Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeImageNet-E: Benchmarking Neural Network Robustness via Attribute Editing
Recent studies have shown that higher accuracy on ImageNet usually leads to better robustness against different corruptions. Therefore, in this paper, instead of following the traditional research paradigm that investigates new out-of-distribution corruptions or perturbations deep models may encounter, we conduct model debugging in in-distribution data to explore which object attributes a model may be sensitive to. To achieve this goal, we create a toolkit for object editing with controls of backgrounds, sizes, positions, and directions, and create a rigorous benchmark named ImageNet-E(diting) for evaluating the image classifier robustness in terms of object attributes. With our ImageNet-E, we evaluate the performance of current deep learning models, including both convolutional neural networks and vision transformers. We find that most models are quite sensitive to attribute changes. A small change in the background can lead to an average of 9.23\% drop on top-1 accuracy. We also evaluate some robust models including both adversarially trained models and other robust trained models and find that some models show worse robustness against attribute changes than vanilla models. Based on these findings, we discover ways to enhance attribute robustness with preprocessing, architecture designs, and training strategies. We hope this work can provide some insights to the community and open up a new avenue for research in robust computer vision. The code and dataset are available at https://github.com/alibaba/easyrobust.
Evaluating Graph Vulnerability and Robustness using TIGER
Network robustness plays a crucial role in our understanding of complex interconnected systems such as transportation, communication, and computer networks. While significant research has been conducted in the area of network robustness, no comprehensive open-source toolbox currently exists to assist researchers and practitioners in this important topic. This lack of available tools hinders reproducibility and examination of existing work, development of new research, and dissemination of new ideas. We contribute TIGER, an open-sourced Python toolbox to address these challenges. TIGER contains 22 graph robustness measures with both original and fast approximate versions; 17 failure and attack strategies; 15 heuristic and optimization-based defense techniques; and 4 simulation tools. By democratizing the tools required to study network robustness, our goal is to assist researchers and practitioners in analyzing their own networks; and facilitate the development of new research in the field. TIGER has been integrated into the Nvidia Data Science Teaching Kit available to educators across the world; and Georgia Tech's Data and Visual Analytics class with over 1,000 students. TIGER is open sourced at: https://github.com/safreita1/TIGER
Graph Vulnerability and Robustness: A Survey
The study of network robustness is a critical tool in the characterization and sense making of complex interconnected systems such as infrastructure, communication and social networks. While significant research has been conducted in all of these areas, gaps in the surveying literature still exist. Answers to key questions are currently scattered across multiple scientific fields and numerous papers. In this survey, we distill key findings across numerous domains and provide researchers crucial access to important information by--(1) summarizing and comparing recent and classical graph robustness measures; (2) exploring which robustness measures are most applicable to different categories of networks (e.g., social, infrastructure; (3) reviewing common network attack strategies, and summarizing which attacks are most effective across different network topologies; and (4) extensive discussion on selecting defense techniques to mitigate attacks across a variety of networks. This survey guides researchers and practitioners in navigating the expansive field of network robustness, while summarizing answers to key questions. We conclude by highlighting current research directions and open problems.
Interpreting Robustness Proofs of Deep Neural Networks
In recent years numerous methods have been developed to formally verify the robustness of deep neural networks (DNNs). Though the proposed techniques are effective in providing mathematical guarantees about the DNNs behavior, it is not clear whether the proofs generated by these methods are human-interpretable. In this paper, we bridge this gap by developing new concepts, algorithms, and representations to generate human understandable interpretations of the proofs. Leveraging the proposed method, we show that the robustness proofs of standard DNNs rely on spurious input features, while the proofs of DNNs trained to be provably robust filter out even the semantically meaningful features. The proofs for the DNNs combining adversarial and provably robust training are the most effective at selectively filtering out spurious features as well as relying on human-understandable input features.
How many perturbations break this model? Evaluating robustness beyond adversarial accuracy
Robustness to adversarial attack is typically evaluated with adversarial accuracy. This metric quantifies the number of points for which, given a threat model, successful adversarial perturbations cannot be found. While essential, this metric does not capture all aspects of robustness and in particular leaves out the question of how many perturbations can be found for each point. In this work we introduce an alternative approach, adversarial sparsity, which quantifies how difficult it is to find a successful perturbation given both an input point and a constraint on the direction of the perturbation. This constraint may be angular (L2 perturbations), or based on the number of pixels (Linf perturbations). We show that sparsity provides valuable insight on neural networks in multiple ways. analyzing the sparsity of existing robust models illustrates important differences between them that accuracy analysis does not, and suggests approaches for improving their robustness. When applying broken defenses effective against weak attacks but not strong ones, sparsity can discriminate between the totally ineffective and the partially effective defenses. Finally, with sparsity we can measure increases in robustness that do not affect accuracy: we show for example that data augmentation can by itself increase adversarial robustness, without using adversarial training.
Spatial-frequency channels, shape bias, and adversarial robustness
What spatial frequency information do humans and neural networks use to recognize objects? In neuroscience, critical band masking is an established tool that can reveal the frequency-selective filters used for object recognition. Critical band masking measures the sensitivity of recognition performance to noise added at each spatial frequency. Existing critical band masking studies show that humans recognize periodic patterns (gratings) and letters by means of a spatial-frequency filter (or "channel'') that has a frequency bandwidth of one octave (doubling of frequency). Here, we introduce critical band masking as a task for network-human comparison and test 14 humans and 76 neural networks on 16-way ImageNet categorization in the presence of narrowband noise. We find that humans recognize objects in natural images using the same one-octave-wide channel that they use for letters and gratings, making it a canonical feature of human object recognition. On the other hand, the neural network channel, across various architectures and training strategies, is 2-4 times as wide as the human channel. In other words, networks are vulnerable to high and low frequency noise that does not affect human performance. Adversarial and augmented-image training are commonly used to increase network robustness and shape bias. Does this training align network and human object recognition channels? Three network channel properties (bandwidth, center frequency, peak noise sensitivity) correlate strongly with shape bias (53% variance explained) and with robustness of adversarially-trained networks (74% variance explained). Adversarial training increases robustness but expands the channel bandwidth even further away from the human bandwidth. Thus, critical band masking reveals that the network channel is more than twice as wide as the human channel, and that adversarial training only increases this difference.
Towards Calibrated Deep Clustering Network
Deep clustering has exhibited remarkable performance; however, the overconfidence problem, i.e., the estimated confidence for a sample belonging to a particular cluster greatly exceeds its actual prediction accuracy, has been overlooked in prior research. To tackle this critical issue, we pioneer the development of a calibrated deep clustering framework. Specifically, we propose a novel dual-head deep clustering pipeline that can effectively calibrate the estimated confidence and the actual accuracy. The calibration head adjusts the overconfident predictions of the clustering head using regularization methods, generating prediction confidence and pseudo-labels that match the model learning status. This calibration process also guides the clustering head in dynamically selecting reliable high-confidence samples for training. Additionally, we introduce an effective network initialization strategy that enhances both training speed and network robustness. Extensive experiments demonstrate the proposed calibrated deep clustering framework not only surpasses state-of-the-art deep clustering methods by approximately 10 times in terms of expected calibration error but also significantly outperforms them in terms of clustering accuracy.
One Forward is Enough for Neural Network Training via Likelihood Ratio Method
While backpropagation (BP) is the mainstream approach for gradient computation in neural network training, its heavy reliance on the chain rule of differentiation constrains the designing flexibility of network architecture and training pipelines. We avoid the recursive computation in BP and develop a unified likelihood ratio (ULR) method for gradient estimation with just one forward propagation. Not only can ULR be extended to train a wide variety of neural network architectures, but the computation flow in BP can also be rearranged by ULR for better device adaptation. Moreover, we propose several variance reduction techniques to further accelerate the training process. Our experiments offer numerical results across diverse aspects, including various neural network training scenarios, computation flow rearrangement, and fine-tuning of pre-trained models. All findings demonstrate that ULR effectively enhances the flexibility of neural network training by permitting localized module training without compromising the global objective and significantly boosts the network robustness.
Similarity-Distance-Magnitude Universal Verification
We address the neural network robustness problem by adding Similarity (i.e., correctly predicted depth-matches into training)-awareness and Distance-to-training-distribution-awareness to the existing output Magnitude (i.e., decision-boundary)-awareness of the softmax function. The resulting SDM activation function provides strong signals of the relative epistemic (reducible) predictive uncertainty. We use this novel behavior to further address the complementary HCI problem of mapping the output to human-interpretable summary statistics over relevant partitions of a held-out calibration set. Estimates of prediction-conditional uncertainty are obtained via a parsimonious learned transform over the class-conditional empirical CDFs of the output of a final-layer SDM activation function. For decision-making and as an intrinsic model check, estimates of class-conditional accuracy are obtained by further partitioning the high-probability regions of this calibrated output into class-conditional, region-specific CDFs. The uncertainty estimates from SDM calibration are remarkably robust to test-time distribution shifts and out-of-distribution inputs; incorporate awareness of the effective sample size; provide estimates of uncertainty from the learning and data splitting processes; and are well-suited for selective classification and conditional branching for additional test-time compute based on the predictive uncertainty, as for selective LLM generation, routing, and composition over multiple models and retrieval. Finally, we construct SDM networks, LLMs with uncertainty-aware verification and interpretability-by-exemplar as intrinsic properties. We provide open-source software implementing these results.
INTACT: Inducing Noise Tolerance through Adversarial Curriculum Training for LiDAR-based Safety-Critical Perception and Autonomy
In this work, we present INTACT, a novel two-phase framework designed to enhance the robustness of deep neural networks (DNNs) against noisy LiDAR data in safety-critical perception tasks. INTACT combines meta-learning with adversarial curriculum training (ACT) to systematically address challenges posed by data corruption and sparsity in 3D point clouds. The meta-learning phase equips a teacher network with task-agnostic priors, enabling it to generate robust saliency maps that identify critical data regions. The ACT phase leverages these saliency maps to progressively expose a student network to increasingly complex noise patterns, ensuring targeted perturbation and improved noise resilience. INTACT's effectiveness is demonstrated through comprehensive evaluations on object detection, tracking, and classification benchmarks using diverse datasets, including KITTI, Argoverse, and ModelNet40. Results indicate that INTACT improves model robustness by up to 20% across all tasks, outperforming standard adversarial and curriculum training methods. This framework not only addresses the limitations of conventional training strategies but also offers a scalable and efficient solution for real-world deployment in resource-constrained safety-critical systems. INTACT's principled integration of meta-learning and adversarial training establishes a new paradigm for noise-tolerant 3D perception in safety-critical applications. INTACT improved KITTI Multiple Object Tracking Accuracy (MOTA) by 9.6% (64.1% -> 75.1%) and by 12.4% under Gaussian noise (52.5% -> 73.7%). Similarly, KITTI mean Average Precision (mAP) rose from 59.8% to 69.8% (50% point drop) and 49.3% to 70.9% (Gaussian noise), highlighting the framework's ability to enhance deep learning model resilience in safety-critical object tracking scenarios.
Robustifying Point Cloud Networks by Refocusing
The ability to cope with out-of-distribution (OOD) corruptions and adversarial attacks is crucial in real-world safety-demanding applications. In this study, we develop a general mechanism to increase neural network robustness based on focus analysis. Recent studies have revealed the phenomenon of Overfocusing, which leads to a performance drop. When the network is primarily influenced by small input regions, it becomes less robust and prone to misclassify under noise and corruptions. However, quantifying overfocusing is still vague and lacks clear definitions. Here, we provide a mathematical definition of focus, overfocusing and underfocusing. The notions are general, but in this study, we specifically investigate the case of 3D point clouds. We observe that corrupted sets result in a biased focus distribution compared to the clean training set. We show that as focus distribution deviates from the one learned in the training phase - classification performance deteriorates. We thus propose a parameter-free refocusing algorithm that aims to unify all corruptions under the same distribution. We validate our findings on a 3D zero-shot classification task, achieving SOTA in robust 3D classification on ModelNet-C dataset, and in adversarial defense against Shape-Invariant attack. Code is available in: https://github.com/yossilevii100/refocusing.
A Multimodal XAI Framework for Trustworthy CNNs and Bias Detection in Deep Representation Learning
Standard benchmark datasets, such as MNIST, often fail to expose latent biases and multimodal feature complexities, limiting the trustworthiness of deep neural networks in high-stakes applications. We propose a novel multimodal Explainable AI (XAI) framework that unifies attention-augmented feature fusion, Grad-CAM++-based local explanations, and a Reveal-to-Revise feedback loop for bias detection and mitigation. Evaluated on multimodal extensions of MNIST, our approach achieves 93.2% classification accuracy, 91.6% F1-score, and 78.1% explanation fidelity (IoU-XAI), outperforming unimodal and non-explainable baselines. Ablation studies demonstrate that integrating interpretability with bias-aware learning enhances robustness and human alignment. Our work bridges the gap between performance, transparency, and fairness, highlighting a practical pathway for trustworthy AI in sensitive domains.
Manifold Mixup: Better Representations by Interpolating Hidden States
Deep neural networks excel at learning the training data, but often provide incorrect and confident predictions when evaluated on slightly different test examples. This includes distribution shifts, outliers, and adversarial examples. To address these issues, we propose Manifold Mixup, a simple regularizer that encourages neural networks to predict less confidently on interpolations of hidden representations. Manifold Mixup leverages semantic interpolations as additional training signal, obtaining neural networks with smoother decision boundaries at multiple levels of representation. As a result, neural networks trained with Manifold Mixup learn class-representations with fewer directions of variance. We prove theory on why this flattening happens under ideal conditions, validate it on practical situations, and connect it to previous works on information theory and generalization. In spite of incurring no significant computation and being implemented in a few lines of code, Manifold Mixup improves strong baselines in supervised learning, robustness to single-step adversarial attacks, and test log-likelihood.
Safety Verification of Deep Neural Networks
Deep neural networks have achieved impressive experimental results in image classification, but can surprisingly be unstable with respect to adversarial perturbations, that is, minimal changes to the input image that cause the network to misclassify it. With potential applications including perception modules and end-to-end controllers for self-driving cars, this raises concerns about their safety. We develop a novel automated verification framework for feed-forward multi-layer neural networks based on Satisfiability Modulo Theory (SMT). We focus on safety of image classification decisions with respect to image manipulations, such as scratches or changes to camera angle or lighting conditions that would result in the same class being assigned by a human, and define safety for an individual decision in terms of invariance of the classification within a small neighbourhood of the original image. We enable exhaustive search of the region by employing discretisation, and propagate the analysis layer by layer. Our method works directly with the network code and, in contrast to existing methods, can guarantee that adversarial examples, if they exist, are found for the given region and family of manipulations. If found, adversarial examples can be shown to human testers and/or used to fine-tune the network. We implement the techniques using Z3 and evaluate them on state-of-the-art networks, including regularised and deep learning networks. We also compare against existing techniques to search for adversarial examples and estimate network robustness.
Robustness via Cross-Domain Ensembles
We present a method for making neural network predictions robust to shifts from the training data distribution. The proposed method is based on making predictions via a diverse set of cues (called 'middle domains') and ensembling them into one strong prediction. The premise of the idea is that predictions made via different cues respond differently to a distribution shift, hence one should be able to merge them into one robust final prediction. We perform the merging in a straightforward but principled manner based on the uncertainty associated with each prediction. The evaluations are performed using multiple tasks and datasets (Taskonomy, Replica, ImageNet, CIFAR) under a wide range of adversarial and non-adversarial distribution shifts which demonstrate the proposed method is considerably more robust than its standard learning counterpart, conventional deep ensembles, and several other baselines.
Sparse Mixture-of-Experts are Domain Generalizable Learners
Human visual perception can easily generalize to out-of-distributed visual data, which is far beyond the capability of modern machine learning models. Domain generalization (DG) aims to close this gap, with existing DG methods mainly focusing on the loss function design. In this paper, we propose to explore an orthogonal direction, i.e., the design of the backbone architecture. It is motivated by an empirical finding that transformer-based models trained with empirical risk minimization (ERM) outperform CNN-based models employing state-of-the-art (SOTA) DG algorithms on multiple DG datasets. We develop a formal framework to characterize a network's robustness to distribution shifts by studying its architecture's alignment with the correlations in the dataset. This analysis guides us to propose a novel DG model built upon vision transformers, namely Generalizable Mixture-of-Experts (GMoE). Extensive experiments on DomainBed demonstrate that GMoE trained with ERM outperforms SOTA DG baselines by a large margin. Moreover, GMoE is complementary to existing DG methods and its performance is substantially improved when trained with DG algorithms.
IDEAW: Robust Neural Audio Watermarking with Invertible Dual-Embedding
The audio watermarking technique embeds messages into audio and accurately extracts messages from the watermarked audio. Traditional methods develop algorithms based on expert experience to embed watermarks into the time-domain or transform-domain of signals. With the development of deep neural networks, deep learning-based neural audio watermarking has emerged. Compared to traditional algorithms, neural audio watermarking achieves better robustness by considering various attacks during training. However, current neural watermarking methods suffer from low capacity and unsatisfactory imperceptibility. Additionally, the issue of watermark locating, which is extremely important and even more pronounced in neural audio watermarking, has not been adequately studied. In this paper, we design a dual-embedding watermarking model for efficient locating. We also consider the impact of the attack layer on the invertible neural network in robustness training, improving the model to enhance both its reasonableness and stability. Experiments show that the proposed model, IDEAW, can withstand various attacks with higher capacity and more efficient locating ability compared to existing methods.
Z-Error Loss for Training Neural Networks
Outliers introduce significant training challenges in neural networks by propagating erroneous gradients, which can degrade model performance and generalization. We propose the Z-Error Loss, a statistically principled approach that minimizes outlier influence during training by masking the contribution of data points identified as out-of-distribution within each batch. This method leverages batch-level statistics to automatically detect and exclude anomalous samples, allowing the model to focus its learning on the true underlying data structure. Our approach is robust, adaptive to data quality, and provides valuable diagnostics for data curation and cleaning.
Foveated Retinotopy Improves Classification and Localization in CNNs
From a falcon detecting prey to humans recognizing faces, many species exhibit extraordinary abilities in rapid visual localization and classification. These are made possible by a specialized retinal region called the fovea, which provides high acuity at the center of vision while maintaining lower resolution in the periphery. This distinctive spatial organization, preserved along the early visual pathway through retinotopic mapping, is fundamental to biological vision, yet remains largely unexplored in machine learning. Our study investigates how incorporating foveated retinotopy may benefit deep convolutional neural networks (CNNs) in image classification tasks. By implementing a foveated retinotopic transformation in the input layer of standard ResNet models and re-training them, we maintain comparable classification accuracy while enhancing the network's robustness to scale and rotational perturbations. Although this architectural modification introduces increased sensitivity to fixation point shifts, we demonstrate how this apparent limitation becomes advantageous: variations in classification probabilities across different gaze positions serve as effective indicators for object localization. Our findings suggest that foveated retinotopic mapping encodes implicit knowledge about visual object geometry, offering an efficient solution to the visual search problem - a capability crucial for many living species.
Expressive Losses for Verified Robustness via Convex Combinations
In order to train networks for verified adversarial robustness, it is common to over-approximate the worst-case loss over perturbation regions, resulting in networks that attain verifiability at the expense of standard performance. As shown in recent work, better trade-offs between accuracy and robustness can be obtained by carefully coupling adversarial training with over-approximations. We hypothesize that the expressivity of a loss function, which we formalize as the ability to span a range of trade-offs between lower and upper bounds to the worst-case loss through a single parameter (the over-approximation coefficient), is key to attaining state-of-the-art performance. To support our hypothesis, we show that trivial expressive losses, obtained via convex combinations between adversarial attacks and IBP bounds, yield state-of-the-art results across a variety of settings in spite of their conceptual simplicity. We provide a detailed analysis of the relationship between the over-approximation coefficient and performance profiles across different expressive losses, showing that, while expressivity is essential, better approximations of the worst-case loss are not necessarily linked to superior robustness-accuracy trade-offs.
Imitation-regularized Optimal Transport on Networks: Provable Robustness and Application to Logistics Planning
Network systems form the foundation of modern society, playing a critical role in various applications. However, these systems are at significant risk of being adversely affected by unforeseen circumstances, such as disasters. Considering this, there is a pressing need for research to enhance the robustness of network systems. Recently, in reinforcement learning, the relationship between acquiring robustness and regularizing entropy has been identified. Additionally, imitation learning is used within this framework to reflect experts' behavior. However, there are no comprehensive studies on the use of a similar imitation framework for optimal transport on networks. Therefore, in this study, imitation-regularized optimal transport (I-OT) on networks was investigated. It encodes prior knowledge on the network by imitating a given prior distribution. The I-OT solution demonstrated robustness in terms of the cost defined on the network. Moreover, we applied the I-OT to a logistics planning problem using real data. We also examined the imitation and apriori risk information scenarios to demonstrate the usefulness and implications of the proposed method.
L-Lipschitz Gershgorin ResNet Network
Deep residual networks (ResNets) have demonstrated outstanding success in computer vision tasks, attributed to their ability to maintain gradient flow through deep architectures. Simultaneously, controlling the Lipschitz bound in neural networks has emerged as an essential area of research for enhancing adversarial robustness and network certifiability. This paper uses a rigorous approach to design L-Lipschitz deep residual networks using a Linear Matrix Inequality (LMI) framework. The ResNet architecture was reformulated as a pseudo-tri-diagonal LMI with off-diagonal elements and derived closed-form constraints on network parameters to ensure L-Lipschitz continuity. To address the lack of explicit eigenvalue computations for such matrix structures, the Gershgorin circle theorem was employed to approximate eigenvalue locations, guaranteeing the LMI's negative semi-definiteness. Our contributions include a provable parameterization methodology for constructing Lipschitz-constrained networks and a compositional framework for managing recursive systems within hierarchical architectures. These findings enable robust network designs applicable to adversarial robustness, certified training, and control systems. However, a limitation was identified in the Gershgorin-based approximations, which over-constrain the system, suppressing non-linear dynamics and diminishing the network's expressive capacity.
LDLT $\mathcal{L}$-Lipschitz Network: Generalized Deep End-To-End Lipschitz Network Construction
Deep residual networks (ResNets) have demonstrated outstanding success in computer vision tasks, attributed to their ability to maintain gradient flow through deep architectures. Simultaneously, controlling the Lipschitz constant in neural networks has emerged as an essential area of research to enhance adversarial robustness and network certifiability. This paper presents a rigorous approach to the general design of L-Lipschitz deep residual networks using a Linear Matrix Inequality (LMI) framework. Initially, the ResNet architecture was reformulated as a cyclic tridiagonal LMI, and closed-form constraints on network parameters were derived to ensure L-Lipschitz continuity; however, using a new LDL^top decomposition approach for certifying LMI feasibility, we extend the construction of L-Lipchitz networks to any other nonlinear architecture. Our contributions include a provable parameterization methodology for constructing Lipschitz-constrained residual networks and other hierarchical architectures. Cholesky decomposition is also used for efficient parameterization. These findings enable robust network designs applicable to adversarial robustness, certified training, and control systems. The LDL^top formulation is shown to be a tight relaxation of the SDP-based network, maintaining full expressiveness and achieving 3\%-13\% accuracy gains over SLL Layers on 121 UCI data sets.
Graph Mixup with Soft Alignments
We study graph data augmentation by mixup, which has been used successfully on images. A key operation of mixup is to compute a convex combination of a pair of inputs. This operation is straightforward for grid-like data, such as images, but challenging for graph data. The key difficulty lies in the fact that different graphs typically have different numbers of nodes, and thus there lacks a node-level correspondence between graphs. In this work, we propose S-Mixup, a simple yet effective mixup method for graph classification by soft alignments. Specifically, given a pair of graphs, we explicitly obtain node-level correspondence via computing a soft assignment matrix to match the nodes between two graphs. Based on the soft assignments, we transform the adjacency and node feature matrices of one graph, so that the transformed graph is aligned with the other graph. In this way, any pair of graphs can be mixed directly to generate an augmented graph. We conduct systematic experiments to show that S-Mixup can improve the performance and generalization of graph neural networks (GNNs) on various graph classification tasks. In addition, we show that S-Mixup can increase the robustness of GNNs against noisy labels.
Neural networks with trainable matrix activation functions
The training process of neural networks usually optimize weights and bias parameters of linear transformations, while nonlinear activation functions are pre-specified and fixed. This work develops a systematic approach to constructing matrix activation functions whose entries are generalized from ReLU. The activation is based on matrix-vector multiplications using only scalar multiplications and comparisons. The proposed activation functions depend on parameters that are trained along with the weights and bias vectors. Neural networks based on this approach are simple and efficient and are shown to be robust in numerical experiments.
Fast and Simple Explainability for Point Cloud Networks
We propose a fast and simple explainable AI (XAI) method for point cloud data. It computes pointwise importance with respect to a trained network downstream task. This allows better understanding of the network properties, which is imperative for safety-critical applications. In addition to debugging and visualization, our low computational complexity facilitates online feedback to the network at inference. This can be used to reduce uncertainty and to increase robustness. In this work, we introduce Feature Based Interpretability (FBI), where we compute the features' norm, per point, before the bottleneck. We analyze the use of gradients and post- and pre-bottleneck strategies, showing pre-bottleneck is preferred, in terms of smoothness and ranking. We obtain at least three orders of magnitude speedup, compared to current XAI methods, thus, scalable for big point clouds or large-scale architectures. Our approach achieves SOTA results, in terms of classification explainability. We demonstrate how the proposed measure is helpful in analyzing and characterizing various aspects of 3D learning, such as rotation invariance, robustness to out-of-distribution (OOD) outliers or domain shift and dataset bias.
Discovering Adaptable Symbolic Algorithms from Scratch
Autonomous robots deployed in the real world will need control policies that rapidly adapt to environmental changes. To this end, we propose AutoRobotics-Zero (ARZ), a method based on AutoML-Zero that discovers zero-shot adaptable policies from scratch. In contrast to neural network adaption policies, where only model parameters are optimized, ARZ can build control algorithms with the full expressive power of a linear register machine. We evolve modular policies that tune their model parameters and alter their inference algorithm on-the-fly to adapt to sudden environmental changes. We demonstrate our method on a realistic simulated quadruped robot, for which we evolve safe control policies that avoid falling when individual limbs suddenly break. This is a challenging task in which two popular neural network baselines fail. Finally, we conduct a detailed analysis of our method on a novel and challenging non-stationary control task dubbed Cataclysmic Cartpole. Results confirm our findings that ARZ is significantly more robust to sudden environmental changes and can build simple, interpretable control policies.
Towards Good Practices for Missing Modality Robust Action Recognition
Standard multi-modal models assume the use of the same modalities in training and inference stages. However, in practice, the environment in which multi-modal models operate may not satisfy such assumption. As such, their performances degrade drastically if any modality is missing in the inference stage. We ask: how can we train a model that is robust to missing modalities? This paper seeks a set of good practices for multi-modal action recognition, with a particular interest in circumstances where some modalities are not available at an inference time. First, we study how to effectively regularize the model during training (e.g., data augmentation). Second, we investigate on fusion methods for robustness to missing modalities: we find that transformer-based fusion shows better robustness for missing modality than summation or concatenation. Third, we propose a simple modular network, ActionMAE, which learns missing modality predictive coding by randomly dropping modality features and tries to reconstruct them with the remaining modality features. Coupling these good practices, we build a model that is not only effective in multi-modal action recognition but also robust to modality missing. Our model achieves the state-of-the-arts on multiple benchmarks and maintains competitive performances even in missing modality scenarios. Codes are available at https://github.com/sangminwoo/ActionMAE.
"Understanding Robustness Lottery": A Geometric Visual Comparative Analysis of Neural Network Pruning Approaches
Deep learning approaches have provided state-of-the-art performance in many applications by relying on large and overparameterized neural networks. However, such networks have been shown to be very brittle and are difficult to deploy on resource-limited platforms. Model pruning, i.e., reducing the size of the network, is a widely adopted strategy that can lead to a more robust and compact model. Many heuristics exist for model pruning, but empirical studies show that some heuristics improve performance whereas others can make models more brittle or have other side effects. This work aims to shed light on how different pruning methods alter the network's internal feature representation and the corresponding impact on model performance. To facilitate a comprehensive comparison and characterization of the high-dimensional model feature space, we introduce a visual geometric analysis of feature representations. We decomposed and evaluated a set of critical geometric concepts from the common adopted classification loss, and used them to design a visualization system to compare and highlight the impact of pruning on model performance and feature representation. The proposed tool provides an environment for in-depth comparison of pruning methods and a comprehensive understanding of how model response to common data corruption. By leveraging the proposed visualization, machine learning researchers can reveal the similarities between pruning methods and redundant in robustness evaluation benchmarks, obtain geometric insights about the differences between pruned models that achieve superior robustness performance, and identify samples that are robust or fragile to model pruning and common data corruption to model pruning and data corruption but also obtain insights and explanations on how some pruned models achieve superior robustness performance.
Dynamic Neural Network is All You Need: Understanding the Robustness of Dynamic Mechanisms in Neural Networks
Deep Neural Networks (DNNs) have been used to solve different day-to-day problems. Recently, DNNs have been deployed in real-time systems, and lowering the energy consumption and response time has become the need of the hour. To address this scenario, researchers have proposed incorporating dynamic mechanism to static DNNs (SDNN) to create Dynamic Neural Networks (DyNNs) performing dynamic amounts of computation based on the input complexity. Although incorporating dynamic mechanism into SDNNs would be preferable in real-time systems, it also becomes important to evaluate how the introduction of dynamic mechanism impacts the robustness of the models. However, there has not been a significant number of works focusing on the robustness trade-off between SDNNs and DyNNs. To address this issue, we propose to investigate the robustness of dynamic mechanism in DyNNs and how dynamic mechanism design impacts the robustness of DyNNs. For that purpose, we evaluate three research questions. These evaluations are performed on three models and two datasets. Through the studies, we find that attack transferability from DyNNs to SDNNs is higher than attack transferability from SDNNs to DyNNs. Also, we find that DyNNs can be used to generate adversarial samples more efficiently than SDNNs. Then, through research studies, we provide insight into the design choices that can increase robustness of DyNNs against the attack generated using static model. Finally, we propose a novel attack to understand the additional attack surface introduced by the dynamic mechanism and provide design choices to improve robustness against the attack.
Sparse Representations Improve Adversarial Robustness of Neural Network Classifiers
Deep neural networks perform remarkably well on image classification tasks but remain vulnerable to carefully crafted adversarial perturbations. This work revisits linear dimensionality reduction as a simple, data-adapted defense. We empirically compare standard Principal Component Analysis (PCA) with its sparse variant (SPCA) as front-end feature extractors for downstream classifiers, and we complement these experiments with a theoretical analysis. On the theory side, we derive exact robustness certificates for linear heads applied to SPCA features: for both ell_infty and ell_2 threat models (binary and multiclass), the certified radius grows as the dual norms of W^top u shrink, where W is the projection and u the head weights. We further show that for general (non-linear) heads, sparsity reduces operator-norm bounds through a Lipschitz composition argument, predicting lower input sensitivity. Empirically, with a small non-linear network after the projection, SPCA consistently degrades more gracefully than PCA under strong white-box and black-box attacks while maintaining competitive clean accuracy. Taken together, the theory identifies the mechanism (sparser projections reduce adversarial leverage) and the experiments verify that this benefit persists beyond the linear setting. Our code is available at https://github.com/killian31/SPCARobustness.
Enhancing Environmental Robustness in Few-shot Learning via Conditional Representation Learning
Few-shot learning (FSL) has recently been extensively utilized to overcome the scarcity of training data in domain-specific visual recognition. In real-world scenarios, environmental factors such as complex backgrounds, varying lighting conditions, long-distance shooting, and moving targets often cause test images to exhibit numerous incomplete targets or noise disruptions. However, current research on evaluation datasets and methodologies has largely ignored the concept of "environmental robustness", which refers to maintaining consistent performance in complex and diverse physical environments. This neglect has led to a notable decline in the performance of FSL models during practical testing compared to their training performance. To bridge this gap, we introduce a new real-world multi-domain few-shot learning (RD-FSL) benchmark, which includes four domains and six evaluation datasets. The test images in this benchmark feature various challenging elements, such as camouflaged objects, small targets, and blurriness. Our evaluation experiments reveal that existing methods struggle to utilize training images effectively to generate accurate feature representations for challenging test images. To address this problem, we propose a novel conditional representation learning network (CRLNet) that integrates the interactions between training and testing images as conditional information in their respective representation processes. The main goal is to reduce intra-class variance or enhance inter-class variance at the feature representation level. Finally, comparative experiments reveal that CRLNet surpasses the current state-of-the-art methods, achieving performance improvements ranging from 6.83% to 16.98% across diverse settings and backbones. The source code and dataset are available at https://github.com/guoqianyu-alberta/Conditional-Representation-Learning.
Rapid Network Adaptation: Learning to Adapt Neural Networks Using Test-Time Feedback
We propose a method for adapting neural networks to distribution shifts at test-time. In contrast to training-time robustness mechanisms that attempt to anticipate and counter the shift, we create a closed-loop system and make use of a test-time feedback signal to adapt a network on the fly. We show that this loop can be effectively implemented using a learning-based function, which realizes an amortized optimizer for the network. This leads to an adaptation method, named Rapid Network Adaptation (RNA), that is notably more flexible and orders of magnitude faster than the baselines. Through a broad set of experiments using various adaptation signals and target tasks, we study the efficiency and flexibility of this method. We perform the evaluations using various datasets (Taskonomy, Replica, ScanNet, Hypersim, COCO, ImageNet), tasks (depth, optical flow, semantic segmentation, classification), and distribution shifts (Cross-datasets, 2D and 3D Common Corruptions) with promising results. We end with a discussion on general formulations for handling distribution shifts and our observations from comparing with similar approaches from other domains.
ProARD: progressive adversarial robustness distillation: provide wide range of robust students
Adversarial Robustness Distillation (ARD) has emerged as an effective method to enhance the robustness of lightweight deep neural networks against adversarial attacks. Current ARD approaches have leveraged a large robust teacher network to train one robust lightweight student. However, due to the diverse range of edge devices and resource constraints, current approaches require training a new student network from scratch to meet specific constraints, leading to substantial computational costs and increased CO2 emissions. This paper proposes Progressive Adversarial Robustness Distillation (ProARD), enabling the efficient one-time training of a dynamic network that supports a diverse range of accurate and robust student networks without requiring retraining. We first make a dynamic deep neural network based on dynamic layers by encompassing variations in width, depth, and expansion in each design stage to support a wide range of architectures. Then, we consider the student network with the largest size as the dynamic teacher network. ProARD trains this dynamic network using a weight-sharing mechanism to jointly optimize the dynamic teacher network and its internal student networks. However, due to the high computational cost of calculating exact gradients for all the students within the dynamic network, a sampling mechanism is required to select a subset of students. We show that random student sampling in each iteration fails to produce accurate and robust students.
Efficient Certification of Spatial Robustness
Recent work has exposed the vulnerability of computer vision models to vector field attacks. Due to the widespread usage of such models in safety-critical applications, it is crucial to quantify their robustness against such spatial transformations. However, existing work only provides empirical robustness quantification against vector field deformations via adversarial attacks, which lack provable guarantees. In this work, we propose novel convex relaxations, enabling us, for the first time, to provide a certificate of robustness against vector field transformations. Our relaxations are model-agnostic and can be leveraged by a wide range of neural network verifiers. Experiments on various network architectures and different datasets demonstrate the effectiveness and scalability of our method.
REMIND Your Neural Network to Prevent Catastrophic Forgetting
People learn throughout life. However, incrementally updating conventional neural networks leads to catastrophic forgetting. A common remedy is replay, which is inspired by how the brain consolidates memory. Replay involves fine-tuning a network on a mixture of new and old instances. While there is neuroscientific evidence that the brain replays compressed memories, existing methods for convolutional networks replay raw images. Here, we propose REMIND, a brain-inspired approach that enables efficient replay with compressed representations. REMIND is trained in an online manner, meaning it learns one example at a time, which is closer to how humans learn. Under the same constraints, REMIND outperforms other methods for incremental class learning on the ImageNet ILSVRC-2012 dataset. We probe REMIND's robustness to data ordering schemes known to induce catastrophic forgetting. We demonstrate REMIND's generality by pioneering online learning for Visual Question Answering (VQA).
ROOT: Robust Orthogonalized Optimizer for Neural Network Training
The optimization of large language models (LLMs) remains a critical challenge, particularly as model scaling exacerbates sensitivity to algorithmic imprecision and training instability. Recent advances in optimizers have improved convergence efficiency through momentum orthogonalization, but suffer from two key robustness limitations: dimensional fragility in orthogonalization precision and vulnerability to outlier-induced noise. To address these robustness challenges, we introduce ROOT, a Robust Orthogonalized Optimizer that enhances training stability through dual robustness mechanisms. First, we develop a dimension-robust orthogonalization scheme using adaptive Newton iterations with fine-grained coefficients tailored to specific matrix sizes, ensuring consistent precision across diverse architectural configurations. Second, we introduce an optimization-robust framework via proximal optimization that suppresses outlier noise while preserving meaningful gradient directions. Extensive experiments demonstrate that ROOT achieves significantly improved robustness, with faster convergence and superior final performance compared to both Muon and Adam-based optimizers, particularly in noisy and non-convex scenarios. Our work establishes a new paradigm for developing robust and precise optimizers capable of handling the complexities of modern large-scale model training. The code will be available at https://github.com/huawei-noah/noah-research/tree/master/ROOT.
LEGNet: Lightweight Edge-Gaussian Driven Network for Low-Quality Remote Sensing Image Object Detection
Remote sensing object detection (RSOD) faces formidable challenges in complex visual environments. Aerial and satellite images inherently suffer from limitations such as low spatial resolution, sensor noise, blurred objects, low-light degradation, and partial occlusions. These degradation factors collectively compromise the feature discriminability in detection models, resulting in three key issues: (1) reduced contrast that hampers foreground-background separation, (2) structural discontinuities in edge representations, and (3) ambiguous feature responses caused by variations in illumination. These collectively weaken model robustness and deployment feasibility. To address these challenges, we propose LEGNet, a lightweight network that incorporates a novel edge-Gaussian aggregation (EGA) module specifically designed for low-quality remote sensing images. Our key innovation lies in the synergistic integration of Scharr operator-based edge priors with uncertainty-aware Gaussian modeling: (a) The orientation-aware Scharr filters preserve high-frequency edge details with rotational invariance; (b) The uncertainty-aware Gaussian layers probabilistically refine low-confidence features through variance estimation. This design enables precision enhancement while maintaining architectural simplicity. Comprehensive evaluations across four RSOD benchmarks (DOTA-v1.0, v1.5, DIOR-R, FAIR1M-v1.0) and a UAV-view dataset (VisDrone2019) demonstrate significant improvements. LEGNet achieves state-of-the-art performance across five benchmark datasets while ensuring computational efficiency, making it well-suited for deployment on resource-constrained edge devices in real-world remote sensing applications. The code is available at https://github.com/lwCVer/LEGNet.
A Fault Detection Scheme Utilizing Convolutional Neural Network for PV Solar Panels with High Accuracy
Solar energy is one of the most dependable renewable energy technologies, as it is feasible almost everywhere globally. However, improving the efficiency of a solar PV system remains a significant challenge. To enhance the robustness of the solar system, this paper proposes a trained convolutional neural network (CNN) based fault detection scheme to divide the images of photovoltaic modules. For binary classification, the algorithm classifies the input images of PV cells into two categories (i.e. faulty or normal). To further assess the network's capability, the defective PV cells are organized into shadowy, cracked, or dusty cells, and the model is utilized for multiple classifications. The success rate for the proposed CNN model is 91.1% for binary classification and 88.6% for multi-classification. Thus, the proposed trained CNN model remarkably outperforms the CNN model presented in a previous study which used the same datasets. The proposed CNN-based fault detection model is straightforward, simple and effective and could be applied in the fault detection of solar panel.
Hierarchical Cross-Attention Network for Virtual Try-On
In this paper, we present an innovative solution for the challenges of the virtual try-on task: our novel Hierarchical Cross-Attention Network (HCANet). HCANet is crafted with two primary stages: geometric matching and try-on, each playing a crucial role in delivering realistic virtual try-on outcomes. A key feature of HCANet is the incorporation of a novel Hierarchical Cross-Attention (HCA) block into both stages, enabling the effective capture of long-range correlations between individual and clothing modalities. The HCA block enhances the depth and robustness of the network. By adopting a hierarchical approach, it facilitates a nuanced representation of the interaction between the person and clothing, capturing intricate details essential for an authentic virtual try-on experience. Our experiments establish the prowess of HCANet. The results showcase its performance across both quantitative metrics and subjective evaluations of visual realism. HCANet stands out as a state-of-the-art solution, demonstrating its capability to generate virtual try-on results that excel in accuracy and realism. This marks a significant step in advancing virtual try-on technologies.
MedMNIST-C: Comprehensive benchmark and improved classifier robustness by simulating realistic image corruptions
The integration of neural-network-based systems into clinical practice is limited by challenges related to domain generalization and robustness. The computer vision community established benchmarks such as ImageNet-C as a fundamental prerequisite to measure progress towards those challenges. Similar datasets are largely absent in the medical imaging community which lacks a comprehensive benchmark that spans across imaging modalities and applications. To address this gap, we create and open-source MedMNIST-C, a benchmark dataset based on the MedMNIST+ collection covering 12 datasets and 9 imaging modalities. We simulate task and modality-specific image corruptions of varying severity to comprehensively evaluate the robustness of established algorithms against real-world artifacts and distribution shifts. We further provide quantitative evidence that our simple-to-use artificial corruptions allow for highly performant, lightweight data augmentation to enhance model robustness. Unlike traditional, generic augmentation strategies, our approach leverages domain knowledge, exhibiting significantly higher robustness when compared to widely adopted methods. By introducing MedMNIST-C and open-sourcing the corresponding library allowing for targeted data augmentations, we contribute to the development of increasingly robust methods tailored to the challenges of medical imaging. The code is available at https://github.com/francescodisalvo05/medmnistc-api .
CCDN: Checkerboard Corner Detection Network for Robust Camera Calibration
Aiming to improve the checkerboard corner detection robustness against the images with poor quality, such as lens distortion, extreme poses, and noise, we propose a novel detection algorithm which can maintain high accuracy on inputs under multiply scenarios without any prior knowledge of the checkerboard pattern. This whole algorithm includes a checkerboard corner detection network and some post-processing techniques. The network model is a fully convolutional network with improvements of loss function and learning rate, which can deal with the images of arbitrary size and produce correspondingly-sized output with a corner score on each pixel by efficient inference and learning. Besides, in order to remove the false positives, we employ three post-processing techniques including threshold related to maximum response, non-maximum suppression, and clustering. Evaluations on two different datasets show its superior robustness, accuracy and wide applicability in quantitative comparisons with the state-of-the-art methods, like MATE, ChESS, ROCHADE and OCamCalib.
Density Adaptive Attention-based Speech Network: Enhancing Feature Understanding for Mental Health Disorders
Speech-based depression detection poses significant challenges for automated detection due to its unique manifestation across individuals and data scarcity. Addressing these challenges, we introduce DAAMAudioCNNLSTM and DAAMAudioTransformer, two parameter efficient and explainable models for audio feature extraction and depression detection. DAAMAudioCNNLSTM features a novel CNN-LSTM framework with multi-head Density Adaptive Attention Mechanism (DAAM), focusing dynamically on informative speech segments. DAAMAudioTransformer, leveraging a transformer encoder in place of the CNN-LSTM architecture, incorporates the same DAAM module for enhanced attention and interpretability. These approaches not only enhance detection robustness and interpretability but also achieve state-of-the-art performance: DAAMAudioCNNLSTM with an F1 macro score of 0.702 and DAAMAudioTransformer with an F1 macro score of 0.72 on the DAIC-WOZ dataset, without reliance on supplementary information such as vowel positions and speaker information during training/validation as in previous approaches. Both models' significant explainability and efficiency in leveraging speech signals for depression detection represent a leap towards more reliable, clinically useful diagnostic tools, promising advancements in speech and mental health care. To foster further research in this domain, we make our code publicly available.
Masking Adversarial Damage: Finding Adversarial Saliency for Robust and Sparse Network
Adversarial examples provoke weak reliability and potential security issues in deep neural networks. Although adversarial training has been widely studied to improve adversarial robustness, it works in an over-parameterized regime and requires high computations and large memory budgets. To bridge adversarial robustness and model compression, we propose a novel adversarial pruning method, Masking Adversarial Damage (MAD) that employs second-order information of adversarial loss. By using it, we can accurately estimate adversarial saliency for model parameters and determine which parameters can be pruned without weakening adversarial robustness. Furthermore, we reveal that model parameters of initial layer are highly sensitive to the adversarial examples and show that compressed feature representation retains semantic information for the target objects. Through extensive experiments on three public datasets, we demonstrate that MAD effectively prunes adversarially trained networks without loosing adversarial robustness and shows better performance than previous adversarial pruning methods.
Conserve-Update-Revise to Cure Generalization and Robustness Trade-off in Adversarial Training
Adversarial training improves the robustness of neural networks against adversarial attacks, albeit at the expense of the trade-off between standard and robust generalization. To unveil the underlying factors driving this phenomenon, we examine the layer-wise learning capabilities of neural networks during the transition from a standard to an adversarial setting. Our empirical findings demonstrate that selectively updating specific layers while preserving others can substantially enhance the network's learning capacity. We therefore propose CURE, a novel training framework that leverages a gradient prominence criterion to perform selective conservation, updating, and revision of weights. Importantly, CURE is designed to be dataset- and architecture-agnostic, ensuring its applicability across various scenarios. It effectively tackles both memorization and overfitting issues, thus enhancing the trade-off between robustness and generalization and additionally, this training approach also aids in mitigating "robust overfitting". Furthermore, our study provides valuable insights into the mechanisms of selective adversarial training and offers a promising avenue for future research.
Deep Fusion Transformer Network with Weighted Vector-Wise Keypoints Voting for Robust 6D Object Pose Estimation
One critical challenge in 6D object pose estimation from a single RGBD image is efficient integration of two different modalities, i.e., color and depth. In this work, we tackle this problem by a novel Deep Fusion Transformer~(DFTr) block that can aggregate cross-modality features for improving pose estimation. Unlike existing fusion methods, the proposed DFTr can better model cross-modality semantic correlation by leveraging their semantic similarity, such that globally enhanced features from different modalities can be better integrated for improved information extraction. Moreover, to further improve robustness and efficiency, we introduce a novel weighted vector-wise voting algorithm that employs a non-iterative global optimization strategy for precise 3D keypoint localization while achieving near real-time inference. Extensive experiments show the effectiveness and strong generalization capability of our proposed 3D keypoint voting algorithm. Results on four widely used benchmarks also demonstrate that our method outperforms the state-of-the-art methods by large margins.
Private and Reliable Neural Network Inference
Reliable neural networks (NNs) provide important inference-time reliability guarantees such as fairness and robustness. Complementarily, privacy-preserving NN inference protects the privacy of client data. So far these two emerging areas have been largely disconnected, yet their combination will be increasingly important. In this work, we present the first system which enables privacy-preserving inference on reliable NNs. Our key idea is to design efficient fully homomorphic encryption (FHE) counterparts for the core algorithmic building blocks of randomized smoothing, a state-of-the-art technique for obtaining reliable models. The lack of required control flow in FHE makes this a demanding task, as na\"ive solutions lead to unacceptable runtime. We employ these building blocks to enable privacy-preserving NN inference with robustness and fairness guarantees in a system called Phoenix. Experimentally, we demonstrate that Phoenix achieves its goals without incurring prohibitive latencies. To our knowledge, this is the first work which bridges the areas of client data privacy and reliability guarantees for NNs.
Knowledge Graph Augmented Network Towards Multiview Representation Learning for Aspect-based Sentiment Analysis
Aspect-based sentiment analysis (ABSA) is a fine-grained task of sentiment analysis. To better comprehend long complicated sentences and obtain accurate aspect-specific information, linguistic and commonsense knowledge are generally required in this task. However, most current methods employ complicated and inefficient approaches to incorporate external knowledge, e.g., directly searching the graph nodes. Additionally, the complementarity between external knowledge and linguistic information has not been thoroughly studied. To this end, we propose a knowledge graph augmented network KGAN, which aims to effectively incorporate external knowledge with explicitly syntactic and contextual information. In particular, KGAN captures the sentiment feature representations from multiple different perspectives, i.e., context-, syntax- and knowledge-based. First, KGAN learns the contextual and syntactic representations in parallel to fully extract the semantic features. Then, KGAN integrates the knowledge graphs into the embedding space, based on which the aspect-specific knowledge representations are further obtained via an attention mechanism. Last, we propose a hierarchical fusion module to complement these multi-view representations in a local-to-global manner. Extensive experiments on five popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN. Notably, with the help of the pretrained model of RoBERTa, KGAN achieves a new record of state-of-the-art performance among all datasets.
Boundary-Aware Segmentation Network for Mobile and Web Applications
Although deep models have greatly improved the accuracy and robustness of image segmentation, obtaining segmentation results with highly accurate boundaries and fine structures is still a challenging problem. In this paper, we propose a simple yet powerful Boundary-Aware Segmentation Network (BASNet), which comprises a predict-refine architecture and a hybrid loss, for highly accurate image segmentation. The predict-refine architecture consists of a densely supervised encoder-decoder network and a residual refinement module, which are respectively used to predict and refine a segmentation probability map. The hybrid loss is a combination of the binary cross entropy, structural similarity and intersection-over-union losses, which guide the network to learn three-level (ie, pixel-, patch- and map- level) hierarchy representations. We evaluate our BASNet on two reverse tasks including salient object segmentation, camouflaged object segmentation, showing that it achieves very competitive performance with sharp segmentation boundaries. Importantly, BASNet runs at over 70 fps on a single GPU which benefits many potential real applications. Based on BASNet, we further developed two (close to) commercial applications: AR COPY & PASTE, in which BASNet is integrated with augmented reality for "COPYING" and "PASTING" real-world objects, and OBJECT CUT, which is a web-based tool for automatic object background removal. Both applications have already drawn huge amount of attention and have important real-world impacts. The code and two applications will be publicly available at: https://github.com/NathanUA/BASNet.
Enhancing Robustness of Graph Neural Networks through p-Laplacian
With the increase of data in day-to-day life, businesses and different stakeholders need to analyze the data for better predictions. Traditionally, relational data has been a source of various insights, but with the increase in computational power and the need to understand deeper relationships between entities, the need to design new techniques has arisen. For this graph data analysis has become an extraordinary tool for understanding the data, which reveals more realistic and flexible modelling of complex relationships. Recently, Graph Neural Networks (GNNs) have shown great promise in various applications, such as social network analysis, recommendation systems, drug discovery, and more. However, many adversarial attacks can happen over the data, whether during training (poisoning attack) or during testing (evasion attack), which can adversely manipulate the desired outcome from the GNN model. Therefore, it is crucial to make the GNNs robust to such attacks. The existing robustness methods are computationally demanding and perform poorly when the intensity of attack increases. This paper presents a computationally efficient framework, namely, pLapGNN, based on weighted p-Laplacian for making GNNs robust. Empirical evaluation on real datasets establishes the efficacy and efficiency of the proposed method.
Maintaining Adversarial Robustness in Continuous Learning
Adversarial robustness is essential for security and reliability of machine learning systems. However, adversarial robustness enhanced by defense algorithms is easily erased as the neural network's weights update to learn new tasks. To address this vulnerability, it is essential to improve the capability of neural networks in terms of robust continual learning. Specially, we propose a novel gradient projection technique that effectively stabilizes sample gradients from previous data by orthogonally projecting back-propagation gradients onto a crucial subspace before using them for weight updates. This technique can maintaining robustness by collaborating with a class of defense algorithms through sample gradient smoothing. The experimental results on four benchmarks including Split-CIFAR100 and Split-miniImageNet, demonstrate that the superiority of the proposed approach in mitigating rapidly degradation of robustness during continual learning even when facing strong adversarial attacks.
A Binary Classification Social Network Dataset for Graph Machine Learning
Social networks have a vast range of applications with graphs. The available benchmark datasets are citation, co-occurrence, e-commerce networks, etc, with classes ranging from 3 to 15. However, there is no benchmark classification social network dataset for graph machine learning. This paper fills the gap and presents the Binary Classification Social Network Dataset (BiSND), designed for graph machine learning applications to predict binary classes. We present the BiSND in tabular and graph formats to verify its robustness across classical and advanced machine learning. We employ a diverse set of classifiers, including four traditional machine learning algorithms (Decision Trees, K-Nearest Neighbour, Random Forest, XGBoost), one Deep Neural Network (multi-layer perceptrons), one Graph Neural Network (Graph Convolutional Network), and three state-of-the-art Graph Contrastive Learning methods (BGRL, GRACE, DAENS). Our findings reveal that BiSND is suitable for classification tasks, with F1-scores ranging from 67.66 to 70.15, indicating promising avenues for future enhancements.
A Robust Prototype-Based Network with Interpretable RBF Classifier Foundations
Prototype-based classification learning methods are known to be inherently interpretable. However, this paradigm suffers from major limitations compared to deep models, such as lower performance. This led to the development of the so-called deep Prototype-Based Networks (PBNs), also known as prototypical parts models. In this work, we analyze these models with respect to different properties, including interpretability. In particular, we focus on the Classification-by-Components (CBC) approach, which uses a probabilistic model to ensure interpretability and can be used as a shallow or deep architecture. We show that this model has several shortcomings, like creating contradicting explanations. Based on these findings, we propose an extension of CBC that solves these issues. Moreover, we prove that this extension has robustness guarantees and derive a loss that optimizes robustness. Additionally, our analysis shows that most (deep) PBNs are related to (deep) RBF classifiers, which implies that our robustness guarantees generalize to shallow RBF classifiers. The empirical evaluation demonstrates that our deep PBN yields state-of-the-art classification accuracy on different benchmarks while resolving the interpretability shortcomings of other approaches. Further, our shallow PBN variant outperforms other shallow PBNs while being inherently interpretable and exhibiting provable robustness guarantees.
Improved Robustness for Deep Learning-based Segmentation of Multi-Center Myocardial Perfusion MRI Datasets Using Data Adaptive Uncertainty-guided Space-time Analysis
Background. Fully automatic analysis of myocardial perfusion MRI datasets enables rapid and objective reporting of stress/rest studies in patients with suspected ischemic heart disease. Developing deep learning techniques that can analyze multi-center datasets despite limited training data and variations in software and hardware is an ongoing challenge. Methods. Datasets from 3 medical centers acquired at 3T (n = 150 subjects) were included: an internal dataset (inD; n = 95) and two external datasets (exDs; n = 55) used for evaluating the robustness of the trained deep neural network (DNN) models against differences in pulse sequence (exD-1) and scanner vendor (exD-2). A subset of inD (n = 85) was used for training/validation of a pool of DNNs for segmentation, all using the same spatiotemporal U-Net architecture and hyperparameters but with different parameter initializations. We employed a space-time sliding-patch analysis approach that automatically yields a pixel-wise "uncertainty map" as a byproduct of the segmentation process. In our approach, a given test case is segmented by all members of the DNN pool and the resulting uncertainty maps are leveraged to automatically select the "best" one among the pool of solutions. Results. The proposed DAUGS analysis approach performed similarly to the established approach on the internal dataset (p = n.s.) whereas it significantly outperformed on the external datasets (p < 0.005 for exD-1 and exD-2). Moreover, the number of image series with "failed" segmentation was significantly lower for the proposed vs. the established approach (4.3% vs. 17.1%, p < 0.0005). Conclusions. The proposed DAUGS analysis approach has the potential to improve the robustness of deep learning methods for segmentation of multi-center stress perfusion datasets with variations in the choice of pulse sequence, site location or scanner vendor.
Time Evidence Fusion Network: Multi-source View in Long-Term Time Series Forecasting
In practical scenarios, time series forecasting necessitates not only accuracy but also efficiency. Consequently, the exploration of model architectures remains a perennially trending topic in research. To address these challenges, we propose a novel backbone architecture named Time Evidence Fusion Network (TEFN) from the perspective of information fusion. Specifically, we introduce the Basic Probability Assignment (BPA) Module based on evidence theory to capture the uncertainty of multivariate time series data from both channel and time dimensions. Additionally, we develop a novel multi-source information fusion method to effectively integrate the two distinct dimensions from BPA output, leading to improved forecasting accuracy. Lastly, we conduct extensive experiments to demonstrate that TEFN achieves performance comparable to state-of-the-art methods while maintaining significantly lower complexity and reduced training time. Also, our experiments show that TEFN exhibits high robustness, with minimal error fluctuations during hyperparameter selection. Furthermore, due to the fact that BPA is derived from fuzzy theory, TEFN offers a high degree of interpretability. Therefore, the proposed TEFN balances accuracy, efficiency, stability, and interpretability, making it a desirable solution for time series forecasting.
Enhancing Infrared Small Target Detection Robustness with Bi-Level Adversarial Framework
The detection of small infrared targets against blurred and cluttered backgrounds has remained an enduring challenge. In recent years, learning-based schemes have become the mainstream methodology to establish the mapping directly. However, these methods are susceptible to the inherent complexities of changing backgrounds and real-world disturbances, leading to unreliable and compromised target estimations. In this work, we propose a bi-level adversarial framework to promote the robustness of detection in the presence of distinct corruptions. We first propose a bi-level optimization formulation to introduce dynamic adversarial learning. Specifically, it is composited by the learnable generation of corruptions to maximize the losses as the lower-level objective and the robustness promotion of detectors as the upper-level one. We also provide a hierarchical reinforced learning strategy to discover the most detrimental corruptions and balance the performance between robustness and accuracy. To better disentangle the corruptions from salient features, we also propose a spatial-frequency interaction network for target detection. Extensive experiments demonstrate our scheme remarkably improves 21.96% IOU across a wide array of corruptions and notably promotes 4.97% IOU on the general benchmark. The source codes are available at https://github.com/LiuZhu-CV/BALISTD.
Adversarial robustness of amortized Bayesian inference
Bayesian inference usually requires running potentially costly inference procedures separately for every new observation. In contrast, the idea of amortized Bayesian inference is to initially invest computational cost in training an inference network on simulated data, which can subsequently be used to rapidly perform inference (i.e., to return estimates of posterior distributions) for new observations. This approach has been applied to many real-world models in the sciences and engineering, but it is unclear how robust the approach is to adversarial perturbations in the observed data. Here, we study the adversarial robustness of amortized Bayesian inference, focusing on simulation-based estimation of multi-dimensional posterior distributions. We show that almost unrecognizable, targeted perturbations of the observations can lead to drastic changes in the predicted posterior and highly unrealistic posterior predictive samples, across several benchmark tasks and a real-world example from neuroscience. We propose a computationally efficient regularization scheme based on penalizing the Fisher information of the conditional density estimator, and show how it improves the adversarial robustness of amortized Bayesian inference.
SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal
Makeup transfer is not only to extract the makeup style of the reference image, but also to render the makeup style to the semantic corresponding position of the target image. However, most existing methods focus on the former and ignore the latter, resulting in a failure to achieve desired results. To solve the above problems, we propose a unified Symmetric Semantic-Aware Transformer (SSAT) network, which incorporates semantic correspondence learning to realize makeup transfer and removal simultaneously. In SSAT, a novel Symmetric Semantic Corresponding Feature Transfer (SSCFT) module and a weakly supervised semantic loss are proposed to model and facilitate the establishment of accurate semantic correspondence. In the generation process, the extracted makeup features are spatially distorted by SSCFT to achieve semantic alignment with the target image, then the distorted makeup features are combined with unmodified makeup irrelevant features to produce the final result. Experiments show that our method obtains more visually accurate makeup transfer results, and user study in comparison with other state-of-the-art makeup transfer methods reflects the superiority of our method. Besides, we verify the robustness of the proposed method in the difference of expression and pose, object occlusion scenes, and extend it to video makeup transfer. Code will be available at https://gitee.com/sunzhaoyang0304/ssat-msp.
Breast Cancer Diagnosis in Two-View Mammography Using End-to-End Trained EfficientNet-Based Convolutional Network
Some recent studies have described deep convolutional neural networks to diagnose breast cancer in mammograms with similar or even superior performance to that of human experts. One of the best techniques does two transfer learnings: the first uses a model trained on natural images to create a "patch classifier" that categorizes small subimages; the second uses the patch classifier to scan the whole mammogram and create the "single-view whole-image classifier". We propose to make a third transfer learning to obtain a "two-view classifier" to use the two mammographic views: bilateral craniocaudal and mediolateral oblique. We use EfficientNet as the basis of our model. We "end-to-end" train the entire system using CBIS-DDSM dataset. To ensure statistical robustness, we test our system twice using: (a) 5-fold cross validation; and (b) the original training/test division of the dataset. Our technique reached an AUC of 0.9344 using 5-fold cross validation (accuracy, sensitivity and specificity are 85.13% at the equal error rate point of ROC). Using the original dataset division, our technique achieved an AUC of 0.8483, as far as we know the highest reported AUC for this problem, although the subtle differences in the testing conditions of each work do not allow for an accurate comparison. The inference code and model are available at https://github.com/dpetrini/two-views-classifier
Benchmarking the Robustness of Instance Segmentation Models
This paper presents a comprehensive evaluation of instance segmentation models with respect to real-world image corruptions as well as out-of-domain image collections, e.g. images captured by a different set-up than the training dataset. The out-of-domain image evaluation shows the generalization capability of models, an essential aspect of real-world applications and an extensively studied topic of domain adaptation. These presented robustness and generalization evaluations are important when designing instance segmentation models for real-world applications and picking an off-the-shelf pretrained model to directly use for the task at hand. Specifically, this benchmark study includes state-of-the-art network architectures, network backbones, normalization layers, models trained starting from scratch versus pretrained networks, and the effect of multi-task training on robustness and generalization. Through this study, we gain several insights. For example, we find that group normalization enhances the robustness of networks across corruptions where the image contents stay the same but corruptions are added on top. On the other hand, batch normalization improves the generalization of the models across different datasets where statistics of image features change. We also find that single-stage detectors do not generalize well to larger image resolutions than their training size. On the other hand, multi-stage detectors can easily be used on images of different sizes. We hope that our comprehensive study will motivate the development of more robust and reliable instance segmentation models.
CPP-Net: Context-aware Polygon Proposal Network for Nucleus Segmentation
Nucleus segmentation is a challenging task due to the crowded distribution and blurry boundaries of nuclei. Recent approaches represent nuclei by means of polygons to differentiate between touching and overlapping nuclei and have accordingly achieved promising performance. Each polygon is represented by a set of centroid-to-boundary distances, which are in turn predicted by features of the centroid pixel for a single nucleus. However, using the centroid pixel alone does not provide sufficient contextual information for robust prediction and thus degrades the segmentation accuracy. To handle this problem, we propose a Context-aware Polygon Proposal Network (CPP-Net) for nucleus segmentation. First, we sample a point set rather than one single pixel within each cell for distance prediction. This strategy substantially enhances contextual information and thereby improves the robustness of the prediction. Second, we propose a Confidence-based Weighting Module, which adaptively fuses the predictions from the sampled point set. Third, we introduce a novel Shape-Aware Perceptual (SAP) loss that constrains the shape of the predicted polygons. Here, the SAP loss is based on an additional network that is pre-trained by means of mapping the centroid probability map and the pixel-to-boundary distance maps to a different nucleus representation. Extensive experiments justify the effectiveness of each component in the proposed CPP-Net. Finally, CPP-Net is found to achieve state-of-the-art performance on three publicly available databases, namely DSB2018, BBBC06, and PanNuke. Code of this paper is available at \url{https://github.com/csccsccsccsc/cpp-net
Attention-Driven Dynamic Graph Convolutional Network for Multi-Label Image Recognition
Recent studies often exploit Graph Convolutional Network (GCN) to model label dependencies to improve recognition accuracy for multi-label image recognition. However, constructing a graph by counting the label co-occurrence possibilities of the training data may degrade model generalizability, especially when there exist occasional co-occurrence objects in test images. Our goal is to eliminate such bias and enhance the robustness of the learnt features. To this end, we propose an Attention-Driven Dynamic Graph Convolutional Network (ADD-GCN) to dynamically generate a specific graph for each image. ADD-GCN adopts a Dynamic Graph Convolutional Network (D-GCN) to model the relation of content-aware category representations that are generated by a Semantic Attention Module (SAM). Extensive experiments on public multi-label benchmarks demonstrate the effectiveness of our method, which achieves mAPs of 85.2%, 96.0%, and 95.5% on MS-COCO, VOC2007, and VOC2012, respectively, and outperforms current state-of-the-art methods with a clear margin. All codes can be found at https://github.com/Yejin0111/ADD-GCN.
Automatic Perturbation Analysis for Scalable Certified Robustness and Beyond
Linear relaxation based perturbation analysis (LiRPA) for neural networks, which computes provable linear bounds of output neurons given a certain amount of input perturbation, has become a core component in robustness verification and certified defense. The majority of LiRPA-based methods focus on simple feed-forward networks and need particular manual derivations and implementations when extended to other architectures. In this paper, we develop an automatic framework to enable perturbation analysis on any neural network structures, by generalizing existing LiRPA algorithms such as CROWN to operate on general computational graphs. The flexibility, differentiability and ease of use of our framework allow us to obtain state-of-the-art results on LiRPA based certified defense on fairly complicated networks like DenseNet, ResNeXt and Transformer that are not supported by prior works. Our framework also enables loss fusion, a technique that significantly reduces the computational complexity of LiRPA for certified defense. For the first time, we demonstrate LiRPA based certified defense on Tiny ImageNet and Downscaled ImageNet where previous approaches cannot scale to due to the relatively large number of classes. Our work also yields an open-source library for the community to apply LiRPA to areas beyond certified defense without much LiRPA expertise, e.g., we create a neural network with a probably flat optimization landscape by applying LiRPA to network parameters. Our opensource library is available at https://github.com/KaidiXu/auto_LiRPA.
Demystifying Network Foundation Models
This work presents a systematic investigation into the latent knowledge encoded within Network Foundation Models (NFMs) that focuses on hidden representations analysis rather than pure downstream task performance. Different from existing efforts, we analyze the models through a three-part evaluation: Embedding Geometry Analysis to assess representation space utilization, Metric Alignment Assessment to measure correspondence with domain-expert features, and Causal Sensitivity Testing to evaluate robustness to protocol perturbations. Using five diverse network datasets spanning controlled and real-world environments, we evaluate four state-of-the-art NFMs, revealing that they all exhibit significant anisotropy, inconsistent feature sensitivity patterns, an inability to separate the high-level context, payload dependency, and other properties. Our work identifies numerous limitations across all models and demonstrates that addressing them can significantly improve model performance (by up to +0.35 F_1 score without architectural changes).
The Physics-Informed Neural Network Gravity Model: Generation III
Scientific machine learning and the advent of the Physics-Informed Neural Network (PINN) show considerable potential in their capacity to identify solutions to complex differential equations. Over the past two years, much work has gone into the development of PINNs capable of solving the gravity field modeling problem -- i.e.\ learning a differentiable form of the gravitational potential from position and acceleration estimates. While the past PINN gravity models (PINN-GMs) have demonstrated advantages in model compactness, robustness to noise, and sample efficiency; there remain key modeling challenges which this paper aims to address. Specifically, this paper introduces the third generation of the Physics-Informed Neural Network Gravity Model (PINN-GM-III) which solves the problems of extrapolation error, bias towards low-altitude samples, numerical instability at high-altitudes, and compliant boundary conditions through numerous modifications to the model's design. The PINN-GM-III is tested by modeling a known heterogeneous density asteroid, and its performance is evaluated using seven core metrics which showcases its strengths against its predecessors and other analytic and numerical gravity models.
Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive Smoothing
While prior research has proposed a plethora of methods that build neural classifiers robust against adversarial robustness, practitioners are still reluctant to adopt them due to their unacceptably severe clean accuracy penalties. This paper significantly alleviates this accuracy-robustness trade-off by mixing the output probabilities of a standard classifier and a robust classifier, where the standard network is optimized for clean accuracy and is not robust in general. We show that the robust base classifier's confidence difference for correct and incorrect examples is the key to this improvement. In addition to providing intuitions and empirical evidence, we theoretically certify the robustness of the mixed classifier under realistic assumptions. Furthermore, we adapt an adversarial input detector into a mixing network that adaptively adjusts the mixture of the two base models, further reducing the accuracy penalty of achieving robustness. The proposed flexible method, termed "adaptive smoothing", can work in conjunction with existing or even future methods that improve clean accuracy, robustness, or adversary detection. Our empirical evaluation considers strong attack methods, including AutoAttack and adaptive attack. On the CIFAR-100 dataset, our method achieves an 85.21% clean accuracy while maintaining a 38.72% ell_infty-AutoAttacked (epsilon = 8/255) accuracy, becoming the second most robust method on the RobustBench CIFAR-100 benchmark as of submission, while improving the clean accuracy by ten percentage points compared with all listed models. The code that implements our method is available at https://github.com/Bai-YT/AdaptiveSmoothing.
Enhancing Certified Robustness via Block Reflector Orthogonal Layers and Logit Annealing Loss
Lipschitz neural networks are well-known for providing certified robustness in deep learning. In this paper, we present a novel, efficient Block Reflector Orthogonal (BRO) layer that enhances the capability of orthogonal layers on constructing more expressive Lipschitz neural architectures. In addition, by theoretically analyzing the nature of Lipschitz neural networks, we introduce a new loss function that employs an annealing mechanism to increase margin for most data points. This enables Lipschitz models to provide better certified robustness. By employing our BRO layer and loss function, we design BRONet - a simple yet effective Lipschitz neural network that achieves state-of-the-art certified robustness. Extensive experiments and empirical analysis on CIFAR-10/100, Tiny-ImageNet, and ImageNet validate that our method outperforms existing baselines. The implementation is available at https://github.com/ntuaislab/BRONet.
LightGNN: Simple Graph Neural Network for Recommendation
Graph neural networks (GNNs) have demonstrated superior performance in collaborative recommendation through their ability to conduct high-order representation smoothing, effectively capturing structural information within users' interaction patterns. However, existing GNN paradigms face significant challenges in scalability and robustness when handling large-scale, noisy, and real-world datasets. To address these challenges, we present LightGNN, a lightweight and distillation-based GNN pruning framework designed to substantially reduce model complexity while preserving essential collaboration modeling capabilities. Our LightGNN framework introduces a computationally efficient pruning module that adaptively identifies and removes redundant edges and embedding entries for model compression. The framework is guided by a resource-friendly hierarchical knowledge distillation objective, whose intermediate layer augments the observed graph to maintain performance, particularly in high-rate compression scenarios. Extensive experiments on public datasets demonstrate LightGNN's effectiveness, significantly improving both computational efficiency and recommendation accuracy. Notably, LightGNN achieves an 80% reduction in edge count and 90% reduction in embedding entries while maintaining performance comparable to more complex state-of-the-art baselines. The implementation of our LightGNN framework is available at the github repository: https://github.com/HKUDS/LightGNN.
LayerShuffle: Enhancing Robustness in Vision Transformers by Randomizing Layer Execution Order
Due to their architecture and how they are trained, artificial neural networks are typically not robust toward pruning, replacing, or shuffling layers at test time. However, such properties would be desirable for different applications, such as distributed neural network architectures where the order of execution cannot be guaranteed or parts of the network can fail during inference. In this work, we address these issues through a number of proposed training approaches for vision transformers whose most important component is randomizing the execution order of attention modules at training time. We show that with our proposed approaches, vision transformers are indeed capable to adapt to arbitrary layer execution orders at test time assuming one tolerates a reduction (about 20\%) in accuracy at the same model size. We also find that our trained models can be randomly merged with each other resulting in functional ("Frankenstein") models without loss of performance compared to the source models. Finally, we layer-prune our models at test time and find that their performance declines gracefully.
KANQAS: Kolmogorov-Arnold Network for Quantum Architecture Search
Quantum architecture Search (QAS) is a promising direction for optimization and automated design of quantum circuits towards quantum advantage. Recent techniques in QAS emphasize Multi-Layer Perceptron (MLP)-based deep Q-networks. However, their interpretability remains challenging due to the large number of learnable parameters and the complexities involved in selecting appropriate activation functions. In this work, to overcome these challenges, we utilize the Kolmogorov-Arnold Network (KAN) in the QAS algorithm, analyzing their efficiency in the task of quantum state preparation and quantum chemistry. In quantum state preparation, our results show that in a noiseless scenario, the probability of success is 2 to 5 times higher than MLPs. In noisy environments, KAN outperforms MLPs in fidelity when approximating these states, showcasing its robustness against noise. In tackling quantum chemistry problems, we enhance the recently proposed QAS algorithm by integrating curriculum reinforcement learning with a KAN structure. This facilitates a more efficient design of parameterized quantum circuits by reducing the number of required 2-qubit gates and circuit depth. Further investigation reveals that KAN requires a significantly smaller number of learnable parameters compared to MLPs; however, the average time of executing each episode for KAN is higher.
Locate and Verify: A Two-Stream Network for Improved Deepfake Detection
Deepfake has taken the world by storm, triggering a trust crisis. Current deepfake detection methods are typically inadequate in generalizability, with a tendency to overfit to image contents such as the background, which are frequently occurring but relatively unimportant in the training dataset. Furthermore, current methods heavily rely on a few dominant forgery regions and may ignore other equally important regions, leading to inadequate uncovering of forgery cues. In this paper, we strive to address these shortcomings from three aspects: (1) We propose an innovative two-stream network that effectively enlarges the potential regions from which the model extracts forgery evidence. (2) We devise three functional modules to handle the multi-stream and multi-scale features in a collaborative learning scheme. (3) Confronted with the challenge of obtaining forgery annotations, we propose a Semi-supervised Patch Similarity Learning strategy to estimate patch-level forged location annotations. Empirically, our method demonstrates significantly improved robustness and generalizability, outperforming previous methods on six benchmarks, and improving the frame-level AUC on Deepfake Detection Challenge preview dataset from 0.797 to 0.835 and video-level AUC on CelebDF_v1 dataset from 0.811 to 0.847. Our implementation is available at https://github.com/sccsok/Locate-and-Verify.
Audio-Visual Glance Network for Efficient Video Recognition
Deep learning has made significant strides in video understanding tasks, but the computation required to classify lengthy and massive videos using clip-level video classifiers remains impractical and prohibitively expensive. To address this issue, we propose Audio-Visual Glance Network (AVGN), which leverages the commonly available audio and visual modalities to efficiently process the spatio-temporally important parts of a video. AVGN firstly divides the video into snippets of image-audio clip pair and employs lightweight unimodal encoders to extract global visual features and audio features. To identify the important temporal segments, we use an Audio-Visual Temporal Saliency Transformer (AV-TeST) that estimates the saliency scores of each frame. To further increase efficiency in the spatial dimension, AVGN processes only the important patches instead of the whole images. We use an Audio-Enhanced Spatial Patch Attention (AESPA) module to produce a set of enhanced coarse visual features, which are fed to a policy network that produces the coordinates of the important patches. This approach enables us to focus only on the most important spatio-temporally parts of the video, leading to more efficient video recognition. Moreover, we incorporate various training techniques and multi-modal feature fusion to enhance the robustness and effectiveness of our AVGN. By combining these strategies, our AVGN sets new state-of-the-art performance in multiple video recognition benchmarks while achieving faster processing speed.
Input-gradient space particle inference for neural network ensembles
Deep Ensembles (DEs) demonstrate improved accuracy, calibration and robustness to perturbations over single neural networks partly due to their functional diversity. Particle-based variational inference (ParVI) methods enhance diversity by formalizing a repulsion term based on a network similarity kernel. However, weight-space repulsion is inefficient due to over-parameterization, while direct function-space repulsion has been found to produce little improvement over DEs. To sidestep these difficulties, we propose First-order Repulsive Deep Ensemble (FoRDE), an ensemble learning method based on ParVI, which performs repulsion in the space of first-order input gradients. As input gradients uniquely characterize a function up to translation and are much smaller in dimension than the weights, this method guarantees that ensemble members are functionally different. Intuitively, diversifying the input gradients encourages each network to learn different features, which is expected to improve the robustness of an ensemble. Experiments on image classification datasets and transfer learning tasks show that FoRDE significantly outperforms the gold-standard DEs and other ensemble methods in accuracy and calibration under covariate shift due to input perturbations.
On the Robustness of Randomized Ensembles to Adversarial Perturbations
Randomized ensemble classifiers (RECs), where one classifier is randomly selected during inference, have emerged as an attractive alternative to traditional ensembling methods for realizing adversarially robust classifiers with limited compute requirements. However, recent works have shown that existing methods for constructing RECs are more vulnerable than initially claimed, casting major doubts on their efficacy and prompting fundamental questions such as: "When are RECs useful?", "What are their limits?", and "How do we train them?". In this work, we first demystify RECs as we derive fundamental results regarding their theoretical limits, necessary and sufficient conditions for them to be useful, and more. Leveraging this new understanding, we propose a new boosting algorithm (BARRE) for training robust RECs, and empirically demonstrate its effectiveness at defending against strong ell_infty norm-bounded adversaries across various network architectures and datasets. Our code can be found at https://github.com/hsndbk4/BARRE.
On the Robustness of deep learning-based MRI Reconstruction to image transformations
Although deep learning (DL) has received much attention in accelerated magnetic resonance imaging (MRI), recent studies show that tiny input perturbations may lead to instabilities of DL-based MRI reconstruction models. However, the approaches of robustifying these models are underdeveloped. Compared to image classification, it could be much more challenging to achieve a robust MRI image reconstruction network considering its regression-based learning objective, limited amount of training data, and lack of efficient robustness metrics. To circumvent the above limitations, our work revisits the problem of DL-based image reconstruction through the lens of robust machine learning. We find a new instability source of MRI image reconstruction, i.e., the lack of reconstruction robustness against spatial transformations of an input, e.g., rotation and cutout. Inspired by this new robustness metric, we develop a robustness-aware image reconstruction method that can defend against both pixel-wise adversarial perturbations as well as spatial transformations. Extensive experiments are also conducted to demonstrate the effectiveness of our proposed approaches.
A Law of Robustness beyond Isoperimetry
We study the robust interpolation problem of arbitrary data distributions supported on a bounded space and propose a two-fold law of robustness. Robust interpolation refers to the problem of interpolating n noisy training data points in R^d by a Lipschitz function. Although this problem has been well understood when the samples are drawn from an isoperimetry distribution, much remains unknown concerning its performance under generic or even the worst-case distributions. We prove a Lipschitzness lower bound Omega(n/p) of the interpolating neural network with p parameters on arbitrary data distributions. With this result, we validate the law of robustness conjecture in prior work by Bubeck, Li, and Nagaraj on two-layer neural networks with polynomial weights. We then extend our result to arbitrary interpolating approximators and prove a Lipschitzness lower bound Omega(n^{1/d}) for robust interpolation. Our results demonstrate a two-fold law of robustness: i) we show the potential benefit of overparametrization for smooth data interpolation when n=poly(d), and ii) we disprove the potential existence of an O(1)-Lipschitz robust interpolating function when n=exp(omega(d)).
NNV: The Neural Network Verification Tool for Deep Neural Networks and Learning-Enabled Cyber-Physical Systems
This paper presents the Neural Network Verification (NNV) software tool, a set-based verification framework for deep neural networks (DNNs) and learning-enabled cyber-physical systems (CPS). The crux of NNV is a collection of reachability algorithms that make use of a variety of set representations, such as polyhedra, star sets, zonotopes, and abstract-domain representations. NNV supports both exact (sound and complete) and over-approximate (sound) reachability algorithms for verifying safety and robustness properties of feed-forward neural networks (FFNNs) with various activation functions. For learning-enabled CPS, such as closed-loop control systems incorporating neural networks, NNV provides exact and over-approximate reachability analysis schemes for linear plant models and FFNN controllers with piecewise-linear activation functions, such as ReLUs. For similar neural network control systems (NNCS) that instead have nonlinear plant models, NNV supports over-approximate analysis by combining the star set analysis used for FFNN controllers with zonotope-based analysis for nonlinear plant dynamics building on CORA. We evaluate NNV using two real-world case studies: the first is safety verification of ACAS Xu networks and the second deals with the safety verification of a deep learning-based adaptive cruise control system.
Adversarial Defense Framework for Graph Neural Network
Graph neural network (GNN), as a powerful representation learning model on graph data, attracts much attention across various disciplines. However, recent studies show that GNN is vulnerable to adversarial attacks. How to make GNN more robust? What are the key vulnerabilities in GNN? How to address the vulnerabilities and defense GNN against the adversarial attacks? In this paper, we propose DefNet, an effective adversarial defense framework for GNNs. In particular, we first investigate the latent vulnerabilities in every layer of GNNs and propose corresponding strategies including dual-stage aggregation and bottleneck perceptron. Then, to cope with the scarcity of training data, we propose an adversarial contrastive learning method to train the GNN in a conditional GAN manner by leveraging the high-level graph representation. Extensive experiments on three public datasets demonstrate the effectiveness of DefNet in improving the robustness of popular GNN variants, such as Graph Convolutional Network and GraphSAGE, under various types of adversarial attacks.
Improved Dynamic Memory Network for Dialogue Act Classification with Adversarial Training
Dialogue Act (DA) classification is a challenging problem in dialogue interpretation, which aims to attach semantic labels to utterances and characterize the speaker's intention. Currently, many existing approaches formulate the DA classification problem ranging from multi-classification to structured prediction, which suffer from two limitations: a) these methods are either handcrafted feature-based or have limited memories. b) adversarial examples can't be correctly classified by traditional training methods. To address these issues, in this paper we first cast the problem into a question and answering problem and proposed an improved dynamic memory networks with hierarchical pyramidal utterance encoder. Moreover, we apply adversarial training to train our proposed model. We evaluate our model on two public datasets, i.e., Switchboard dialogue act corpus and the MapTask corpus. Extensive experiments show that our proposed model is not only robust, but also achieves better performance when compared with some state-of-the-art baselines.
Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates
Subword units are an effective way to alleviate the open vocabulary problems in neural machine translation (NMT). While sentences are usually converted into unique subword sequences, subword segmentation is potentially ambiguous and multiple segmentations are possible even with the same vocabulary. The question addressed in this paper is whether it is possible to harness the segmentation ambiguity as a noise to improve the robustness of NMT. We present a simple regularization method, subword regularization, which trains the model with multiple subword segmentations probabilistically sampled during training. In addition, for better subword sampling, we propose a new subword segmentation algorithm based on a unigram language model. We experiment with multiple corpora and report consistent improvements especially on low resource and out-of-domain settings.
Neural Network-Based Score Estimation in Diffusion Models: Optimization and Generalization
Diffusion models have emerged as a powerful tool rivaling GANs in generating high-quality samples with improved fidelity, flexibility, and robustness. A key component of these models is to learn the score function through score matching. Despite empirical success on various tasks, it remains unclear whether gradient-based algorithms can learn the score function with a provable accuracy. As a first step toward answering this question, this paper establishes a mathematical framework for analyzing score estimation using neural networks trained by gradient descent. Our analysis covers both the optimization and the generalization aspects of the learning procedure. In particular, we propose a parametric form to formulate the denoising score-matching problem as a regression with noisy labels. Compared to the standard supervised learning setup, the score-matching problem introduces distinct challenges, including unbounded input, vector-valued output, and an additional time variable, preventing existing techniques from being applied directly. In this paper, we show that with proper designs, the evolution of neural networks during training can be accurately modeled by a series of kernel regression tasks. Furthermore, by applying an early-stopping rule for gradient descent and leveraging recent developments in neural tangent kernels, we establish the first generalization error (sample complexity) bounds for learning the score function with neural networks, despite the presence of noise in the observations. Our analysis is grounded in a novel parametric form of the neural network and an innovative connection between score matching and regression analysis, facilitating the application of advanced statistical and optimization techniques.
UniMERNet: A Universal Network for Real-World Mathematical Expression Recognition
This paper presents the UniMER dataset to provide the first study on Mathematical Expression Recognition (MER) towards complex real-world scenarios. The UniMER dataset consists of a large-scale training set UniMER-1M offering an unprecedented scale and diversity with one million training instances and a meticulously designed test set UniMER-Test that reflects a diverse range of formula distributions prevalent in real-world scenarios. Therefore, the UniMER dataset enables the training of a robust and high-accuracy MER model and comprehensive evaluation of model performance. Moreover, we introduce the Universal Mathematical Expression Recognition Network (UniMERNet), an innovative framework designed to enhance MER in practical scenarios. UniMERNet incorporates a Length-Aware Module to process formulas of varied lengths efficiently, thereby enabling the model to handle complex mathematical expressions with greater accuracy. In addition, UniMERNet employs our UniMER-1M data and image augmentation techniques to improve the model's robustness under different noise conditions. Our extensive experiments demonstrate that UniMERNet outperforms existing MER models, setting a new benchmark in various scenarios and ensuring superior recognition quality in real-world applications. The dataset and model are available at https://github.com/opendatalab/UniMERNet.
On convex decision regions in deep network representations
Current work on human-machine alignment aims at understanding machine-learned latent spaces and their correspondence to human representations. G{\"a}rdenfors' conceptual spaces is a prominent framework for understanding human representations. Convexity of object regions in conceptual spaces is argued to promote generalizability, few-shot learning, and interpersonal alignment. Based on these insights, we investigate the notion of convexity of concept regions in machine-learned latent spaces. We develop a set of tools for measuring convexity in sampled data and evaluate emergent convexity in layered representations of state-of-the-art deep networks. We show that convexity is robust to basic re-parametrization and, hence, meaningful as a quality of machine-learned latent spaces. We find that approximate convexity is pervasive in neural representations in multiple application domains, including models of images, audio, human activity, text, and medical images. Generally, we observe that fine-tuning increases the convexity of label regions. We find evidence that pretraining convexity of class label regions predicts subsequent fine-tuning performance.
End-to-End Audio Strikes Back: Boosting Augmentations Towards An Efficient Audio Classification Network
While efficient architectures and a plethora of augmentations for end-to-end image classification tasks have been suggested and heavily investigated, state-of-the-art techniques for audio classifications still rely on numerous representations of the audio signal together with large architectures, fine-tuned from large datasets. By utilizing the inherited lightweight nature of audio and novel audio augmentations, we were able to present an efficient end-to-end network with strong generalization ability. Experiments on a variety of sound classification sets demonstrate the effectiveness and robustness of our approach, by achieving state-of-the-art results in various settings. Public code is available at: https://github.com/Alibaba-MIIL/AudioClassfication{this http url}
D-CTNet: A Dual-Branch Channel-Temporal Forecasting Network with Frequency-Domain Correction
Accurate Multivariate Time Series (MTS) forecasting is crucial for collaborative design of complex systems, Digital Twin building, and maintenance ahead of time. However, the collaborative industrial environment presents new challenges for MTS forecasting models: models should decouple complex inter-variable dependencies while addressing non-stationary distribution shift brought by environmental changes. To address these challenges and improve collaborative sensing reliability, we propose a Patch-Based Dual-Branch Channel-Temporal Forecasting Network (D-CTNet). Particularly, with a parallel dual-branch design incorporating linear temporal modeling layer and channel attention mechanism, our method explicitly decouples and jointly learns intra-channel temporal evolution patterns and dynamic multivariate correlations. Furthermore, a global patch attention fusion module goes beyond the local window scope to model long range dependencies. Most importantly, aiming at non-stationarity, a Frequency-Domain Stationarity Correction mechanism adaptively suppresses distribution shift impacts from environment change by spectrum alignment. Evaluations on seven benchmark datasets show that our model achieves better forecasting accuracy and robustness compared with state-of-the-art methods. Our work shows great promise as a new forecasting engine for industrial collaborative systems.
CAGE: Continuity-Aware edGE Network Unlocks Robust Floorplan Reconstruction
We present CAGE (Continuity-Aware edGE) network, a robust framework for reconstructing vector floorplans directly from point-cloud density maps. Traditional corner-based polygon representations are highly sensitive to noise and incomplete observations, often resulting in fragmented or implausible layouts.Recent line grouping methods leverage structural cues to improve robustness but still struggle to recover fine geometric details. To address these limitations,we propose a native edge-centric formulation, modeling each wall segment as a directed, geometrically continuous edge. This representation enables inference of coherent floorplan structures, ensuring watertight, topologically valid room boundaries while improving robustness and reducing artifacts. Towards this design, we develop a dual-query transformer decoder that integrates perturbed and latent queries within a denoising framework, which not only stabilizes optimization but also accelerates convergence. Extensive experiments on Structured3D and SceneCAD show that CAGE achieves state-of-the-art performance, with F1 scores of 99.1% (rooms), 91.7% (corners), and 89.3% (angles). The method also demonstrates strong cross-dataset generalization, underscoring the efficacy of our architectural innovations. Code and pretrained models are available on our project page: https://github.com/ee-Liu/CAGE.git.
iPINNER: An Iterative Physics-Informed Neural Network with Ensemble Kalman Filter
Physics-informed neural networks (PINNs) have emerged as a powerful tool for solving forward and inverse problems involving partial differential equations (PDEs) by incorporating physical laws into the training process. However, the performance of PINNs is often hindered in real-world scenarios involving noisy observational data and missing physics, particularly in inverse problems. In this work, we propose an iterative multi-objective PINN ensemble Kalman filter (iPINNER) framework that improves the robustness and accuracy of PINNs in both forward and inverse problems by using the ensemble Kalman filter and the non-dominated sorting genetic algorithm III (NSGA-III). Specifically, NSGA-III is used as a multi-objective optimizer that can generate various ensemble members of PINNs along the optimal Pareto front, while accounting the model uncertainty in the solution space. These ensemble members are then utilized within the EnKF to assimilate noisy observational data. The EnKF's analysis is subsequently used to refine the data loss component for retraining the PINNs, thereby iteratively updating their parameters. The iterative procedure generates improved solutions to the PDEs. The proposed method is tested on two benchmark problems: the one-dimensional viscous Burgers equation and the time-fractional mixed diffusion-wave equation (TFMDWE). The numerical results show it outperforms standard PINNs in handling noisy data and missing physics.
Invisible Watermarks: Attacks and Robustness
As Generative AI continues to become more accessible, the case for robust detection of generated images in order to combat misinformation is stronger than ever. Invisible watermarking methods act as identifiers of generated content, embedding image- and latent-space messages that are robust to many forms of perturbations. The majority of current research investigates full-image attacks against images with a single watermarking method applied. We introduce novel improvements to watermarking robustness as well as minimizing degradation on image quality during attack. Firstly, we examine the application of both image-space and latent-space watermarking methods on a single image, where we propose a custom watermark remover network which preserves one of the watermarking modalities while completely removing the other during decoding. Then, we investigate localized blurring attacks (LBA) on watermarked images based on the GradCAM heatmap acquired from the watermark decoder in order to reduce the amount of degradation to the target image. Our evaluation suggests that 1) implementing the watermark remover model to preserve one of the watermark modalities when decoding the other modality slightly improves on the baseline performance, and that 2) LBA degrades the image significantly less compared to uniform blurring of the entire image. Code is available at: https://github.com/tomputer-g/IDL_WAR
Certified $\ell_2$ Attribution Robustness via Uniformly Smoothed Attributions
Model attribution is a popular tool to explain the rationales behind model predictions. However, recent work suggests that the attributions are vulnerable to minute perturbations, which can be added to input samples to fool the attributions while maintaining the prediction outputs. Although empirical studies have shown positive performance via adversarial training, an effective certified defense method is eminently needed to understand the robustness of attributions. In this work, we propose to use uniform smoothing technique that augments the vanilla attributions by noises uniformly sampled from a certain space. It is proved that, for all perturbations within the attack region, the cosine similarity between uniformly smoothed attribution of perturbed sample and the unperturbed sample is guaranteed to be lower bounded. We also derive alternative formulations of the certification that is equivalent to the original one and provides the maximum size of perturbation or the minimum smoothing radius such that the attribution can not be perturbed. We evaluate the proposed method on three datasets and show that the proposed method can effectively protect the attributions from attacks, regardless of the architecture of networks, training schemes and the size of the datasets.
A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors
The distribution of the weights of modern deep neural networks (DNNs) - crucial for uncertainty quantification and robustness - is an eminently complex object due to its extremely high dimensionality. This paper proposes one of the first large-scale explorations of the posterior distribution of deep Bayesian Neural Networks (BNNs), expanding its study to real-world vision tasks and architectures. Specifically, we investigate the optimal approach for approximating the posterior, analyze the connection between posterior quality and uncertainty quantification, delve into the impact of modes on the posterior, and explore methods for visualizing the posterior. Moreover, we uncover weight-space symmetries as a critical aspect for understanding the posterior. To this extent, we develop an in-depth assessment of the impact of both permutation and scaling symmetries that tend to obfuscate the Bayesian posterior. While the first type of transformation is known for duplicating modes, we explore the relationship between the latter and L2 regularization, challenging previous misconceptions. Finally, to help the community improve our understanding of the Bayesian posterior, we will shortly release the first large-scale checkpoint dataset, including thousands of real-world models and our codes.
Practical Convex Formulation of Robust One-hidden-layer Neural Network Training
Recent work has shown that the training of a one-hidden-layer, scalar-output fully-connected ReLU neural network can be reformulated as a finite-dimensional convex program. Unfortunately, the scale of such a convex program grows exponentially in data size. In this work, we prove that a stochastic procedure with a linear complexity well approximates the exact formulation. Moreover, we derive a convex optimization approach to efficiently solve the "adversarial training" problem, which trains neural networks that are robust to adversarial input perturbations. Our method can be applied to binary classification and regression, and provides an alternative to the current adversarial training methods, such as Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD). We demonstrate in experiments that the proposed method achieves a noticeably better adversarial robustness and performance than the existing methods.
FACESEC: A Fine-grained Robustness Evaluation Framework for Face Recognition Systems
We present FACESEC, a framework for fine-grained robustness evaluation of face recognition systems. FACESEC evaluation is performed along four dimensions of adversarial modeling: the nature of perturbation (e.g., pixel-level or face accessories), the attacker's system knowledge (about training data and learning architecture), goals (dodging or impersonation), and capability (tailored to individual inputs or across sets of these). We use FACESEC to study five face recognition systems in both closed-set and open-set settings, and to evaluate the state-of-the-art approach for defending against physically realizable attacks on these. We find that accurate knowledge of neural architecture is significantly more important than knowledge of the training data in black-box attacks. Moreover, we observe that open-set face recognition systems are more vulnerable than closed-set systems under different types of attacks. The efficacy of attacks for other threat model variations, however, appears highly dependent on both the nature of perturbation and the neural network architecture. For example, attacks that involve adversarial face masks are usually more potent, even against adversarially trained models, and the ArcFace architecture tends to be more robust than the others.
Adversarially robust deepfake media detection using fused convolutional neural network predictions
Deepfakes are synthetically generated images, videos or audios, which fraudsters use to manipulate legitimate information. Current deepfake detection systems struggle against unseen data. To address this, we employ three different deep Convolutional Neural Network (CNN) models, (1) VGG16, (2) InceptionV3, and (3) XceptionNet to classify fake and real images extracted from videos. We also constructed a fusion of the deep CNN models to improve the robustness and generalisation capability. The proposed technique outperforms state-of-the-art models with 96.5% accuracy, when tested on publicly available DeepFake Detection Challenge (DFDC) test data, comprising of 400 videos. The fusion model achieves 99% accuracy on lower quality DeepFake-TIMIT dataset videos and 91.88% on higher quality DeepFake-TIMIT videos. In addition to this, we prove that prediction fusion is more robust against adversarial attacks. If one model is compromised by an adversarial attack, the prediction fusion does not let it affect the overall classification.
Contextual Fusion For Adversarial Robustness
Mammalian brains handle complex reasoning tasks in a gestalt manner by integrating information from regions of the brain that are specialised to individual sensory modalities. This allows for improved robustness and better generalisation ability. In contrast, deep neural networks are usually designed to process one particular information stream and susceptible to various types of adversarial perturbations. While many methods exist for detecting and defending against adversarial attacks, they do not generalise across a range of attacks and negatively affect performance on clean, unperturbed data. We developed a fusion model using a combination of background and foreground features extracted in parallel from Places-CNN and Imagenet-CNN. We tested the benefits of the fusion approach on preserving adversarial robustness for human perceivable (e.g., Gaussian blur) and network perceivable (e.g., gradient-based) attacks for CIFAR-10 and MS COCO data sets. For gradient based attacks, our results show that fusion allows for significant improvements in classification without decreasing performance on unperturbed data and without need to perform adversarial retraining. Our fused model revealed improvements for Gaussian blur type perturbations as well. The increase in performance from fusion approach depended on the variability of the image contexts; larger increases were seen for classes of images with larger differences in their contexts. We also demonstrate the effect of regularization to bias the classifier decision in the presence of a known adversary. We propose that this biologically inspired approach to integrate information across multiple modalities provides a new way to improve adversarial robustness that can be complementary to current state of the art approaches.
MatchboxNet: 1D Time-Channel Separable Convolutional Neural Network Architecture for Speech Commands Recognition
We present an MatchboxNet - an end-to-end neural network for speech command recognition. MatchboxNet is a deep residual network composed from blocks of 1D time-channel separable convolution, batch-normalization, ReLU and dropout layers. MatchboxNet reaches state-of-the-art accuracy on the Google Speech Commands dataset while having significantly fewer parameters than similar models. The small footprint of MatchboxNet makes it an attractive candidate for devices with limited computational resources. The model is highly scalable, so model accuracy can be improved with modest additional memory and compute. Finally, we show how intensive data augmentation using an auxiliary noise dataset improves robustness in the presence of background noise.
PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes
Estimating the 6D pose of known objects is important for robots to interact with the real world. The problem is challenging due to the variety of objects as well as the complexity of a scene caused by clutter and occlusions between objects. In this work, we introduce PoseCNN, a new Convolutional Neural Network for 6D object pose estimation. PoseCNN estimates the 3D translation of an object by localizing its center in the image and predicting its distance from the camera. The 3D rotation of the object is estimated by regressing to a quaternion representation. We also introduce a novel loss function that enables PoseCNN to handle symmetric objects. In addition, we contribute a large scale video dataset for 6D object pose estimation named the YCB-Video dataset. Our dataset provides accurate 6D poses of 21 objects from the YCB dataset observed in 92 videos with 133,827 frames. We conduct extensive experiments on our YCB-Video dataset and the OccludedLINEMOD dataset to show that PoseCNN is highly robust to occlusions, can handle symmetric objects, and provide accurate pose estimation using only color images as input. When using depth data to further refine the poses, our approach achieves state-of-the-art results on the challenging OccludedLINEMOD dataset. Our code and dataset are available at https://rse-lab.cs.washington.edu/projects/posecnn/.
Testing Neural Network Verifiers: A Soundness Benchmark with Hidden Counterexamples
In recent years, many neural network (NN) verifiers have been developed to formally verify certain properties of neural networks such as robustness. Although many benchmarks have been constructed to evaluate the performance of NN verifiers, they typically lack a ground-truth for hard instances where no current verifier can verify and no counterexample can be found, which makes it difficult to check the soundness of a new verifier if it claims to verify hard instances which no other verifier can do. We propose to develop a soundness benchmark for NN verification. Our benchmark contains instances with deliberately inserted counterexamples while we also try to hide the counterexamples from regular adversarial attacks which can be used for finding counterexamples. We design a training method to produce neural networks with such hidden counterexamples. Our benchmark aims to be used for testing the soundness of NN verifiers and identifying falsely claimed verifiability when it is known that hidden counterexamples exist. We systematically construct our benchmark and generate instances across diverse model architectures, activation functions, input sizes, and perturbation radii. We demonstrate that our benchmark successfully identifies bugs in state-of-the-art NN verifiers, as well as synthetic bugs, providing a crucial step toward enhancing the reliability of testing NN verifiers. Our code is available at https://github.com/MVP-Harry/SoundnessBench and our benchmark is available at https://huggingface.co/datasets/SoundnessBench/SoundnessBench.
A Neural-Guided Dynamic Symbolic Network for Exploring Mathematical Expressions from Data
Symbolic regression (SR) is a powerful technique for discovering the underlying mathematical expressions from observed data. Inspired by the success of deep learning, recent efforts have focused on two categories for SR methods. One is using a neural network or genetic programming to search the expression tree directly. Although this has shown promising results, the large search space poses difficulties in learning constant factors and processing high-dimensional problems. Another approach is leveraging a transformer-based model training on synthetic data and offers advantages in inference speed. However, this method is limited to fixed small numbers of dimensions and may encounter inference problems when given data is out-of-distribution compared to the synthetic data. In this work, we propose DySymNet, a novel neural-guided Dynamic Symbolic Network for SR. Instead of searching for expressions within a large search space, we explore DySymNet with various structures and optimize them to identify expressions that better-fitting the data. With a topology structure like neural networks, DySymNet not only tackles the challenge of high-dimensional problems but also proves effective in optimizing constants. Based on extensive numerical experiments using low-dimensional public standard benchmarks and the well-known SRBench with more variables, our method achieves state-of-the-art performance in terms of fitting accuracy and robustness to noise.
Hashed Watermark as a Filter: Defeating Forging and Overwriting Attacks in Weight-based Neural Network Watermarking
As valuable digital assets, deep neural networks necessitate robust ownership protection, positioning neural network watermarking (NNW) as a promising solution. Among various NNW approaches, weight-based methods are favored for their simplicity and practicality; however, they remain vulnerable to forging and overwriting attacks. To address those challenges, we propose NeuralMark, a robust method built around a hashed watermark filter. Specifically, we utilize a hash function to generate an irreversible binary watermark from a secret key, which is then used as a filter to select the model parameters for embedding. This design cleverly intertwines the embedding parameters with the hashed watermark, providing a robust defense against both forging and overwriting attacks. An average pooling is also incorporated to resist fine-tuning and pruning attacks. Furthermore, it can be seamlessly integrated into various neural network architectures, ensuring broad applicability. Theoretically, we analyze its security boundary. Empirically, we verify its effectiveness and robustness across 13 distinct Convolutional and Transformer architectures, covering five image classification tasks and one text generation task. The source codes are available at https://github.com/AIResearch-Group/NeuralMark.
RomanTex: Decoupling 3D-aware Rotary Positional Embedded Multi-Attention Network for Texture Synthesis
Painting textures for existing geometries is a critical yet labor-intensive process in 3D asset generation. Recent advancements in text-to-image (T2I) models have led to significant progress in texture generation. Most existing research approaches this task by first generating images in 2D spaces using image diffusion models, followed by a texture baking process to achieve UV texture. However, these methods often struggle to produce high-quality textures due to inconsistencies among the generated multi-view images, resulting in seams and ghosting artifacts. In contrast, 3D-based texture synthesis methods aim to address these inconsistencies, but they often neglect 2D diffusion model priors, making them challenging to apply to real-world objects To overcome these limitations, we propose RomanTex, a multiview-based texture generation framework that integrates a multi-attention network with an underlying 3D representation, facilitated by our novel 3D-aware Rotary Positional Embedding. Additionally, we incorporate a decoupling characteristic in the multi-attention block to enhance the model's robustness in image-to-texture task, enabling semantically-correct back-view synthesis. Furthermore, we introduce a geometry-related Classifier-Free Guidance (CFG) mechanism to further improve the alignment with both geometries and images. Quantitative and qualitative evaluations, along with comprehensive user studies, demonstrate that our method achieves state-of-the-art results in texture quality and consistency.
LMS-Net: A Learned Mumford-Shah Network For Few-Shot Medical Image Segmentation
Few-shot semantic segmentation (FSS) methods have shown great promise in handling data-scarce scenarios, particularly in medical image segmentation tasks. However, most existing FSS architectures lack sufficient interpretability and fail to fully incorporate the underlying physical structures of semantic regions. To address these issues, in this paper, we propose a novel deep unfolding network, called the Learned Mumford-Shah Network (LMS-Net), for the FSS task. Specifically, motivated by the effectiveness of pixel-to-prototype comparison in prototypical FSS methods and the capability of deep priors to model complex spatial structures, we leverage our learned Mumford-Shah model (LMS model) as a mathematical foundation to integrate these insights into a unified framework. By reformulating the LMS model into prototype update and mask update tasks, we propose an alternating optimization algorithm to solve it efficiently. Further, the iterative steps of this algorithm are unfolded into corresponding network modules, resulting in LMS-Net with clear interpretability. Comprehensive experiments on three publicly available medical segmentation datasets verify the effectiveness of our method, demonstrating superior accuracy and robustness in handling complex structures and adapting to challenging segmentation scenarios. These results highlight the potential of LMS-Net to advance FSS in medical imaging applications. Our code will be available at: https://github.com/SDZhang01/LMSNet
Adapting to Length Shift: FlexiLength Network for Trajectory Prediction
Trajectory prediction plays an important role in various applications, including autonomous driving, robotics, and scene understanding. Existing approaches mainly focus on developing compact neural networks to increase prediction precision on public datasets, typically employing a standardized input duration. However, a notable issue arises when these models are evaluated with varying observation lengths, leading to a significant performance drop, a phenomenon we term the Observation Length Shift. To address this issue, we introduce a general and effective framework, the FlexiLength Network (FLN), to enhance the robustness of existing trajectory prediction techniques against varying observation periods. Specifically, FLN integrates trajectory data with diverse observation lengths, incorporates FlexiLength Calibration (FLC) to acquire temporal invariant representations, and employs FlexiLength Adaptation (FLA) to further refine these representations for more accurate future trajectory predictions. Comprehensive experiments on multiple datasets, ie, ETH/UCY, nuScenes, and Argoverse 1, demonstrate the effectiveness and flexibility of our proposed FLN framework.
Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off
Machine learning models have recently found tremendous success in data-driven control systems. However, standard learning models often suffer from an accuracy-robustness trade-off, which is a limitation that must be overcome in the control of safety-critical systems that require both high performance and rigorous robustness guarantees. In this work, we build upon the recent "locally biased smoothing" method to develop classifiers that simultaneously inherit high accuracy from standard models and high robustness from robust models. Specifically, we extend locally biased smoothing to the multi-class setting, and then overcome its performance bottleneck by generalizing the formulation to "mix" the outputs of a standard neural network and a robust neural network. We prove that when the robustness of the robust base model is certifiable, within a closed-form ell_p radius, no alteration or attack on an input can result in misclassification of the mixed classifier; the proposed model inherits the certified robustness. Moreover, we use numerical experiments on the CIFAR-10 benchmark dataset to verify that the mixed model noticeably improves the accuracy-robustness trade-off.
CDAN: Convolutional dense attention-guided network for low-light image enhancement
Low-light images, characterized by inadequate illumination, pose challenges of diminished clarity, muted colors, and reduced details. Low-light image enhancement, an essential task in computer vision, aims to rectify these issues by improving brightness, contrast, and overall perceptual quality, thereby facilitating accurate analysis and interpretation. This paper introduces the Convolutional Dense Attention-guided Network (CDAN), a novel solution for enhancing low-light images. CDAN integrates an autoencoder-based architecture with convolutional and dense blocks, complemented by an attention mechanism and skip connections. This architecture ensures efficient information propagation and feature learning. Furthermore, a dedicated post-processing phase refines color balance and contrast. Our approach demonstrates notable progress compared to state-of-the-art results in low-light image enhancement, showcasing its robustness across a wide range of challenging scenarios. Our model performs remarkably on benchmark datasets, effectively mitigating under-exposure and proficiently restoring textures and colors in diverse low-light scenarios. This achievement underscores CDAN's potential for diverse computer vision tasks, notably enabling robust object detection and recognition in challenging low-light conditions.
MarbleNet: Deep 1D Time-Channel Separable Convolutional Neural Network for Voice Activity Detection
We present MarbleNet, an end-to-end neural network for Voice Activity Detection (VAD). MarbleNet is a deep residual network composed from blocks of 1D time-channel separable convolution, batch-normalization, ReLU and dropout layers. When compared to a state-of-the-art VAD model, MarbleNet is able to achieve similar performance with roughly 1/10-th the parameter cost. We further conduct extensive ablation studies on different training methods and choices of parameters in order to study the robustness of MarbleNet in real-world VAD tasks.
MASTER: Multi-Aspect Non-local Network for Scene Text Recognition
Attention-based scene text recognizers have gained huge success, which leverages a more compact intermediate representation to learn 1d- or 2d- attention by a RNN-based encoder-decoder architecture. However, such methods suffer from attention-drift problem because high similarity among encoded features leads to attention confusion under the RNN-based local attention mechanism. Moreover, RNN-based methods have low efficiency due to poor parallelization. To overcome these problems, we propose the MASTER, a self-attention based scene text recognizer that (1) not only encodes the input-output attention but also learns self-attention which encodes feature-feature and target-target relationships inside the encoder and decoder and (2) learns a more powerful and robust intermediate representation to spatial distortion, and (3) owns a great training efficiency because of high training parallelization and a high-speed inference because of an efficient memory-cache mechanism. Extensive experiments on various benchmarks demonstrate the superior performance of our MASTER on both regular and irregular scene text. Pytorch code can be found at https://github.com/wenwenyu/MASTER-pytorch, and Tensorflow code can be found at https://github.com/jiangxiluning/MASTER-TF.
A Survey on Deep Neural Network Pruning-Taxonomy, Comparison, Analysis, and Recommendations
Modern deep neural networks, particularly recent large language models, come with massive model sizes that require significant computational and storage resources. To enable the deployment of modern models on resource-constrained environments and accelerate inference time, researchers have increasingly explored pruning techniques as a popular research direction in neural network compression. However, there is a dearth of up-to-date comprehensive review papers on pruning. To address this issue, in this survey, we provide a comprehensive review of existing research works on deep neural network pruning in a taxonomy of 1) universal/specific speedup, 2) when to prune, 3) how to prune, and 4) fusion of pruning and other compression techniques. We then provide a thorough comparative analysis of seven pairs of contrast settings for pruning (e.g., unstructured/structured) and explore emerging topics, including post-training pruning, different levels of supervision for pruning, and broader applications (e.g., adversarial robustness) to shed light on the commonalities and differences of existing methods and lay the foundation for further method development. To facilitate future research, we build a curated collection of datasets, networks, and evaluations on different applications. Finally, we provide some valuable recommendations on selecting pruning methods and prospect promising research directions. We build a repository at https://github.com/hrcheng1066/awesome-pruning.
ScaleLong: Towards More Stable Training of Diffusion Model via Scaling Network Long Skip Connection
In diffusion models, UNet is the most popular network backbone, since its long skip connects (LSCs) to connect distant network blocks can aggregate long-distant information and alleviate vanishing gradient. Unfortunately, UNet often suffers from unstable training in diffusion models which can be alleviated by scaling its LSC coefficients smaller. However, theoretical understandings of the instability of UNet in diffusion models and also the performance improvement of LSC scaling remain absent yet. To solve this issue, we theoretically show that the coefficients of LSCs in UNet have big effects on the stableness of the forward and backward propagation and robustness of UNet. Specifically, the hidden feature and gradient of UNet at any layer can oscillate and their oscillation ranges are actually large which explains the instability of UNet training. Moreover, UNet is also provably sensitive to perturbed input, and predicts an output distant from the desired output, yielding oscillatory loss and thus oscillatory gradient. Besides, we also observe the theoretical benefits of the LSC coefficient scaling of UNet in the stableness of hidden features and gradient and also robustness. Finally, inspired by our theory, we propose an effective coefficient scaling framework ScaleLong that scales the coefficients of LSC in UNet and better improves the training stability of UNet. Experimental results on four famous datasets show that our methods are superior to stabilize training and yield about 1.5x training acceleration on different diffusion models with UNet or UViT backbones. Code: https://github.com/sail-sg/ScaleLong
Demystifying Causal Features on Adversarial Examples and Causal Inoculation for Robust Network by Adversarial Instrumental Variable Regression
The origin of adversarial examples is still inexplicable in research fields, and it arouses arguments from various viewpoints, albeit comprehensive investigations. In this paper, we propose a way of delving into the unexpected vulnerability in adversarially trained networks from a causal perspective, namely adversarial instrumental variable (IV) regression. By deploying it, we estimate the causal relation of adversarial prediction under an unbiased environment dissociated from unknown confounders. Our approach aims to demystify inherent causal features on adversarial examples by leveraging a zero-sum optimization game between a casual feature estimator (i.e., hypothesis model) and worst-case counterfactuals (i.e., test function) disturbing to find causal features. Through extensive analyses, we demonstrate that the estimated causal features are highly related to the correct prediction for adversarial robustness, and the counterfactuals exhibit extreme features significantly deviating from the correct prediction. In addition, we present how to effectively inoculate CAusal FEatures (CAFE) into defense networks for improving adversarial robustness.
Redefining DDoS Attack Detection Using A Dual-Space Prototypical Network-Based Approach
Distributed Denial of Service (DDoS) attacks pose an increasingly substantial cybersecurity threat to organizations across the globe. In this paper, we introduce a new deep learning-based technique for detecting DDoS attacks, a paramount cybersecurity challenge with evolving complexity and scale. Specifically, we propose a new dual-space prototypical network that leverages a unique dual-space loss function to enhance detection accuracy for various attack patterns through geometric and angular similarity measures. This approach capitalizes on the strengths of representation learning within the latent space (a lower-dimensional representation of data that captures complex patterns for machine learning analysis), improving the model's adaptability and sensitivity towards varying DDoS attack vectors. Our comprehensive evaluation spans multiple training environments, including offline training, simulated online training, and prototypical network scenarios, to validate the model's robustness under diverse data abundance and scarcity conditions. The Multilayer Perceptron (MLP) with Attention, trained with our dual-space prototypical design over a reduced training set, achieves an average accuracy of 94.85% and an F1-Score of 94.71% across our tests, showcasing its effectiveness in dynamic and constrained real-world scenarios.
Sparsified Model Zoo Twins: Investigating Populations of Sparsified Neural Network Models
With growing size of Neural Networks (NNs), model sparsification to reduce the computational cost and memory demand for model inference has become of vital interest for both research and production. While many sparsification methods have been proposed and successfully applied on individual models, to the best of our knowledge their behavior and robustness has not yet been studied on large populations of models. With this paper, we address that gap by applying two popular sparsification methods on populations of models (so called model zoos) to create sparsified versions of the original zoos. We investigate the performance of these two methods for each zoo, compare sparsification layer-wise, and analyse agreement between original and sparsified populations. We find both methods to be very robust with magnitude pruning able outperform variational dropout with the exception of high sparsification ratios above 80%. Further, we find sparsified models agree to a high degree with their original non-sparsified counterpart, and that the performance of original and sparsified model is highly correlated. Finally, all models of the model zoos and their sparsified model twins are publicly available: modelzoos.cc.
CSI-4CAST: A Hybrid Deep Learning Model for CSI Prediction with Comprehensive Robustness and Generalization Testing
Channel state information (CSI) prediction is a promising strategy for ensuring reliable and efficient operation of massive multiple-input multiple-output (mMIMO) systems by providing timely downlink (DL) CSI. While deep learning-based methods have advanced beyond conventional model-driven and statistical approaches, they remain limited in robustness to practical non-Gaussian noise, generalization across diverse channel conditions, and computational efficiency. This paper introduces CSI-4CAST, a hybrid deep learning architecture that integrates 4 key components, i.e., Convolutional neural network residuals, Adaptive correction layers, ShuffleNet blocks, and Transformers, to efficiently capture both local and long-range dependencies in CSI prediction. To enable rigorous evaluation, this work further presents a comprehensive benchmark, CSI-RRG for Regular, Robustness and Generalization testing, which includes more than 300,000 samples across 3,060 realistic scenarios for both TDD and FDD systems. The dataset spans multiple channel models, a wide range of delay spreads and user velocities, and diverse noise types and intensity degrees. Experimental results show that CSI-4CAST achieves superior prediction accuracy with substantially lower computational cost, outperforming baselines in 88.9% of TDD scenarios and 43.8% of FDD scenario, the best performance among all evaluated models, while reducing FLOPs by 5x and 3x compared to LLM4CP, the strongest baseline. In addition, evaluation over CSI-RRG provides valuable insights into how different channel factors affect the performance and generalization capability of deep learning models. Both the dataset (https://huggingface.co/CSI-4CAST) and evaluation protocols (https://github.com/AI4OPT/CSI-4CAST) are publicly released to establish a standardized benchmark and to encourage further research on robust and efficient CSI prediction.
LLM4DistReconfig: A Fine-tuned Large Language Model for Power Distribution Network Reconfiguration
Power distribution networks are evolving due to the integration of DERs and increased customer participation. To maintain optimal operation, minimize losses, and meet varying load demands, frequent network reconfiguration is necessary. Traditionally, the reconfiguration task relies on optimization software and expert operators, but as systems grow more complex, faster and more adaptive solutions are required without expert intervention. Data-driven reconfiguration is gaining traction for its accuracy, speed, and robustness against incomplete network data. LLMs, with their ability to capture complex patterns, offer a promising approach for efficient and responsive network reconfiguration in evolving complex power networks. In this work, we introduce LLM4DistReconfig, a deep learning-based approach utilizing a fine-tuned LLM to solve the distribution network reconfiguration problem. By carefully crafting prompts and designing a custom loss function, we train the LLM with inputs representing network parameters such as buses, available lines, open lines, node voltages, and system loss. The model then predicts optimal reconfigurations by outputting updated network configurations that minimize system loss while meeting operational constraints. Our approach significantly reduces inference time compared to classical algorithms, allowing for near real-time optimal reconfiguration after training. Experimental results show that our method generates optimal configurations minimizing system loss for five individual and a combined test dataset. It also produces minimal invalid edges, no cycles, or subgraphs across all datasets, fulfilling domain-specific needs. Additionally, the generated responses contain less than 5% improper outputs on seen networks and satisfactory results on unseen networks, demonstrating its effectiveness and reliability for the reconfiguration task.
CalibFormer: A Transformer-based Automatic LiDAR-Camera Calibration Network
The fusion of LiDARs and cameras has been increasingly adopted in autonomous driving for perception tasks. The performance of such fusion-based algorithms largely depends on the accuracy of sensor calibration, which is challenging due to the difficulty of identifying common features across different data modalities. Previously, many calibration methods involved specific targets and/or manual intervention, which has proven to be cumbersome and costly. Learning-based online calibration methods have been proposed, but their performance is barely satisfactory in most cases. These methods usually suffer from issues such as sparse feature maps, unreliable cross-modality association, inaccurate calibration parameter regression, etc. In this paper, to address these issues, we propose CalibFormer, an end-to-end network for automatic LiDAR-camera calibration. We aggregate multiple layers of camera and LiDAR image features to achieve high-resolution representations. A multi-head correlation module is utilized to identify correlations between features more accurately. Lastly, we employ transformer architectures to estimate accurate calibration parameters from the correlation information. Our method achieved a mean translation error of 0.8751 cm and a mean rotation error of 0.0562 ^{circ} on the KITTI dataset, surpassing existing state-of-the-art methods and demonstrating strong robustness, accuracy, and generalization capabilities.
The Final-Stage Bottleneck: A Systematic Dissection of the R-Learner for Network Causal Inference
The R-Learner is a powerful, theoretically-grounded framework for estimating heterogeneous treatment effects, prized for its robustness to nuisance model errors. However, its application to network data, where causal heterogeneity is often graph-dependent, presents a critical challenge to its core assumption of a well-specified final-stage model. In this paper, we conduct a large-scale empirical study to systematically dissect the R-Learner framework on graphs. We provide the first rigorous evidence that the primary driver of performance is the inductive bias of the final-stage CATE estimator, an effect that dominates the choice of nuisance models. Our central finding is the quantification of a catastrophic "representation bottleneck": we prove with overwhelming statistical significance (p < 0.001) that R-Learners with a graph-blind final stage fail completely (MSE > 4.0), even when paired with powerful GNN nuisance models. Conversely, our proposed end-to-end Graph R-Learner succeeds and significantly outperforms a strong, non-DML GNN T-Learner baseline. Furthermore, we identify and provide a mechanistic explanation for a subtle, topology-dependent "nuisance bottleneck," linking it to GNN over-squashing via a targeted "Hub-Periphery Trade-off" analysis. Our findings are validated across diverse synthetic and semi-synthetic benchmarks. We release our code as a reproducible benchmark to facilitate future research on this critical "final-stage bottleneck."
Does resistance to style-transfer equal Global Shape Bias? Measuring network sensitivity to global shape configuration
Deep learning models are known to exhibit a strong texture bias, while human tends to rely heavily on global shape structure for object recognition. The current benchmark for evaluating a model's global shape bias is a set of style-transferred images with the assumption that resistance to the attack of style transfer is related to the development of global structure sensitivity in the model. In this work, we show that networks trained with style-transfer images indeed learn to ignore style, but its shape bias arises primarily from local detail. We provide a Disrupted Structure Testbench (DiST) as a direct measurement of global structure sensitivity. Our test includes 2400 original images from ImageNet-1K, each of which is accompanied by two images with the global shapes of the original image disrupted while preserving its texture via the texture synthesis program. We found that black{(1) models that performed well on the previous cue-conflict dataset do not fare well in the proposed DiST; (2) the supervised trained Vision Transformer (ViT) lose its global spatial information from positional embedding, leading to no significant advantages over Convolutional Neural Networks (CNNs) on DiST. While self-supervised learning methods, especially mask autoencoder significantly improves the global structure sensitivity of ViT. (3) Improving the global structure sensitivity is orthogonal to resistance to style-transfer, indicating that the relationship between global shape structure and local texture detail is not an either/or relationship. Training with DiST images and style-transferred images are complementary, and can be combined to train network together to enhance the global shape sensitivity and robustness of local features.} Our code will be hosted in github: https://github.com/leelabcnbc/DiST
Color Recognition in Challenging Lighting Environments: CNN Approach
Light plays a vital role in vision either human or machine vision, the perceived color is always based on the lighting conditions of the surroundings. Researchers are working to enhance the color detection techniques for the application of computer vision. They have implemented proposed several methods using different color detection approaches but still, there is a gap that can be filled. To address this issue, a color detection method, which is based on a Convolutional Neural Network (CNN), is proposed. Firstly, image segmentation is performed using the edge detection segmentation technique to specify the object and then the segmented object is fed to the Convolutional Neural Network trained to detect the color of an object in different lighting conditions. It is experimentally verified that our method can substantially enhance the robustness of color detection in different lighting conditions, and our method performed better results than existing methods.
Adversarial Attacks On Multi-Agent Communication
Growing at a fast pace, modern autonomous systems will soon be deployed at scale, opening up the possibility for cooperative multi-agent systems. Sharing information and distributing workloads allow autonomous agents to better perform tasks and increase computation efficiency. However, shared information can be modified to execute adversarial attacks on deep learning models that are widely employed in modern systems. Thus, we aim to study the robustness of such systems and focus on exploring adversarial attacks in a novel multi-agent setting where communication is done through sharing learned intermediate representations of neural networks. We observe that an indistinguishable adversarial message can severely degrade performance, but becomes weaker as the number of benign agents increases. Furthermore, we show that black-box transfer attacks are more difficult in this setting when compared to directly perturbing the inputs, as it is necessary to align the distribution of learned representations with domain adaptation. Our work studies robustness at the neural network level to contribute an additional layer of fault tolerance to modern security protocols for more secure multi-agent systems.
Robust low-rank training via approximate orthonormal constraints
With the growth of model and data sizes, a broad effort has been made to design pruning techniques that reduce the resource demand of deep learning pipelines, while retaining model performance. In order to reduce both inference and training costs, a prominent line of work uses low-rank matrix factorizations to represent the network weights. Although able to retain accuracy, we observe that low-rank methods tend to compromise model robustness against adversarial perturbations. By modeling robustness in terms of the condition number of the neural network, we argue that this loss of robustness is due to the exploding singular values of the low-rank weight matrices. Thus, we introduce a robust low-rank training algorithm that maintains the network's weights on the low-rank matrix manifold while simultaneously enforcing approximate orthonormal constraints. The resulting model reduces both training and inference costs while ensuring well-conditioning and thus better adversarial robustness, without compromising model accuracy. This is shown by extensive numerical evidence and by our main approximation theorem that shows the computed robust low-rank network well-approximates the ideal full model, provided a highly performing low-rank sub-network exists.
