new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

MaskLLM: Learnable Semi-Structured Sparsity for Large Language Models

Large Language Models (LLMs) are distinguished by their massive parameter counts, which typically result in significant redundancy. This work introduces MaskLLM, a learnable pruning method that establishes Semi-structured (or ``N:M'') Sparsity in LLMs, aimed at reducing computational overhead during inference. Instead of developing a new importance criterion, MaskLLM explicitly models N:M patterns as a learnable distribution through Gumbel Softmax sampling. This approach facilitates end-to-end training on large-scale datasets and offers two notable advantages: 1) High-quality Masks - our method effectively scales to large datasets and learns accurate masks; 2) Transferability - the probabilistic modeling of mask distribution enables the transfer learning of sparsity across domains or tasks. We assessed MaskLLM using 2:4 sparsity on various LLMs, including LLaMA-2, Nemotron-4, and GPT-3, with sizes ranging from 843M to 15B parameters, and our empirical results show substantial improvements over state-of-the-art methods. For instance, leading approaches achieve a perplexity (PPL) of 10 or greater on Wikitext compared to the dense model's 5.12 PPL, but MaskLLM achieves a significantly lower 6.72 PPL solely by learning the masks with frozen weights. Furthermore, MaskLLM's learnable nature allows customized masks for lossless application of 2:4 sparsity to downstream tasks or domains. Code is available at https://github.com/NVlabs/MaskLLM.

  • 8 authors
·
Sep 25, 2024 3

MC#: Mixture Compressor for Mixture-of-Experts Large Models

Mixture-of-Experts (MoE) effectively scales large language models (LLMs) and vision-language models (VLMs) by increasing capacity through sparse activation. However, preloading all experts into memory and activating multiple experts per input introduces significant computational and memory overhead, making the expert module a major contributor to model size and inference cost. To address this, we propose MC# (Mixture-Compressor-sharp), a framework that combines static quantization and dynamic expert pruning by leveraging the significance of experts and tokens for aggressive compression of MoE-LLMs/VLMs. To reduce storage and loading costs, we introduce Pre-Loading Mixed-Precision Quantization (PMQ), which optimizes bit allocation via linear programming, balancing expert importance and quantization error for a Pareto-optimal trade-off between size and performance. To reduce runtime computation, Online Top-any Pruning (OTP) uses Gumbel-Softmax sampling to dynamically select a subset of experts per token, enabling fine-grained control over activation. By combining PMQ's static bit-width optimization with OTP's dynamic routing, MC# achieves extreme compression with minimal accuracy loss. On DeepSeek-VL2, MC# achieves a 6.2 times weight reduction at 2.57 average bits with only a 1.7% accuracy drop across five multimodal benchmarks. Additionally, OTP reduces expert activation over 20% with less than 1% performance degradation, demonstrating strong potential for efficient MoE-based model deployment.

  • 9 authors
·
Oct 12, 2025

DiffusionAttacker: Diffusion-Driven Prompt Manipulation for LLM Jailbreak

Large Language Models (LLMs) are susceptible to generating harmful content when prompted with carefully crafted inputs, a vulnerability known as LLM jailbreaking. As LLMs become more powerful, studying jailbreak methods is critical to enhancing security and aligning models with human values. Traditionally, jailbreak techniques have relied on suffix addition or prompt templates, but these methods suffer from limited attack diversity. This paper introduces DiffusionAttacker, an end-to-end generative approach for jailbreak rewriting inspired by diffusion models. Our method employs a sequence-to-sequence (seq2seq) text diffusion model as a generator, conditioning on the original prompt and guiding the denoising process with a novel attack loss. Unlike previous approaches that use autoregressive LLMs to generate jailbreak prompts, which limit the modification of already generated tokens and restrict the rewriting space, DiffusionAttacker utilizes a seq2seq diffusion model, allowing more flexible token modifications. This approach preserves the semantic content of the original prompt while producing harmful content. Additionally, we leverage the Gumbel-Softmax technique to make the sampling process from the diffusion model's output distribution differentiable, eliminating the need for iterative token search. Extensive experiments on Advbench and Harmbench demonstrate that DiffusionAttacker outperforms previous methods across various evaluation metrics, including attack success rate (ASR), fluency, and diversity.

  • 7 authors
·
Dec 23, 2024

LLMs are Single-threaded Reasoners: Demystifying the Working Mechanism of Soft Thinking

Human cognition naturally engages with abstract and fluid concepts, whereas existing reasoning models often rely on generating discrete tokens, potentially constraining their expressive capabilities. Recent advancements aim to address this limitation by enabling large language models (LLMs) to generate soft, abstract tokens, thus facilitating reasoning within a continuous concept space. This paper explores the `Soft Thinking' capabilities of various LLMs by examining the models' internal behavior using a suite of probing techniques. Contrary to the common belief that Soft Thinking enables the simultaneous exploration of diverse reasoning paths, our findings reveal that LLMs predominantly rely on the most influential component of the soft inputs during subsequent decoding steps. This reliance hinders the exploration of different reasoning paths and reduces vanilla Soft Thinking to a form of greedy decoding, obscuring the advantage of transmitting more information through Soft Tokens. To tackle this issue, we explore sampling strategies to introduce randomness, employing methods such as Dirichlet resampling and the Gumbel-Softmax trick. Our experiments demonstrate that incorporating randomness can alleviate the limitations of vanilla approaches and unleash the potential of Soft Thinking. Notably, the Gumbel-Softmax trick provides adequate randomness with controlled smoothness, resulting in superior performance across eight reasoning benchmarks.

  • 7 authors
·
Aug 5, 2025