for Self-Supervised Representation Learning
Self-supervised representation learning is heavily dependent on data augmentations to specify the invariances encoded in representations. Previous work has shown that applying diverse data augmentations is crucial to downstream performance, but augmentation techniques remain under-explored. In this work, we propose a new family of local transformations based on Gaussian random fields to generate image augmentations for self-supervised representation learning. These transformations generalize the well-established affine and color transformations (translation, rotation, color jitter, etc.) and greatly increase the space of augmentations by allowing transformation parameter values to vary from pixel to pixel. The parameters are treated as continuous functions of spatial coordinates, and modeled as independent Gaussian random fields. Empirical results show the effectiveness of the new transformations for self-supervised representation learning. Specifically, we achieve a 1.7% top-1 accuracy improvement over baseline on ImageNet downstream classification, and a 3.6% improvement on out-of-distribution iNaturalist downstream classification. However, due to the flexibility of the new transformations, learned representations are sensitive to hyperparameters. While mild transformations improve representations, we observe that strong transformations can degrade the structure of an image, indicating that balancing the diversity and strength of augmentations is important for improving generalization of learned representations.
Linking Past and Future Null Infinity in Three Dimensions
We provide a mapping between past null and future null infinity in three-dimensional flat space, using symmetry considerations. From this we derive a mapping between the corresponding asymptotic symmetry groups. By studying the metric at asymptotic regions, we find that the mapping is energy preserving and yields an infinite number of conservation laws.
Connecting Permutation Equivariant Neural Networks and Partition Diagrams
We show how the Schur-Weyl duality that exists between the partition algebra and the symmetric group results in a stronger theoretical foundation for characterising all of the possible permutation equivariant neural networks whose layers are some tensor power of the permutation representation M_n of the symmetric group S_n. In doing so, we unify two separate bodies of literature, and we correct some of the major results that are now widely quoted by the machine learning community. In particular, we find a basis of matrices for the learnable, linear, permutation equivariant layer functions between such tensor power spaces in the standard basis of M_n by using an elegant graphical representation of a basis of set partitions for the partition algebra and its related vector spaces. Also, we show how we can calculate the number of weights that must appear in these layer functions by looking at certain paths through the McKay quiver for M_n. Finally, we describe how our approach generalises to the construction of neural networks that are equivariant to local symmetries.
SINC: Spatial Composition of 3D Human Motions for Simultaneous Action Generation
Our goal is to synthesize 3D human motions given textual inputs describing simultaneous actions, for example 'waving hand' while 'walking' at the same time. We refer to generating such simultaneous movements as performing 'spatial compositions'. In contrast to temporal compositions that seek to transition from one action to another, spatial compositing requires understanding which body parts are involved in which action, to be able to move them simultaneously. Motivated by the observation that the correspondence between actions and body parts is encoded in powerful language models, we extract this knowledge by prompting GPT-3 with text such as "what are the body parts involved in the action <action name>?", while also providing the parts list and few-shot examples. Given this action-part mapping, we combine body parts from two motions together and establish the first automated method to spatially compose two actions. However, training data with compositional actions is always limited by the combinatorics. Hence, we further create synthetic data with this approach, and use it to train a new state-of-the-art text-to-motion generation model, called SINC ("SImultaneous actioN Compositions for 3D human motions"). In our experiments, that training with such GPT-guided synthetic data improves spatial composition generation over baselines. Our code is publicly available at https://sinc.is.tue.mpg.de/.
Tokenize Image as a Set
This paper proposes a fundamentally new paradigm for image generation through set-based tokenization and distribution modeling. Unlike conventional methods that serialize images into fixed-position latent codes with a uniform compression ratio, we introduce an unordered token set representation to dynamically allocate coding capacity based on regional semantic complexity. This TokenSet enhances global context aggregation and improves robustness against local perturbations. To address the critical challenge of modeling discrete sets, we devise a dual transformation mechanism that bijectively converts sets into fixed-length integer sequences with summation constraints. Further, we propose Fixed-Sum Discrete Diffusion--the first framework to simultaneously handle discrete values, fixed sequence length, and summation invariance--enabling effective set distribution modeling. Experiments demonstrate our method's superiority in semantic-aware representation and generation quality. Our innovations, spanning novel representation and modeling strategies, advance visual generation beyond traditional sequential token paradigms. Our code and models are publicly available at https://github.com/Gengzigang/TokenSet.
SparseJEPA: Sparse Representation Learning of Joint Embedding Predictive Architectures
Joint Embedding Predictive Architectures (JEPA) have emerged as a powerful framework for learning general-purpose representations. However, these models often lack interpretability and suffer from inefficiencies due to dense embedding representations. We propose SparseJEPA, an extension that integrates sparse representation learning into the JEPA framework to enhance the quality of learned representations. SparseJEPA employs a penalty method that encourages latent space variables to be shared among data features with strong semantic relationships, while maintaining predictive performance. We demonstrate the effectiveness of SparseJEPA by training on the CIFAR-100 dataset and pre-training a lightweight Vision Transformer. The improved embeddings are utilized in linear-probe transfer learning for both image classification and low-level tasks, showcasing the architecture's versatility across different transfer tasks. Furthermore, we provide a theoretical proof that demonstrates that the grouping mechanism enhances representation quality. This was done by displaying that grouping reduces Multiinformation among latent-variables, including proofing the Data Processing Inequality for Multiinformation. Our results indicate that incorporating sparsity not only refines the latent space but also facilitates the learning of more meaningful and interpretable representations. In further work, hope to further extend this method by finding new ways to leverage the grouping mechanism through object-centric representation learning.
Uncovering hidden geometry in Transformers via disentangling position and context
Transformers are widely used to extract semantic meanings from input tokens, yet they usually operate as black-box models. In this paper, we present a simple yet informative decomposition of hidden states (or embeddings) of trained transformers into interpretable components. For any layer, embedding vectors of input sequence samples are represented by a tensor h in R^{C times T times d}. Given embedding vector h_{c,t} in R^d at sequence position t le T in a sequence (or context) c le C, extracting the mean effects yields the decomposition \[ h_{c,t} = \mu + pos_t + ctx_c + resid_{c,t} \] where mu is the global mean vector, pos_t and ctx_c are the mean vectors across contexts and across positions respectively, and resid_{c,t} is the residual vector. For popular transformer architectures and diverse text datasets, empirically we find pervasive mathematical structure: (1) (pos_t)_{t} forms a low-dimensional, continuous, and often spiral shape across layers, (2) (ctx_c)_c shows clear cluster structure that falls into context topics, and (3) (pos_t)_{t} and (ctx_c)_c are mutually nearly orthogonal. We argue that smoothness is pervasive and beneficial to transformers trained on languages, and our decomposition leads to improved model interpretability.
Shape of Motion: 4D Reconstruction from a Single Video
Monocular dynamic reconstruction is a challenging and long-standing vision problem due to the highly ill-posed nature of the task. Existing approaches are limited in that they either depend on templates, are effective only in quasi-static scenes, or fail to model 3D motion explicitly. In this work, we introduce a method capable of reconstructing generic dynamic scenes, featuring explicit, full-sequence-long 3D motion, from casually captured monocular videos. We tackle the under-constrained nature of the problem with two key insights: First, we exploit the low-dimensional structure of 3D motion by representing scene motion with a compact set of SE3 motion bases. Each point's motion is expressed as a linear combination of these bases, facilitating soft decomposition of the scene into multiple rigidly-moving groups. Second, we utilize a comprehensive set of data-driven priors, including monocular depth maps and long-range 2D tracks, and devise a method to effectively consolidate these noisy supervisory signals, resulting in a globally consistent representation of the dynamic scene. Experiments show that our method achieves state-of-the-art performance for both long-range 3D/2D motion estimation and novel view synthesis on dynamic scenes. Project Page: https://shape-of-motion.github.io/
WALDO: Future Video Synthesis using Object Layer Decomposition and Parametric Flow Prediction
This paper presents WALDO (WArping Layer-Decomposed Objects), a novel approach to the prediction of future video frames from past ones. Individual images are decomposed into multiple layers combining object masks and a small set of control points. The layer structure is shared across all frames in each video to build dense inter-frame connections. Complex scene motions are modeled by combining parametric geometric transformations associated with individual layers, and video synthesis is broken down into discovering the layers associated with past frames, predicting the corresponding transformations for upcoming ones and warping the associated object regions accordingly, and filling in the remaining image parts. Extensive experiments on multiple benchmarks including urban videos (Cityscapes and KITTI) and videos featuring nonrigid motions (UCF-Sports and H3.6M), show that our method consistently outperforms the state of the art by a significant margin in every case. Code, pretrained models, and video samples synthesized by our approach can be found in the project webpage https://16lemoing.github.io/waldo.
Group Orthogonalization Regularization For Vision Models Adaptation and Robustness
As neural networks become deeper, the redundancy within their parameters increases. This phenomenon has led to several methods that attempt to reduce the correlation between convolutional filters. We propose a computationally efficient regularization technique that encourages orthonormality between groups of filters within the same layer. Our experiments show that when incorporated into recent adaptation methods for diffusion models and vision transformers (ViTs), this regularization improves performance on downstream tasks. We further show improved robustness when group orthogonality is enforced during adversarial training. Our code is available at https://github.com/YoavKurtz/GOR.
DepGraph: Towards Any Structural Pruning
Structural pruning enables model acceleration by removing structurally-grouped parameters from neural networks. However, the parameter-grouping patterns vary widely across different models, making architecture-specific pruners, which rely on manually-designed grouping schemes, non-generalizable to new architectures. In this work, we study a highly-challenging yet barely-explored task, any structural pruning, to tackle general structural pruning of arbitrary architecture like CNNs, RNNs, GNNs and Transformers. The most prominent obstacle towards this goal lies in the structural coupling, which not only forces different layers to be pruned simultaneously, but also expects all removed parameters to be consistently unimportant, thereby avoiding structural issues and significant performance degradation after pruning. To address this problem, we propose a general and {fully automatic} method, Dependency Graph (DepGraph), to explicitly model the dependency between layers and comprehensively group coupled parameters for pruning. In this work, we extensively evaluate our method on several architectures and tasks, including ResNe(X)t, DenseNet, MobileNet and Vision transformer for images, GAT for graph, DGCNN for 3D point cloud, alongside LSTM for language, and demonstrate that, even with a simple norm-based criterion, the proposed method consistently yields gratifying performances.
Self-Supervised Visual Representation Learning with Semantic Grouping
In this paper, we tackle the problem of learning visual representations from unlabeled scene-centric data. Existing works have demonstrated the potential of utilizing the underlying complex structure within scene-centric data; still, they commonly rely on hand-crafted objectness priors or specialized pretext tasks to build a learning framework, which may harm generalizability. Instead, we propose contrastive learning from data-driven semantic slots, namely SlotCon, for joint semantic grouping and representation learning. The semantic grouping is performed by assigning pixels to a set of learnable prototypes, which can adapt to each sample by attentive pooling over the feature and form new slots. Based on the learned data-dependent slots, a contrastive objective is employed for representation learning, which enhances the discriminability of features, and conversely facilitates grouping semantically coherent pixels together. Compared with previous efforts, by simultaneously optimizing the two coupled objectives of semantic grouping and contrastive learning, our approach bypasses the disadvantages of hand-crafted priors and is able to learn object/group-level representations from scene-centric images. Experiments show our approach effectively decomposes complex scenes into semantic groups for feature learning and significantly benefits downstream tasks, including object detection, instance segmentation, and semantic segmentation. Code is available at: https://github.com/CVMI-Lab/SlotCon.
Dynamic Group Detection using VLM-augmented Temporal Groupness Graph
This paper proposes dynamic human group detection in videos. For detecting complex groups, not only the local appearance features of in-group members but also the global context of the scene are important. Such local and global appearance features in each frame are extracted using a Vision-Language Model (VLM) augmented for group detection in our method. For further improvement, the group structure should be consistent over time. While previous methods are stabilized on the assumption that groups are not changed in a video, our method detects dynamically changing groups by global optimization using a graph with all frames' groupness probabilities estimated by our groupness-augmented CLIP features. Our experimental results demonstrate that our method outperforms state-of-the-art group detection methods on public datasets. Code: https://github.com/irajisamurai/VLM-GroupDetection.git
Reangle-A-Video: 4D Video Generation as Video-to-Video Translation
We introduce Reangle-A-Video, a unified framework for generating synchronized multi-view videos from a single input video. Unlike mainstream approaches that train multi-view video diffusion models on large-scale 4D datasets, our method reframes the multi-view video generation task as video-to-videos translation, leveraging publicly available image and video diffusion priors. In essence, Reangle-A-Video operates in two stages. (1) Multi-View Motion Learning: An image-to-video diffusion transformer is synchronously fine-tuned in a self-supervised manner to distill view-invariant motion from a set of warped videos. (2) Multi-View Consistent Image-to-Images Translation: The first frame of the input video is warped and inpainted into various camera perspectives under an inference-time cross-view consistency guidance using DUSt3R, generating multi-view consistent starting images. Extensive experiments on static view transport and dynamic camera control show that Reangle-A-Video surpasses existing methods, establishing a new solution for multi-view video generation. We will publicly release our code and data. Project page: https://hyeonho99.github.io/reangle-a-video/
Feature emergence via margin maximization: case studies in algebraic tasks
Understanding the internal representations learned by neural networks is a cornerstone challenge in the science of machine learning. While there have been significant recent strides in some cases towards understanding how neural networks implement specific target functions, this paper explores a complementary question -- why do networks arrive at particular computational strategies? Our inquiry focuses on the algebraic learning tasks of modular addition, sparse parities, and finite group operations. Our primary theoretical findings analytically characterize the features learned by stylized neural networks for these algebraic tasks. Notably, our main technique demonstrates how the principle of margin maximization alone can be used to fully specify the features learned by the network. Specifically, we prove that the trained networks utilize Fourier features to perform modular addition and employ features corresponding to irreducible group-theoretic representations to perform compositions in general groups, aligning closely with the empirical observations of Nanda et al. and Chughtai et al. More generally, we hope our techniques can help to foster a deeper understanding of why neural networks adopt specific computational strategies.
CubeDiff: Repurposing Diffusion-Based Image Models for Panorama Generation
We introduce a novel method for generating 360{\deg} panoramas from text prompts or images. Our approach leverages recent advances in 3D generation by employing multi-view diffusion models to jointly synthesize the six faces of a cubemap. Unlike previous methods that rely on processing equirectangular projections or autoregressive generation, our method treats each face as a standard perspective image, simplifying the generation process and enabling the use of existing multi-view diffusion models. We demonstrate that these models can be adapted to produce high-quality cubemaps without requiring correspondence-aware attention layers. Our model allows for fine-grained text control, generates high resolution panorama images and generalizes well beyond its training set, whilst achieving state-of-the-art results, both qualitatively and quantitatively. Project page: https://cubediff.github.io/
Flat matrix models for quantum permutation groups
We study the matrix models pi:C(S_N^+)to M_N(C(X)) which are flat, in the sense that the standard generators of C(S_N^+) are mapped to rank 1 projections. Our first result is a generalization of the Pauli matrix construction at N=4, using finite groups and 2-cocycles. Our second result is the construction of a universal representation of C(S_N^+), inspired from the Sinkhorn algorithm, that we conjecture to be inner faithful.
Curvature-Informed SGD via General Purpose Lie-Group Preconditioners
We present a novel approach to accelerate stochastic gradient descent (SGD) by utilizing curvature information obtained from Hessian-vector products or finite differences of parameters and gradients, similar to the BFGS algorithm. Our approach involves two preconditioners: a matrix-free preconditioner and a low-rank approximation preconditioner. We update both preconditioners online using a criterion that is robust to stochastic gradient noise and does not require line search or damping. To preserve the corresponding symmetry or invariance, our preconditioners are constrained to certain connected Lie groups. The Lie group's equivariance property simplifies the preconditioner fitting process, while its invariance property eliminates the need for damping, which is commonly required in second-order optimizers. As a result, the learning rate for parameter updating and the step size for preconditioner fitting are naturally normalized, and their default values work well in most scenarios. Our proposed approach offers a promising direction for improving the convergence of SGD with low computational overhead. We demonstrate that Preconditioned SGD (PSGD) outperforms SoTA on Vision, NLP, and RL tasks across multiple modern deep-learning architectures. We have provided code for reproducing toy and large scale experiments in this paper.
Geometric Algebra Transformers
Problems involving geometric data arise in a variety of fields, including computer vision, robotics, chemistry, and physics. Such data can take numerous forms, such as points, direction vectors, planes, or transformations, but to date there is no single architecture that can be applied to such a wide variety of geometric types while respecting their symmetries. In this paper we introduce the Geometric Algebra Transformer (GATr), a general-purpose architecture for geometric data. GATr represents inputs, outputs, and hidden states in the projective geometric algebra, which offers an efficient 16-dimensional vector space representation of common geometric objects as well as operators acting on them. GATr is equivariant with respect to E(3), the symmetry group of 3D Euclidean space. As a transformer, GATr is scalable, expressive, and versatile. In experiments with n-body modeling and robotic planning, GATr shows strong improvements over non-geometric baselines.
Multimarginal generative modeling with stochastic interpolants
Given a set of K probability densities, we consider the multimarginal generative modeling problem of learning a joint distribution that recovers these densities as marginals. The structure of this joint distribution should identify multi-way correspondences among the prescribed marginals. We formalize an approach to this task within a generalization of the stochastic interpolant framework, leading to efficient learning algorithms built upon dynamical transport of measure. Our generative models are defined by velocity and score fields that can be characterized as the minimizers of simple quadratic objectives, and they are defined on a simplex that generalizes the time variable in the usual dynamical transport framework. The resulting transport on the simplex is influenced by all marginals, and we show that multi-way correspondences can be extracted. The identification of such correspondences has applications to style transfer, algorithmic fairness, and data decorruption. In addition, the multimarginal perspective enables an efficient algorithm for reducing the dynamical transport cost in the ordinary two-marginal setting. We demonstrate these capacities with several numerical examples.
Shelving, Stacking, Hanging: Relational Pose Diffusion for Multi-modal Rearrangement
We propose a system for rearranging objects in a scene to achieve a desired object-scene placing relationship, such as a book inserted in an open slot of a bookshelf. The pipeline generalizes to novel geometries, poses, and layouts of both scenes and objects, and is trained from demonstrations to operate directly on 3D point clouds. Our system overcomes challenges associated with the existence of many geometrically-similar rearrangement solutions for a given scene. By leveraging an iterative pose de-noising training procedure, we can fit multi-modal demonstration data and produce multi-modal outputs while remaining precise and accurate. We also show the advantages of conditioning on relevant local geometric features while ignoring irrelevant global structure that harms both generalization and precision. We demonstrate our approach on three distinct rearrangement tasks that require handling multi-modality and generalization over object shape and pose in both simulation and the real world. Project website, code, and videos: https://anthonysimeonov.github.io/rpdiff-multi-modal/
Scalable and Equitable Math Problem Solving Strategy Prediction in Big Educational Data
Understanding a student's problem-solving strategy can have a significant impact on effective math learning using Intelligent Tutoring Systems (ITSs) and Adaptive Instructional Systems (AISs). For instance, the ITS/AIS can better personalize itself to correct specific misconceptions that are indicated by incorrect strategies, specific problems can be designed to improve strategies and frustration can be minimized by adapting to a student's natural way of thinking rather than trying to fit a standard strategy for all. While it may be possible for human experts to identify strategies manually in classroom settings with sufficient student interaction, it is not possible to scale this up to big data. Therefore, we leverage advances in Machine Learning and AI methods to perform scalable strategy prediction that is also fair to students at all skill levels. Specifically, we develop an embedding called MVec where we learn a representation based on the mastery of students. We then cluster these embeddings with a non-parametric clustering method where we progressively learn clusters such that we group together instances that have approximately symmetrical strategies. The strategy prediction model is trained on instances sampled from these clusters. This ensures that we train the model over diverse strategies and also that strategies from a particular group do not bias the DNN model, thus allowing it to optimize its parameters over all groups. Using real world large-scale student interaction datasets from MATHia, we implement our approach using transformers and Node2Vec for learning the mastery embeddings and LSTMs for predicting strategies. We show that our approach can scale up to achieve high accuracy by training on a small sample of a large dataset and also has predictive equality, i.e., it can predict strategies equally well for learners at diverse skill levels.
Clustering Head: A Visual Case Study of the Training Dynamics in Transformers
This paper introduces the sparse modular addition task and examines how transformers learn it. We focus on transformers with embeddings in R^2 and introduce a visual sandbox that provides comprehensive visualizations of each layer throughout the training process. We reveal a type of circuit, called "clustering heads," which learns the problem's invariants. We analyze the training dynamics of these circuits, highlighting two-stage learning, loss spikes due to high curvature or normalization layers, and the effects of initialization and curriculum learning.
Token Transformation Matters: Towards Faithful Post-hoc Explanation for Vision Transformer
While Transformers have rapidly gained popularity in various computer vision applications, post-hoc explanations of their internal mechanisms remain largely unexplored. Vision Transformers extract visual information by representing image regions as transformed tokens and integrating them via attention weights. However, existing post-hoc explanation methods merely consider these attention weights, neglecting crucial information from the transformed tokens, which fails to accurately illustrate the rationales behind the models' predictions. To incorporate the influence of token transformation into interpretation, we propose TokenTM, a novel post-hoc explanation method that utilizes our introduced measurement of token transformation effects. Specifically, we quantify token transformation effects by measuring changes in token lengths and correlations in their directions pre- and post-transformation. Moreover, we develop initialization and aggregation rules to integrate both attention weights and token transformation effects across all layers, capturing holistic token contributions throughout the model. Experimental results on segmentation and perturbation tests demonstrate the superiority of our proposed TokenTM compared to state-of-the-art Vision Transformer explanation methods.
LookingGlass: Generative Anamorphoses via Laplacian Pyramid Warping
Anamorphosis refers to a category of images that are intentionally distorted, making them unrecognizable when viewed directly. Their true form only reveals itself when seen from a specific viewpoint, which can be through some catadioptric device like a mirror or a lens. While the construction of these mathematical devices can be traced back to as early as the 17th century, they are only interpretable when viewed from a specific vantage point and tend to lose meaning when seen normally. In this paper, we revisit these famous optical illusions with a generative twist. With the help of latent rectified flow models, we propose a method to create anamorphic images that still retain a valid interpretation when viewed directly. To this end, we introduce Laplacian Pyramid Warping, a frequency-aware image warping technique key to generating high-quality visuals. Our work extends Visual Anagrams (arXiv:2311.17919) to latent space models and to a wider range of spatial transforms, enabling the creation of novel generative perceptual illusions.
Building Neural Networks on Matrix Manifolds: A Gyrovector Space Approach
Matrix manifolds, such as manifolds of Symmetric Positive Definite (SPD) matrices and Grassmann manifolds, appear in many applications. Recently, by applying the theory of gyrogroups and gyrovector spaces that is a powerful framework for studying hyperbolic geometry, some works have attempted to build principled generalizations of Euclidean neural networks on matrix manifolds. However, due to the lack of many concepts in gyrovector spaces for the considered manifolds, e.g., the inner product and gyroangles, techniques and mathematical tools provided by these works are still limited compared to those developed for studying hyperbolic geometry. In this paper, we generalize some notions in gyrovector spaces for SPD and Grassmann manifolds, and propose new models and layers for building neural networks on these manifolds. We show the effectiveness of our approach in two applications, i.e., human action recognition and knowledge graph completion.
Improving Convergence and Generalization Using Parameter Symmetries
In many neural networks, different values of the parameters may result in the same loss value. Parameter space symmetries are loss-invariant transformations that change the model parameters. Teleportation applies such transformations to accelerate optimization. However, the exact mechanism behind this algorithm's success is not well understood. In this paper, we show that teleportation not only speeds up optimization in the short-term, but gives overall faster time to convergence. Additionally, teleporting to minima with different curvatures improves generalization, which suggests a connection between the curvature of the minimum and generalization ability. Finally, we show that integrating teleportation into a wide range of optimization algorithms and optimization-based meta-learning improves convergence. Our results showcase the versatility of teleportation and demonstrate the potential of incorporating symmetry in optimization.
Learning A Sparse Transformer Network for Effective Image Deraining
Transformers-based methods have achieved significant performance in image deraining as they can model the non-local information which is vital for high-quality image reconstruction. In this paper, we find that most existing Transformers usually use all similarities of the tokens from the query-key pairs for the feature aggregation. However, if the tokens from the query are different from those of the key, the self-attention values estimated from these tokens also involve in feature aggregation, which accordingly interferes with the clear image restoration. To overcome this problem, we propose an effective DeRaining network, Sparse Transformer (DRSformer) that can adaptively keep the most useful self-attention values for feature aggregation so that the aggregated features better facilitate high-quality image reconstruction. Specifically, we develop a learnable top-k selection operator to adaptively retain the most crucial attention scores from the keys for each query for better feature aggregation. Simultaneously, as the naive feed-forward network in Transformers does not model the multi-scale information that is important for latent clear image restoration, we develop an effective mixed-scale feed-forward network to generate better features for image deraining. To learn an enriched set of hybrid features, which combines local context from CNN operators, we equip our model with mixture of experts feature compensator to present a cooperation refinement deraining scheme. Extensive experimental results on the commonly used benchmarks demonstrate that the proposed method achieves favorable performance against state-of-the-art approaches. The source code and trained models are available at https://github.com/cschenxiang/DRSformer.
Conditional Generative Adversarial Networks for Speed Control in Trajectory Simulation
Motion behaviour is driven by several factors -- goals, presence and actions of neighbouring agents, social relations, physical and social norms, the environment with its variable characteristics, and further. Most factors are not directly observable and must be modelled from context. Trajectory prediction, is thus a hard problem, and has seen increasing attention from researchers in the recent years. Prediction of motion, in application, must be realistic, diverse and controllable. In spite of increasing focus on multimodal trajectory generation, most methods still lack means for explicitly controlling different modes of the data generation. Further, most endeavours invest heavily in designing special mechanisms to learn the interactions in latent space. We present Conditional Speed GAN (CSG), that allows controlled generation of diverse and socially acceptable trajectories, based on user controlled speed. During prediction, CSG forecasts future speed from latent space and conditions its generation based on it. CSG is comparable to state-of-the-art GAN methods in terms of the benchmark distance metrics, while being simple and useful for simulation and data augmentation for different contexts such as fast or slow paced environments. Additionally, we compare the effect of different aggregation mechanisms and show that a naive approach of concatenation works comparable to its attention and pooling alternatives.
Align Your Gaussians: Text-to-4D with Dynamic 3D Gaussians and Composed Diffusion Models
Text-guided diffusion models have revolutionized image and video generation and have also been successfully used for optimization-based 3D object synthesis. Here, we instead focus on the underexplored text-to-4D setting and synthesize dynamic, animated 3D objects using score distillation methods with an additional temporal dimension. Compared to previous work, we pursue a novel compositional generation-based approach, and combine text-to-image, text-to-video, and 3D-aware multiview diffusion models to provide feedback during 4D object optimization, thereby simultaneously enforcing temporal consistency, high-quality visual appearance and realistic geometry. Our method, called Align Your Gaussians (AYG), leverages dynamic 3D Gaussian Splatting with deformation fields as 4D representation. Crucial to AYG is a novel method to regularize the distribution of the moving 3D Gaussians and thereby stabilize the optimization and induce motion. We also propose a motion amplification mechanism as well as a new autoregressive synthesis scheme to generate and combine multiple 4D sequences for longer generation. These techniques allow us to synthesize vivid dynamic scenes, outperform previous work qualitatively and quantitatively and achieve state-of-the-art text-to-4D performance. Due to the Gaussian 4D representation, different 4D animations can be seamlessly combined, as we demonstrate. AYG opens up promising avenues for animation, simulation and digital content creation as well as synthetic data generation.
