new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

MaskLLM: Learnable Semi-Structured Sparsity for Large Language Models

Large Language Models (LLMs) are distinguished by their massive parameter counts, which typically result in significant redundancy. This work introduces MaskLLM, a learnable pruning method that establishes Semi-structured (or ``N:M'') Sparsity in LLMs, aimed at reducing computational overhead during inference. Instead of developing a new importance criterion, MaskLLM explicitly models N:M patterns as a learnable distribution through Gumbel Softmax sampling. This approach facilitates end-to-end training on large-scale datasets and offers two notable advantages: 1) High-quality Masks - our method effectively scales to large datasets and learns accurate masks; 2) Transferability - the probabilistic modeling of mask distribution enables the transfer learning of sparsity across domains or tasks. We assessed MaskLLM using 2:4 sparsity on various LLMs, including LLaMA-2, Nemotron-4, and GPT-3, with sizes ranging from 843M to 15B parameters, and our empirical results show substantial improvements over state-of-the-art methods. For instance, leading approaches achieve a perplexity (PPL) of 10 or greater on Wikitext compared to the dense model's 5.12 PPL, but MaskLLM achieves a significantly lower 6.72 PPL solely by learning the masks with frozen weights. Furthermore, MaskLLM's learnable nature allows customized masks for lossless application of 2:4 sparsity to downstream tasks or domains. Code is available at https://github.com/NVlabs/MaskLLM.

  • 8 authors
·
Sep 25, 2024 3

CAST: Continuous and Differentiable Semi-Structured Sparsity-Aware Training for Large Language Models

Sparsity-aware training is an effective approach for transforming large language models (LLMs) into hardware-friendly sparse patterns, thereby reducing latency and memory consumption during inference. In this paper, we propose Continuous Adaptive Sparse Trainer (CAST), a fully continuous and differentiable sparsity-aware training framework for semi-structured (or "N:M") sparse models. Unlike previous approaches that optimize sparsity patterns and weights separately, CAST enables seamless joint optimization during training, while progressively transforming the model into the desired sparsity format. Specifically, CAST introduces three key components: 1) AdamS, a sparsity-aware optimizer that leverages adaptive L1 decay to promote uniform sparsification across all parameters; 2) Weight Scaling, a module designed to mitigate the magnitude reduction caused by decay while preserving desired sparsity patterns; 3) Knowledge Distillation, which employs the dense model as a self-teacher to enhance training efficiency. We evaluate CAST under 2:4 sparsity patterns across multiple model families, ranging from 125M to 13B parameters. Our results demonstrate significant improvements over previous state-of-the-art methods in both perplexity and zero-shot accuracy with minimal training resources. Notably, on LLaMA2-7B, our 2:4 sparse model achieves a negligible perplexity increase of 0.09 and a 0.36% gain in zero-shot accuracy compared to the dense model using only 2% of the original pretraining tokens. Additionally, we establish an accurate and robust empirical scaling law to predict sparse model performance given adequate training resources. Finally, we demonstrate the practical applicability of our sparse models by evaluating them under quantization and fine-tuning scenarios.

  • 4 authors
·
Sep 30, 2025

S$^{2}$FT: Efficient, Scalable and Generalizable LLM Fine-tuning by Structured Sparsity

Current PEFT methods for LLMs can achieve either high quality, efficient training, or scalable serving, but not all three simultaneously. To address this limitation, we investigate sparse fine-tuning and observe a remarkable improvement in generalization ability. Utilizing this key insight, we propose a family of Structured Sparse Fine-Tuning (S^{2}FT) methods for LLMs, which concurrently achieve state-of-the-art fine-tuning performance, training efficiency, and inference scalability. S^{2}FT accomplishes this by "selecting sparsely and computing densely". It selects a few heads and channels in the MHA and FFN modules for each Transformer block, respectively. Next, it co-permutes weight matrices on both sides of the coupled structures in LLMs to connect the selected components in each layer into a dense submatrix. Finally, S^{2}FT performs in-place gradient updates on all submatrices. Through theoretical analysis and empirical results, our method prevents forgetting while simplifying optimization, delivers SOTA performance on both commonsense and arithmetic reasoning with 4.6% and 1.3% average improvements compared to LoRA, and surpasses full FT by 11.5% when generalizing to various domains after instruction tuning. Using our partial backpropagation algorithm, S^{2}FT saves training memory up to 3times and improves latency by 1.5-2.7times compared to full FT, while delivering an average 10% improvement over LoRA on both metrics. We further demonstrate that the weight updates in S^{2}FT can be decoupled into adapters, enabling effective fusion, fast switch, and efficient parallelism for serving multiple fine-tuned models.

  • 8 authors
·
Dec 9, 2024

Structured Bayesian Compression for Deep Neural Networks Based on The Turbo-VBI Approach

With the growth of neural network size, model compression has attracted increasing interest in recent research. As one of the most common techniques, pruning has been studied for a long time. By exploiting the structured sparsity of the neural network, existing methods can prune neurons instead of individual weights. However, in most existing pruning methods, surviving neurons are randomly connected in the neural network without any structure, and the non-zero weights within each neuron are also randomly distributed. Such irregular sparse structure can cause very high control overhead and irregular memory access for the hardware and even increase the neural network computational complexity. In this paper, we propose a three-layer hierarchical prior to promote a more regular sparse structure during pruning. The proposed three-layer hierarchical prior can achieve per-neuron weight-level structured sparsity and neuron-level structured sparsity. We derive an efficient Turbo-variational Bayesian inferencing (Turbo-VBI) algorithm to solve the resulting model compression problem with the proposed prior. The proposed Turbo-VBI algorithm has low complexity and can support more general priors than existing model compression algorithms. Simulation results show that our proposed algorithm can promote a more regular structure in the pruned neural networks while achieving even better performance in terms of compression rate and inferencing accuracy compared with the baselines.

  • 3 authors
·
Feb 21, 2023

Progressive Gradient Flow for Robust N:M Sparsity Training in Transformers

N:M Structured sparsity has garnered significant interest as a result of relatively modest overhead and improved efficiency. Additionally, this form of sparsity holds considerable appeal for reducing the memory footprint owing to their modest representation overhead. There have been efforts to develop training recipes for N:M structured sparsity, they primarily focus on low-sparsity regions (sim50\%). Nonetheless, performance of models trained using these approaches tends to decline when confronted with high-sparsity regions (>80\%). In this work, we study the effectiveness of existing sparse training recipes at high-sparsity regions and argue that these methods fail to sustain the model quality on par with low-sparsity regions. We demonstrate that the significant factor contributing to this disparity is the presence of elevated levels of induced noise in the gradient magnitudes. To mitigate this undesirable effect, we employ decay mechanisms to progressively restrict the flow of gradients towards pruned elements. Our approach improves the model quality by up to 2% and 5% in vision and language models at high sparsity regime, respectively. We also evaluate the trade-off between model accuracy and training compute cost in terms of FLOPs. At iso-training FLOPs, our method yields better performance compared to conventional sparse training recipes, exhibiting an accuracy improvement of up to 2%. The source code is available at https://github.com/abhibambhaniya/progressive_gradient_flow_nm_sparsity.

  • 7 authors
·
Feb 7, 2024 1

CFSP: An Efficient Structured Pruning Framework for LLMs with Coarse-to-Fine Activation Information

The colossal parameters and computational overhead of Large Language Models (LLMs) challenge their real-world applications. Network pruning, which targets unstructured or structured sparsity by removing redundant parameters, has recently been explored for LLM acceleration. Existing LLM pruning works focus on unstructured pruning, which typically requires special hardware support for a practical speed-up. In contrast, structured pruning can reduce latency on general devices. However, it remains a challenge to perform structured pruning efficiently and maintain performance, especially at high sparsity ratios. To this end, we introduce an efficient structured pruning framework named CFSP, which leverages both Coarse (interblock) and Fine-grained (intrablock) activation information as an importance criterion to guide pruning. The pruning is highly efficient, as it only requires one forward pass to compute feature activations. Specifically, we first allocate the sparsity budget across blocks based on their importance and then retain important weights within each block. In addition, we introduce a recovery fine-tuning strategy that adaptively allocates training overhead based on coarse-grained importance to further improve performance. Experimental results demonstrate that CFSP outperforms existing methods on diverse models across various sparsity budgets. Our code will be available at https://github.com/wyxscir/CFSP.

  • 10 authors
·
Sep 20, 2024

Boost Vision Transformer with GPU-Friendly Sparsity and Quantization

The transformer extends its success from the language to the vision domain. Because of the stacked self-attention and cross-attention blocks, the acceleration deployment of vision transformer on GPU hardware is challenging and also rarely studied. This paper thoroughly designs a compression scheme to maximally utilize the GPU-friendly 2:4 fine-grained structured sparsity and quantization. Specially, an original large model with dense weight parameters is first pruned into a sparse one by 2:4 structured pruning, which considers the GPU's acceleration of 2:4 structured sparse pattern with FP16 data type, then the floating-point sparse model is further quantized into a fixed-point one by sparse-distillation-aware quantization aware training, which considers GPU can provide an extra speedup of 2:4 sparse calculation with integer tensors. A mixed-strategy knowledge distillation is used during the pruning and quantization process. The proposed compression scheme is flexible to support supervised and unsupervised learning styles. Experiment results show GPUSQ-ViT scheme achieves state-of-the-art compression by reducing vision transformer models 6.4-12.7 times on model size and 30.3-62 times on FLOPs with negligible accuracy degradation on ImageNet classification, COCO detection and ADE20K segmentation benchmarking tasks. Moreover, GPUSQ-ViT can boost actual deployment performance by 1.39-1.79 times and 3.22-3.43 times of latency and throughput on A100 GPU, and 1.57-1.69 times and 2.11-2.51 times improvement of latency and throughput on AGX Orin.

  • 4 authors
·
May 18, 2023

UNComp: Can Matrix Entropy Uncover Sparsity? -- A Compressor Design from an Uncertainty-Aware Perspective

Deploying large language models (LLMs) for long-context inference remains challenging due to their substantial memory and computational demands. While techniques such as Key-Value (KV) cache compression are designed to reduce memory usage, they often neglect the structured sparsity inherent in the relationship between hidden states and their corresponding KV cache. In this work, we explore the role of uncertainty as a potential indicator of sparsity within LLMs. We propose UNComp, an uncertainty-aware framework that leverages truncated matrix entropy to identify areas of low information content, thereby revealing sparsity patterns that can be used for adaptive compression. Unlike traditional methods that apply uniform compression, UNComp dynamically adjusts its approach to compression, guided by uncertainty measures that reflect the importance of various model components. Our analysis shows that sparsity patterns, when derived from uncertainty estimates, can be exploited to reveal special long-range dependencies, such as retrieval heads and retrieval layers. This perspective not only enhances our understanding of how compression can be optimized but also provides new insights into the inherent sparsity of LLMs during long-context inference. By focusing on uncertainty to analyze the sparsity pattern in detail, UNComp reduces the KV cache size to 4.74% of the original, achieves a 6% prefill speedup, and improves throughput by 6.4x - not only delivering strong lossless compression performance, but also validating the effectiveness of the underlying theoretical tool. We release the code at https://github.com/menik1126/UNComp.

  • 12 authors
·
Oct 3, 2024

OTOv3: Automatic Architecture-Agnostic Neural Network Training and Compression from Structured Pruning to Erasing Operators

Compressing a predefined deep neural network (DNN) into a compact sub-network with competitive performance is crucial in the efficient machine learning realm. This topic spans various techniques, from structured pruning to neural architecture search, encompassing both pruning and erasing operators perspectives. Despite advancements, existing methods suffers from complex, multi-stage processes that demand substantial engineering and domain knowledge, limiting their broader applications. We introduce the third-generation Only-Train-Once (OTOv3), which first automatically trains and compresses a general DNN through pruning and erasing operations, creating a compact and competitive sub-network without the need of fine-tuning. OTOv3 simplifies and automates the training and compression process, minimizes the engineering efforts required from users. It offers key technological advancements: (i) automatic search space construction for general DNNs based on dependency graph analysis; (ii) Dual Half-Space Projected Gradient (DHSPG) and its enhanced version with hierarchical search (H2SPG) to reliably solve (hierarchical) structured sparsity problems and ensure sub-network validity; and (iii) automated sub-network construction using solutions from DHSPG/H2SPG and dependency graphs. Our empirical results demonstrate the efficacy of OTOv3 across various benchmarks in structured pruning and neural architecture search. OTOv3 produces sub-networks that match or exceed the state-of-the-arts. The source code will be available at https://github.com/tianyic/only_train_once.

  • 7 authors
·
Dec 14, 2023

DraftAttention: Fast Video Diffusion via Low-Resolution Attention Guidance

Diffusion transformer-based video generation models (DiTs) have recently attracted widespread attention for their excellent generation quality. However, their computational cost remains a major bottleneck-attention alone accounts for over 80% of total latency, and generating just 8 seconds of 720p video takes tens of minutes-posing serious challenges to practical application and scalability. To address this, we propose the DraftAttention, a training-free framework for the acceleration of video diffusion transformers with dynamic sparse attention on GPUs. We apply down-sampling to each feature map across frames in the compressed latent space, enabling a higher-level receptive field over the latent composed of hundreds of thousands of tokens. The low-resolution draft attention map, derived from draft query and key, exposes redundancy both spatially within each feature map and temporally across frames. We reorder the query, key, and value based on the draft attention map to guide the sparse attention computation in full resolution, and subsequently restore their original order after the attention computation. This reordering enables structured sparsity that aligns with hardware-optimized execution. Our theoretical analysis demonstrates that the low-resolution draft attention closely approximates the full attention, providing reliable guidance for constructing accurate sparse attention. Experimental results show that our method outperforms existing sparse attention approaches in video generation quality and achieves up to 1.75x end-to-end speedup on GPUs. Code: https://github.com/shawnricecake/draft-attention

  • 10 authors
·
May 17, 2025

COSPADI: Compressing LLMs via Calibration-Guided Sparse Dictionary Learning

Post-training compression of large language models (LLMs) largely relies on low-rank weight approximation, which represents each column of a weight matrix in a shared low-dimensional subspace. While this is a computationally efficient strategy, the imposed structural constraint is rigid and can lead to a noticeable model accuracy drop. In this work, we propose CoSpaDi (Compression via Sparse Dictionary Learning), a novel training-free compression framework that replaces low-rank decomposition with a more flexible structured sparse factorization in which each weight matrix is represented with a dense dictionary and a column-sparse coefficient matrix. This formulation enables a union-of-subspaces representation: different columns of the original weight matrix are approximated in distinct subspaces spanned by adaptively selected dictionary atoms, offering greater expressiveness than a single invariant basis. Crucially, CoSpaDi leverages a small calibration dataset to optimize the factorization such that the output activations of compressed projection layers closely match those of the original ones, thereby minimizing functional reconstruction error rather than mere weight approximation. This data-aware strategy preserves better model fidelity without any fine-tuning under reasonable compression ratios. Moreover, the resulting structured sparsity allows efficient sparse-dense matrix multiplication and is compatible with post-training quantization for further memory and latency gains. We evaluate CoSpaDi across multiple Llama and Qwen models under per-layer and per-group settings at 20-50\% compression ratios, demonstrating consistent superiority over state-of-the-art data-aware low-rank methods both in accuracy and perplexity. Our results establish structured sparse dictionary learning as a powerful alternative to conventional low-rank approaches for efficient LLM deployment.

MTSAIR MTSAIR
·
Sep 26, 2025 2

LServe: Efficient Long-sequence LLM Serving with Unified Sparse Attention

Large language models (LLMs) have shown remarkable potential in processing long sequences, yet efficiently serving these long-context models remains challenging due to the quadratic computational complexity of attention in the prefilling stage and the large memory footprint of the KV cache in the decoding stage. To address these issues, we introduce LServe, an efficient system that accelerates long-sequence LLM serving via hybrid sparse attention. This method unifies different hardware-friendly, structured sparsity patterns for both prefilling and decoding attention into a single framework, where computations on less important tokens are skipped block-wise. LServe demonstrates the compatibility of static and dynamic sparsity in long-context LLM attention. This design enables multiplicative speedups by combining these optimizations. Specifically, we convert half of the attention heads to nearly free streaming heads in both the prefilling and decoding stages. Additionally, we find that only a constant number of KV pages is required to preserve long-context capabilities, irrespective of context length. We then design a hierarchical KV page selection policy that dynamically prunes KV pages based on query-centric similarity. On average, LServe accelerates LLM prefilling by up to 2.9x and decoding by 1.3-2.1x over vLLM, maintaining long-context accuracy. Code is released at https://github.com/mit-han-lab/omniserve.

  • 10 authors
·
Feb 20, 2025 2

Efficient N:M Sparse DNN Training Using Algorithm, Architecture, and Dataflow Co-Design

Sparse training is one of the promising techniques to reduce the computational cost of DNNs while retaining high accuracy. In particular, N:M fine-grained structured sparsity, where only N out of consecutive M elements can be nonzero, has attracted attention due to its hardware-friendly pattern and capability of achieving a high sparse ratio. However, the potential to accelerate N:M sparse DNN training has not been fully exploited, and there is a lack of efficient hardware supporting N:M sparse training. To tackle these challenges, this paper presents a computation-efficient training scheme for N:M sparse DNNs using algorithm, architecture, and dataflow co-design. At the algorithm level, a bidirectional weight pruning method, dubbed BDWP, is proposed to leverage the N:M sparsity of weights during both forward and backward passes of DNN training, which can significantly reduce the computational cost while maintaining model accuracy. At the architecture level, a sparse accelerator for DNN training, namely SAT, is developed to neatly support both the regular dense operations and the computation-efficient N:M sparse operations. At the dataflow level, multiple optimization methods ranging from interleave mapping, pre-generation of N:M sparse weights, and offline scheduling, are proposed to boost the computational efficiency of SAT. Finally, the effectiveness of our training scheme is evaluated on a Xilinx VCU1525 FPGA card using various DNN models and datasets. Experimental results show the SAT accelerator with the BDWP sparse training method under 2:8 sparse ratio achieves an average speedup of 1.75x over that with the dense training, accompanied by a negligible accuracy loss of 0.56% on average. Furthermore, our proposed training scheme significantly improves the training throughput by 2.97~25.22x and the energy efficiency by 1.36~3.58x over prior FPGA-based accelerators.

  • 4 authors
·
Sep 22, 2023

An Efficient Sparse Inference Software Accelerator for Transformer-based Language Models on CPUs

In recent years, Transformer-based language models have become the standard approach for natural language processing tasks. However, stringent throughput and latency requirements in industrial applications are limiting their adoption. To mitigate the gap, model compression techniques such as structured pruning are being used to improve inference efficiency. However, most existing neural network inference runtimes lack adequate support for structured sparsity. In this paper, we propose an efficient sparse deep learning inference software stack for Transformer-based language models where the weights are pruned with constant block size. Our sparse software accelerator leverages Intel Deep Learning Boost to maximize the performance of sparse matrix - dense matrix multiplication (commonly abbreviated as SpMM) on CPUs. Our SpMM kernel outperforms the existing sparse libraries (oneMKL, TVM, and LIBXSMM) by an order of magnitude on a wide range of GEMM shapes under 5 representative sparsity ratios (70%, 75%, 80%, 85%, 90%). Moreover, our SpMM kernel shows up to 5x speedup over dense GEMM kernel of oneDNN, a well-optimized dense library widely used in industry. We apply our sparse accelerator on widely-used Transformer-based language models including Bert-Mini, DistilBERT, Bert-Base, and BERT-Large. Our sparse inference software shows up to 1.5x speedup over Neural Magic's Deepsparse under same configurations on Xeon on Amazon Web Services under proxy production latency constraints. We also compare our solution with two framework-based inference solutions, ONNX Runtime and PyTorch, and demonstrate up to 37x speedup over ONNX Runtime and 345x over PyTorch on Xeon under the latency constraints. All the source code is publicly available on Github: https://github.com/intel/intel-extension-for-transformers.

  • 12 authors
·
Jun 28, 2023

DSFormer: Effective Compression of Text-Transformers by Dense-Sparse Weight Factorization

With the tremendous success of large transformer models in natural language understanding, down-sizing them for cost-effective deployments has become critical. Recent studies have explored the low-rank weight factorization techniques which are efficient to train, and apply out-of-the-box to any transformer architecture. Unfortunately, the low-rank assumption tends to be over-restrictive and hinders the expressiveness of the compressed model. This paper proposes, DSFormer, a simple alternative factorization scheme which expresses a target weight matrix as the product of a small dense and a semi-structured sparse matrix. The resulting approximation is more faithful to the weight distribution in transformers and therefore achieves a stronger efficiency-accuracy trade-off. Another concern with existing factorizers is their dependence on a task-unaware initialization step which degrades the accuracy of the resulting model. DSFormer addresses this issue through a novel Straight-Through Factorizer (STF) algorithm that jointly learns all the weight factorizations to directly maximize the final task accuracy. Extensive experiments on multiple natural language understanding benchmarks demonstrate that DSFormer obtains up to 40% better compression than the state-of-the-art low-rank factorizers, leading semi-structured sparsity baselines and popular knowledge distillation approaches. Our approach is also orthogonal to mainstream compressors and offers up to 50% additional compression when added to popular distilled, layer-shared and quantized transformers. We empirically evaluate the benefits of STF over conventional optimization practices.

  • 3 authors
·
Dec 20, 2023

Pruning-aware Sparse Regularization for Network Pruning

Structural neural network pruning aims to remove the redundant channels in the deep convolutional neural networks (CNNs) by pruning the filters of less importance to the final output accuracy. To reduce the degradation of performance after pruning, many methods utilize the loss with sparse regularization to produce structured sparsity. In this paper, we analyze these sparsity-training-based methods and find that the regularization of unpruned channels is unnecessary. Moreover, it restricts the network's capacity, which leads to under-fitting. To solve this problem, we propose a novel pruning method, named MaskSparsity, with pruning-aware sparse regularization. MaskSparsity imposes the fine-grained sparse regularization on the specific filters selected by a pruning mask, rather than all the filters of the model. Before the fine-grained sparse regularization of MaskSparity, we can use many methods to get the pruning mask, such as running the global sparse regularization. MaskSparsity achieves 63.03%-FLOPs reduction on ResNet-110 by removing 60.34% of the parameters, with no top-1 accuracy loss on CIFAR-10. On ILSVRC-2012, MaskSparsity reduces more than 51.07% FLOPs on ResNet-50, with only a loss of 0.76% in the top-1 accuracy. The code is released at https://github.com/CASIA-IVA-Lab/MaskSparsity. Moreover, we have integrated the code of MaskSparity into a PyTorch pruning toolkit, EasyPruner, at https://gitee.com/casia_iva_engineer/easypruner.

  • 6 authors
·
Jan 18, 2022

OTOV2: Automatic, Generic, User-Friendly

The existing model compression methods via structured pruning typically require complicated multi-stage procedures. Each individual stage necessitates numerous engineering efforts and domain-knowledge from the end-users which prevent their wider applications onto broader scenarios. We propose the second generation of Only-Train-Once (OTOv2), which first automatically trains and compresses a general DNN only once from scratch to produce a more compact model with competitive performance without fine-tuning. OTOv2 is automatic and pluggable into various deep learning applications, and requires almost minimal engineering efforts from the users. Methodologically, OTOv2 proposes two major improvements: (i) Autonomy: automatically exploits the dependency of general DNNs, partitions the trainable variables into Zero-Invariant Groups (ZIGs), and constructs the compressed model; and (ii) Dual Half-Space Projected Gradient (DHSPG): a novel optimizer to more reliably solve structured-sparsity problems. Numerically, we demonstrate the generality and autonomy of OTOv2 on a variety of model architectures such as VGG, ResNet, CARN, ConvNeXt, DenseNet and StackedUnets, the majority of which cannot be handled by other methods without extensive handcrafting efforts. Together with benchmark datasets including CIFAR10/100, DIV2K, Fashion-MNIST, SVNH and ImageNet, its effectiveness is validated by performing competitively or even better than the state-of-the-arts. The source code is available at https://github.com/tianyic/only_train_once.

  • 5 authors
·
Mar 13, 2023

Selective Machine Learning of the Average Treatment Effect with an Invalid Instrumental Variable

Instrumental variable methods have been widely used to identify causal effects in the presence of unmeasured confounding. A key identification condition known as the exclusion restriction states that the instrument cannot have a direct effect on the outcome which is not mediated by the exposure in view. In the health and social sciences, such an assumption is often not credible. To address this concern, we consider identification conditions of the population average treatment effect with an invalid instrumental variable which does not satisfy the exclusion restriction, and derive the efficient influence function targeting the identifying functional under a nonparametric observed data model. We propose a novel multiply robust locally efficient estimator of the average treatment effect that is consistent in the union of multiple parametric nuisance models, as well as a multiply debiased machine learning estimator for which the nuisance parameters are estimated using generic machine learning methods, that effectively exploit various forms of linear or nonlinear structured sparsity in the nuisance parameter space. When one cannot be confident that any of these machine learners is consistent at sufficiently fast rates to ensure n-consistency for the average treatment effect, we introduce a new criteria for selective machine learning which leverages the multiple robustness property in order to ensure small bias. The proposed methods are illustrated through extensive simulations and a data analysis evaluating the causal effect of 401(k) participation on savings.

  • 3 authors
·
Jul 27, 2019

GQSA: Group Quantization and Sparsity for Accelerating Large Language Model Inference

Model compression has emerged as a mainstream solution to reduce memory usage and computational overhead. This paper presents Group Quantization and Sparse Acceleration (GQSA), a novel compression technique tailored for LLMs. Traditional methods typically focus exclusively on either quantization or sparsification, but relying on a single strategy often results in significant performance loss at high compression rates. In contrast, GQSA integrates quantization and sparsification in a tightly coupled manner, leveraging GPU-friendly structured group sparsity and quantization for efficient acceleration. Building upon system-algorithm co-design principles, we propose a two-stage sparse optimization strategy that ensures the performance superiority of the compressed model. On the engine side, we introduce a "task-centric" parallel strategy, which, to the best of our knowledge, is the first application in the domain of sparse computing. Compared to the traditional 2:4 sparse method, the GQSA offers a more flexible and adjustable sparsity rate, as well as a higher weight compression rate, and is efficiently compatible with weight-only quantization methods. Experimental results demonstrate that, under the GQSA W4S50% compression setting, the model's accuracy surpasses that of both 2:4 pruning and W2 quantization. Furthermore, at the inference level, GQSA outperforms W2 by 1.26times and 2:4 pruning by 2.35times in terms of speed.

  • 6 authors
·
Dec 23, 2024

Learning N:M Fine-grained Structured Sparse Neural Networks From Scratch

Sparsity in Deep Neural Networks (DNNs) has been widely studied to compress and accelerate the models on resource-constrained environments. It can be generally categorized into unstructured fine-grained sparsity that zeroes out multiple individual weights distributed across the neural network, and structured coarse-grained sparsity which prunes blocks of sub-networks of a neural network. Fine-grained sparsity can achieve a high compression ratio but is not hardware friendly and hence receives limited speed gains. On the other hand, coarse-grained sparsity cannot concurrently achieve both apparent acceleration on modern GPUs and decent performance. In this paper, we are the first to study training from scratch an N:M fine-grained structured sparse network, which can maintain the advantages of both unstructured fine-grained sparsity and structured coarse-grained sparsity simultaneously on specifically designed GPUs. Specifically, a 2:4 sparse network could achieve 2x speed-up without performance drop on Nvidia A100 GPUs. Furthermore, we propose a novel and effective ingredient, sparse-refined straight-through estimator (SR-STE), to alleviate the negative influence of the approximated gradients computed by vanilla STE during optimization. We also define a metric, Sparse Architecture Divergence (SAD), to measure the sparse network's topology change during the training process. Finally, We justify SR-STE's advantages with SAD and demonstrate the effectiveness of SR-STE by performing comprehensive experiments on various tasks. Source codes and models are available at https://github.com/NM-sparsity/NM-sparsity.

  • 8 authors
·
Feb 8, 2021

PointDistiller: Structured Knowledge Distillation Towards Efficient and Compact 3D Detection

The remarkable breakthroughs in point cloud representation learning have boosted their usage in real-world applications such as self-driving cars and virtual reality. However, these applications usually have an urgent requirement for not only accurate but also efficient 3D object detection. Recently, knowledge distillation has been proposed as an effective model compression technique, which transfers the knowledge from an over-parameterized teacher to a lightweight student and achieves consistent effectiveness in 2D vision. However, due to point clouds' sparsity and irregularity, directly applying previous image-based knowledge distillation methods to point cloud detectors usually leads to unsatisfactory performance. To fill the gap, this paper proposes PointDistiller, a structured knowledge distillation framework for point clouds-based 3D detection. Concretely, PointDistiller includes local distillation which extracts and distills the local geometric structure of point clouds with dynamic graph convolution and reweighted learning strategy, which highlights student learning on the crucial points or voxels to improve knowledge distillation efficiency. Extensive experiments on both voxels-based and raw points-based detectors have demonstrated the effectiveness of our method over seven previous knowledge distillation methods. For instance, our 4X compressed PointPillars student achieves 2.8 and 3.4 mAP improvements on BEV and 3D object detection, outperforming its teacher by 0.9 and 1.8 mAP, respectively. Codes have been released at https://github.com/RunpeiDong/PointDistiller.

  • 4 authors
·
May 23, 2022

Compresso: Structured Pruning with Collaborative Prompting Learns Compact Large Language Models

Despite the remarkable success of Large Language Models (LLMs), the massive size poses significant deployment challenges, particularly on resource-constrained hardware. While existing LLM compression methods focus on quantization, pruning remains relatively unexplored due to the high cost of training-based approaches and data collection challenges. One-shot pruning methods, although cost-effective and data-free, have become dominant in LLM pruning, but lead to performance decline under the structured pruning setting. In this work, we introduce a new paradigm for structurally pruning LLMs, called Compresso. Our approach, through the collaboration of the proposed resource-efficient pruning algorithm and the LLM itself, learns optimal pruning decisions during the training process. Compresso addresses the challenges of expensive training costs and data collection by incorporating Low-Rank Adaptation (LoRA) into the L_0 regularization during the instruction tuning process. Then, we further augment the pruning algorithm by introducing a collaborative prompt that fosters collaboration between the LLM and the pruning algorithm, significantly boosting the overall performance. To this end, Compresso prunes LLaMA-7B to 5.4B, maintaining original performance and even surpassing LLaMA-7B in reading comprehension by 2.62%. Extensive experiments demonstrate that Compresso significantly outperforms one-shot pruning baselines across various sparsity ratios, achieving up to 2.21%, 11.43%, 7.04%, and 4.81% higher scores on the commonsense reasoning, reading comprehension, MMLU, and BBH benchmarks, respectively.

  • 4 authors
·
Oct 8, 2023

DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models

Gigantic pre-trained models have become central to natural language processing (NLP), serving as the starting point for fine-tuning towards a range of downstream tasks. However, two pain points persist for this paradigm: (a) as the pre-trained models grow bigger (e.g., 175B parameters for GPT-3), even the fine-tuning process can be time-consuming and computationally expensive; (b) the fine-tuned model has the same size as its starting point by default, which is neither sensible due to its more specialized functionality, nor practical since many fine-tuned models will be deployed in resource-constrained environments. To address these pain points, we propose a framework for resource- and parameter-efficient fine-tuning by leveraging the sparsity prior in both weight updates and the final model weights. Our proposed framework, dubbed Dually Sparsity-Embedded Efficient Tuning (DSEE), aims to achieve two key objectives: (i) parameter efficient fine-tuning - by enforcing sparsity-aware low-rank updates on top of the pre-trained weights; and (ii) resource-efficient inference - by encouraging a sparse weight structure towards the final fine-tuned model. We leverage sparsity in these two directions by exploiting both unstructured and structured sparse patterns in pre-trained language models via a unified approach. Extensive experiments and in-depth investigations, with diverse network backbones (i.e., BERT, RoBERTa, and GPT-2) on dozens of datasets, consistently demonstrate impressive parameter-/inference-efficiency, while maintaining competitive downstream performance. For instance, DSEE saves about 25% inference FLOPs while achieving comparable performance, with 0.5% trainable parameters on BERT. Codes are available in https://github.com/VITA-Group/DSEE.

  • 6 authors
·
Oct 29, 2021

Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization

The extensive need for computational resources poses a significant obstacle to deploying large-scale Deep Neural Networks (DNN) on devices with constrained resources. At the same time, studies have demonstrated that a significant number of these DNN parameters are redundant and extraneous. In this paper, we introduce a novel approach for learning structured sparse neural networks, aimed at bridging the DNN hardware deployment challenges. We develop a novel regularization technique, termed Weighted Group Sparse Envelope Function (WGSEF), generalizing the Sparse Envelop Function (SEF), to select (or nullify) neuron groups, thereby reducing redundancy and enhancing computational efficiency. The method speeds up inference time and aims to reduce memory demand and power consumption, thanks to its adaptability which lets any hardware specify group definitions, such as filters, channels, filter shapes, layer depths, a single parameter (unstructured), etc. The properties of the WGSEF enable the pre-definition of a desired sparsity level to be achieved at the training convergence. In the case of redundant parameters, this approach maintains negligible network accuracy degradation or can even lead to improvements in accuracy. Our method efficiently computes the WGSEF regularizer and its proximal operator, in a worst-case linear complexity relative to the number of group variables. Employing a proximal-gradient-based optimization technique, to train the model, it tackles the non-convex minimization problem incorporating the neural network loss and the WGSEF. Finally, we experiment and illustrate the efficiency of our proposed method in terms of the compression ratio, accuracy, and inference latency.

  • 3 authors
·
Dec 25, 2022

ARMOR: High-Performance Semi-Structured Pruning via Adaptive Matrix Factorization

Large language models (LLMs) present significant deployment challenges due to their immense computational and memory requirements. While semi-structured pruning, particularly 2:4 sparsity, offers a path to practical hardware acceleration, existing methods often incur substantial performance degradation. To bridge this gap, we introduce ARMOR: (Adaptive Representation with Matrix-factORization), a novel one-shot post-training pruning algorithm. Instead of directly pruning weights, ARMOR factorizes each weight matrix into a 2:4 sparse core wrapped by two low-overhead, block diagonal matrices. These wrappers act as efficient pre and post-transformation error correctors, offering greater flexibility to preserve model quality compared to conventional 2:4 pruning techniques. The sparse core and block diagonal wrappers are chosen through a block coordinate descent algorithm that minimizes a layer-wise proxy loss. We theoretically prove this optimization is guaranteed to converge to a solution with a proxy loss less than or equal to state-of-the-art pruning algorithms. Experiments on Llama (Touvron et al., 2023; Dubey et al., 2024) and Qwen (Yang et al., 2025) model families demonstrate that ARMOR consistently and significantly outperforms state-of-the-art 2:4 pruning methods across a wide range of downstream tasks and perplexity evaluations. ARMOR achieves this superior performance while retaining the inference speedups and substantial memory usage reductions of 2:4 pruning, establishing a more effective trade-off between model compression and task accuracy

NIRVANA: Structured pruning reimagined for large language models compression

Structured pruning of large language models (LLMs) offers substantial efficiency improvements by removing entire hidden units, yet current approaches often suffer from significant performance degradation, particularly in zero-shot settings, and necessitate costly recovery techniques such as supervised fine-tuning (SFT) or adapter insertion. To address these critical shortcomings, we introduce NIRVANA, a novel pruning method explicitly designed to balance immediate zero-shot accuracy preservation with robust fine-tuning capability. Leveraging a first-order saliency criterion derived from the Neural Tangent Kernel under Adam optimization dynamics, NIRVANA provides a theoretically grounded pruning strategy that respects essential model training behaviors. To further address the unique challenges posed by structured pruning, NIRVANA incorporates an adaptive sparsity allocation mechanism across layers and modules (attention vs. MLP), which adjusts pruning intensity between modules in a globally balanced manner. Additionally, to mitigate the high sensitivity of pruning decisions to calibration data quality, we propose a simple yet effective KL divergence-based calibration data selection strategy, ensuring more reliable and task-agnostic pruning outcomes. Comprehensive experiments conducted on Llama3, Qwen, and T5 models demonstrate that NIRVANA outperforms existing structured pruning methods under equivalent sparsity constraints, providing a theoretically sound and practical approach to LLM compression. The code is available at https://github.com/iDEA-iSAIL-Lab-UIUC/NIRVANA.

  • 4 authors
·
Sep 17, 2025

STUN: Structured-Then-Unstructured Pruning for Scalable MoE Pruning

Mixture-of-experts (MoEs) have been adopted for reducing inference costs by sparsely activating experts in Large language models (LLMs). Despite this reduction, the massive number of experts in MoEs still makes them expensive to serve. In this paper, we study how to address this, by pruning MoEs. Among pruning methodologies, unstructured pruning has been known to achieve the highest performance for a given pruning ratio, compared to structured pruning, since the latter imposes constraints on the sparsification structure. This is intuitive, as the solution space of unstructured pruning subsumes that of structured pruning. However, our counterintuitive finding reveals that expert pruning, a form of structured pruning, can actually precede unstructured pruning to outperform unstructured-only pruning. As existing expert pruning, requiring O(k^n{n}) forward passes for n experts, cannot scale for recent MoEs, we propose a scalable alternative with O(1) complexity, yet outperforming the more expensive methods. The key idea is leveraging a latent structure between experts, based on behavior similarity, such that the greedy decision of whether to prune closely captures the joint pruning effect. Ours is highly effective -- for Snowflake Arctic, a 480B-sized MoE with 128 experts, our method needs only one H100 and two hours to achieve nearly no loss in performance with 40% sparsity, even in generative tasks such as GSM8K, where state-of-the-art unstructured pruning fails to. The code will be made publicly available.

  • 6 authors
·
Sep 10, 2024

Structured Pruning is All You Need for Pruning CNNs at Initialization

Pruning is a popular technique for reducing the model size and computational cost of convolutional neural networks (CNNs). However, a slow retraining or fine-tuning procedure is often required to recover the accuracy loss caused by pruning. Recently, a new research direction on weight pruning, pruning-at-initialization (PAI), is proposed to directly prune CNNs before training so that fine-tuning or retraining can be avoided. While PAI has shown promising results in reducing the model size, existing approaches rely on fine-grained weight pruning which requires unstructured sparse matrix computation, making it difficult to achieve real speedup in practice unless the sparsity is very high. This work is the first to show that fine-grained weight pruning is in fact not necessary for PAI. Instead, the layerwise compression ratio is the main critical factor to determine the accuracy of a CNN model pruned at initialization. Based on this key observation, we propose PreCropping, a structured hardware-efficient model compression scheme. PreCropping directly compresses the model at the channel level following the layerwise compression ratio. Compared to weight pruning, the proposed scheme is regular and dense in both storage and computation without sacrificing accuracy. In addition, since PreCropping compresses CNNs at initialization, the computational and memory costs of CNNs are reduced for both training and inference on commodity hardware. We empirically demonstrate our approaches on several modern CNN architectures, including ResNet, ShuffleNet, and MobileNet for both CIFAR-10 and ImageNet.

  • 6 authors
·
Mar 4, 2022

A Novel Compression Framework for YOLOv8: Achieving Real-Time Aerial Object Detection on Edge Devices via Structured Pruning and Channel-Wise Distillation

Efficient deployment of deep learning models for aerial object detection on resource-constrained devices requires significant compression without com-promising performance. In this study, we propose a novel three-stage compression pipeline for the YOLOv8 object detection model, integrating sparsity-aware training, structured channel pruning, and Channel-Wise Knowledge Distillation (CWD). First, sparsity-aware training introduces dynamic sparsity during model optimization, effectively balancing parameter reduction and detection accuracy. Second, we apply structured channel pruning by leveraging batch normalization scaling factors to eliminate redundant channels, significantly reducing model size and computational complexity. Finally, to mitigate the accuracy drop caused by pruning, we employ CWD to transfer knowledge from the original model, using an adjustable temperature and loss weighting scheme tailored for small and medium object detection. Extensive experiments on the VisDrone dataset demonstrate the effectiveness of our approach across multiple YOLOv8 variants. For YOLOv8m, our method reduces model parameters from 25.85M to 6.85M (a 73.51% reduction), FLOPs from 49.6G to 13.3G, and MACs from 101G to 34.5G, while reducing AP50 by only 2.7%. The resulting compressed model achieves 47.9 AP50 and boosts inference speed from 26 FPS (YOLOv8m baseline) to 45 FPS, enabling real-time deployment on edge devices. We further apply TensorRT as a lightweight optimization step. While this introduces a minor drop in AP50 (from 47.9 to 47.6), it significantly improves inference speed from 45 to 68 FPS, demonstrating the practicality of our approach for high-throughput, re-source-constrained scenarios.

  • 3 authors
·
Sep 16, 2025

Mustafar: Promoting Unstructured Sparsity for KV Cache Pruning in LLM Inference

We demonstrate that unstructured sparsity significantly improves KV cache compression for LLMs, enabling sparsity levels up to 70% without compromising accuracy or requiring fine-tuning. We conduct a systematic exploration of pruning strategies and find per-token magnitude-based pruning as highly effective for both Key and Value caches under unstructured sparsity, surpassing prior structured pruning schemes. The Key cache benefits from prominent outlier elements, while the Value cache surprisingly benefits from a simple magnitude-based pruning despite its uniform distribution. KV cache size is the major bottleneck in decode performance due to high memory overhead for large context lengths. To address this, we use a bitmap-based sparse format and a custom attention kernel capable of compressing and directly computing over compressed caches pruned to arbitrary sparsity patterns, significantly accelerating memory-bound operations in decode computations and thereby compensating for the overhead of runtime pruning and compression. Our custom attention kernel coupled with the bitmap-based format delivers substantial compression of KV cache upto 45% of dense inference and thereby enables longer context length and increased tokens/sec throughput of upto 2.23x compared to dense inference. Our pruning mechanism and sparse attention kernel is available at https://github.com/dhjoo98/mustafar.

  • 4 authors
·
May 28, 2025

LPViT: Low-Power Semi-structured Pruning for Vision Transformers

Vision transformers have emerged as a promising alternative to convolutional neural networks for various image analysis tasks, offering comparable or superior performance. However, one significant drawback of ViTs is their resource-intensive nature, leading to increased memory footprint, computation complexity, and power consumption. To democratize this high-performance technology and make it more environmentally friendly, it is essential to compress ViT models, reducing their resource requirements while maintaining high performance. In this paper, we introduce a new block-structured pruning to address the resource-intensive issue for ViTs, offering a balanced trade-off between accuracy and hardware acceleration. Unlike unstructured pruning or channel-wise structured pruning, block pruning leverages the block-wise structure of linear layers, resulting in more efficient matrix multiplications. To optimize this pruning scheme, our paper proposes a novel hardware-aware learning objective that simultaneously maximizes speedup and minimizes power consumption during inference, tailored to the block sparsity structure. This objective eliminates the need for empirical look-up tables and focuses solely on reducing parametrized layer connections. Moreover, our paper provides a lightweight algorithm to achieve post-training pruning for ViTs, utilizing second-order Taylor approximation and empirical optimization to solve the proposed hardware-aware objective. Extensive experiments on ImageNet are conducted across various ViT architectures, including DeiT-B and DeiT-S, demonstrating competitive performance with other pruning methods and achieving a remarkable balance between accuracy preservation and power savings. Especially, we achieve up to 3.93x and 1.79x speedups on dedicated hardware and GPUs respectively for DeiT-B, and also observe an inference power reduction by 1.4x on real-world GPUs.

  • 9 authors
·
Jul 2, 2024

Bayesian Algorithms for Kronecker-structured Sparse Vector Recovery With Application to IRS-MIMO Channel Estimation

We study the sparse recovery problem with an underdetermined linear system characterized by a Kronecker-structured dictionary and a Kronecker-supported sparse vector. We cast this problem into the sparse Bayesian learning (SBL) framework and rely on the expectation-maximization method for a solution. To this end, we model the Kronecker-structured support with a hierarchical Gaussian prior distribution parameterized by a Kronecker-structured hyperparameter, leading to a non-convex optimization problem. The optimization problem is solved using the alternating minimization (AM) method and a singular value decomposition (SVD)-based method, resulting in two algorithms. Further, we analytically guarantee that the AM-based method converges to the stationary point of the SBL cost function. The SVD-based method, though it adopts approximations, is empirically shown to be more efficient and accurate. We then apply our algorithm to estimate the uplink wireless channel in an intelligent reflecting surface-aided MIMO system and extend the AM-based algorithm to address block sparsity in the channel. We also study the SBL cost to show that the minima of the cost function are achieved at sparse solutions and that incorporating the Kronecker structure reduces the number of local minima of the SBL cost function. Our numerical results demonstrate the effectiveness of our algorithms compared to the state-of-the-art.

  • 2 authors
·
Jul 27, 2023

SparseByteNN: A Novel Mobile Inference Acceleration Framework Based on Fine-Grained Group Sparsity

To address the challenge of increasing network size, researchers have developed sparse models through network pruning. However, maintaining model accuracy while achieving significant speedups on general computing devices remains an open problem. In this paper, we present a novel mobile inference acceleration framework SparseByteNN, which leverages fine-grained kernel sparsity to achieve real-time execution as well as high accuracy. Our framework consists of two parts: (a) A fine-grained kernel sparsity schema with a sparsity granularity between structured pruning and unstructured pruning. It designs multiple sparse patterns for different operators. Combined with our proposed whole network rearrangement strategy, the schema achieves a high compression rate and high precision at the same time. (b) Inference engine co-optimized with the sparse pattern. The conventional wisdom is that this reduction in theoretical FLOPs does not translate into real-world efficiency gains. We aim to correct this misconception by introducing a family of efficient sparse kernels for ARM and WebAssembly. Equipped with our efficient implementation of sparse primitives, we show that sparse versions of MobileNet-v1 outperform strong dense baselines on the efficiency-accuracy curve. Experimental results on Qualcomm 855 show that for 30% sparse MobileNet-v1, SparseByteNN achieves 1.27x speedup over the dense version and 1.29x speedup over the state-of-the-art sparse inference engine MNN with a slight accuracy drop of 0.224%. The source code of SparseByteNN will be available at https://github.com/lswzjuer/SparseByteNN

  • 10 authors
·
Oct 30, 2023

Flash-LLM: Enabling Cost-Effective and Highly-Efficient Large Generative Model Inference with Unstructured Sparsity

With the fast growth of parameter size, it becomes increasingly challenging to deploy large generative models as they typically require large GPU memory consumption and massive computation. Unstructured model pruning has been a common approach to reduce both GPU memory footprint and the overall computation while retaining good model accuracy. However, the existing solutions do not provide a highly-efficient support for handling unstructured sparsity on modern GPUs, especially on the highly-structured Tensor Core hardware. Therefore, we propose Flash-LLM for enabling low-cost and highly-efficient large generative model inference with the sophisticated support of unstructured sparsity on high-performance but highly restrictive Tensor Cores. Based on our key observation that the main bottleneck of generative model inference is the several skinny matrix multiplications for which Tensor Cores would be significantly under-utilized due to low computational intensity, we propose a general Load-as-Sparse and Compute-as-Dense methodology for unstructured sparse matrix multiplication. The basic insight is to address the significant memory bandwidth bottleneck while tolerating redundant computations that are not critical for end-to-end performance on Tensor Cores. Based on this, we design an effective software framework for Tensor Core based unstructured SpMM, leveraging on-chip resources for efficient sparse data extraction and computation/memory-access overlapping. At SpMM kernel level, Flash-LLM significantly outperforms the state-of-the-art library, i.e., Sputnik and SparTA by an average of 2.9x and 1.5x, respectively. At end-to-end framework level on OPT-30B/66B/175B models, for tokens per GPU-second, Flash-LLM achieves up to 3.8x and 3.6x improvement over DeepSpeed and FasterTransformer, respectively, with significantly lower inference cost.

  • 9 authors
·
Sep 18, 2023

From scratch to silver: Creating trustworthy training data for patent-SDG classification using Large Language Models

Classifying patents by their relevance to the UN Sustainable Development Goals (SDGs) is crucial for tracking how innovation addresses global challenges. However, the absence of a large, labeled dataset limits the use of supervised learning. Existing methods, such as keyword searches, transfer learning, and citation-based heuristics, lack scalability and generalizability. This paper frames patent-to-SDG classification as a weak supervision problem, using citations from patents to SDG-tagged scientific publications (NPL citations) as a noisy initial signal. To address its sparsity and noise, we develop a composite labeling function (LF) that uses large language models (LLMs) to extract structured concepts, namely functions, solutions, and applications, from patents and SDG papers based on a patent ontology. Cross-domain similarity scores are computed and combined using a rank-based retrieval approach. The LF is calibrated via a custom positive-only loss that aligns with known NPL-SDG links without penalizing discovery of new SDG associations. The result is a silver-standard, soft multi-label dataset mapping patents to SDGs, enabling the training of effective multi-label regression models. We validate our approach through two complementary strategies: (1) internal validation against held-out NPL-based labels, where our method outperforms several baselines including transformer-based models, and zero-shot LLM; and (2) external validation using network modularity in patent citation, co-inventor, and co-applicant graphs, where our labels reveal greater thematic, cognitive, and organizational coherence than traditional technological classifications. These results show that weak supervision and semantic alignment can enhance SDG classification at scale.

  • 2 authors
·
Sep 11, 2025

Advancing Model Pruning via Bi-level Optimization

The deployment constraints in practical applications necessitate the pruning of large-scale deep learning models, i.e., promoting their weight sparsity. As illustrated by the Lottery Ticket Hypothesis (LTH), pruning also has the potential of improving their generalization ability. At the core of LTH, iterative magnitude pruning (IMP) is the predominant pruning method to successfully find 'winning tickets'. Yet, the computation cost of IMP grows prohibitively as the targeted pruning ratio increases. To reduce the computation overhead, various efficient 'one-shot' pruning methods have been developed, but these schemes are usually unable to find winning tickets as good as IMP. This raises the question of how to close the gap between pruning accuracy and pruning efficiency? To tackle it, we pursue the algorithmic advancement of model pruning. Specifically, we formulate the pruning problem from a fresh and novel viewpoint, bi-level optimization (BLO). We show that the BLO interpretation provides a technically-grounded optimization base for an efficient implementation of the pruning-retraining learning paradigm used in IMP. We also show that the proposed bi-level optimization-oriented pruning method (termed BiP) is a special class of BLO problems with a bi-linear problem structure. By leveraging such bi-linearity, we theoretically show that BiP can be solved as easily as first-order optimization, thus inheriting the computation efficiency. Through extensive experiments on both structured and unstructured pruning with 5 model architectures and 4 data sets, we demonstrate that BiP can find better winning tickets than IMP in most cases, and is computationally as efficient as the one-shot pruning schemes, demonstrating 2-7 times speedup over IMP for the same level of model accuracy and sparsity.

  • 8 authors
·
Oct 8, 2022

CoLiDE: Concomitant Linear DAG Estimation

We deal with the combinatorial problem of learning directed acyclic graph (DAG) structure from observational data adhering to a linear structural equation model (SEM). Leveraging advances in differentiable, nonconvex characterizations of acyclicity, recent efforts have advocated a continuous constrained optimization paradigm to efficiently explore the space of DAGs. Most existing methods employ lasso-type score functions to guide this search, which (i) require expensive penalty parameter retuning when the unknown SEM noise variances change across problem instances; and (ii) implicitly rely on limiting homoscedasticity assumptions. In this work, we propose a new convex score function for sparsity-aware learning of linear DAGs, which incorporates concomitant estimation of scale and thus effectively decouples the sparsity parameter from the exogenous noise levels. Regularization via a smooth, nonconvex acyclicity penalty term yields CoLiDE (Concomitant Linear DAG Estimation), a regression-based criterion amenable to efficient gradient computation and closed-form estimation of noise variances in heteroscedastic scenarios. Our algorithm outperforms state-of-the-art methods without incurring added complexity, especially when the DAGs are larger and the noise level profile is heterogeneous. We also find CoLiDE exhibits enhanced stability manifested via reduced standard deviations in several domain-specific metrics, underscoring the robustness of our novel linear DAG estimator.

  • 3 authors
·
Oct 4, 2023

OBS-Diff: Accurate Pruning For Diffusion Models in One-Shot

Large-scale text-to-image diffusion models, while powerful, suffer from prohibitive computational cost. Existing one-shot network pruning methods can hardly be directly applied to them due to the iterative denoising nature of diffusion models. To bridge the gap, this paper presents OBS-Diff, a novel one-shot pruning framework that enables accurate and training-free compression of large-scale text-to-image diffusion models. Specifically, (i) OBS-Diff revitalizes the classic Optimal Brain Surgeon (OBS), adapting it to the complex architectures of modern diffusion models and supporting diverse pruning granularity, including unstructured, N:M semi-structured, and structured (MHA heads and FFN neurons) sparsity; (ii) To align the pruning criteria with the iterative dynamics of the diffusion process, by examining the problem from an error-accumulation perspective, we propose a novel timestep-aware Hessian construction that incorporates a logarithmic-decrease weighting scheme, assigning greater importance to earlier timesteps to mitigate potential error accumulation; (iii) Furthermore, a computationally efficient group-wise sequential pruning strategy is proposed to amortize the expensive calibration process. Extensive experiments show that OBS-Diff achieves state-of-the-art one-shot pruning for diffusion models, delivering inference acceleration with minimal degradation in visual quality.

WestlakeUniversity Westlake University
·
Oct 8, 2025 2

REFRAG: Rethinking RAG based Decoding

Large Language Models (LLMs) have demonstrated remarkable capabilities in leveraging extensive external knowledge to enhance responses in multi-turn and agentic applications, such as retrieval-augmented generation (RAG). However, processing long-context inputs introduces significant system latency and demands substantial memory for the key-value cache, resulting in reduced throughput and a fundamental trade-off between knowledge enrichment and system efficiency. While minimizing latency for long-context inputs is a primary objective for LLMs, we contend that RAG require specialized consideration. In RAG, much of the LLM context consists of concatenated passages from retrieval, with only a small subset directly relevant to the query. These passages often exhibit low semantic similarity due to diversity or deduplication during re-ranking, leading to block-diagonal attention patterns that differ from those in standard LLM generation tasks. Based on this observation, we argue that most computations over the RAG context during decoding are unnecessary and can be eliminated with minimal impact on performance. To this end, we propose REFRAG, an efficient decoding framework that compresses, senses, and expands to improve latency in RAG applications. By exploiting the sparsity structure, we demonstrate a 30.85 the time-to-first-token acceleration (3.75 improvement to previous work) without loss in perplexity. In addition, our optimization framework for large context enables REFRAG to extend the context size of LLMs by 16. We provide rigorous validation of REFRAG across diverse long-context tasks, including RAG, multi-turn conversations, and long document summarization, spanning a wide range of datasets. Experimental results confirm that REFRAG delivers substantial speedup with no loss in accuracy compared to LLaMA models and other state-of-the-art baselines across various context sizes.

  • 5 authors
·
Aug 31, 2025

The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

Random pruning is arguably the most naive way to attain sparsity in neural networks, but has been deemed uncompetitive by either post-training pruning or sparse training. In this paper, we focus on sparse training and highlight a perhaps counter-intuitive finding, that random pruning at initialization can be quite powerful for the sparse training of modern neural networks. Without any delicate pruning criteria or carefully pursued sparsity structures, we empirically demonstrate that sparsely training a randomly pruned network from scratch can match the performance of its dense equivalent. There are two key factors that contribute to this revival: (i) the network sizes matter: as the original dense networks grow wider and deeper, the performance of training a randomly pruned sparse network will quickly grow to matching that of its dense equivalent, even at high sparsity ratios; (ii) appropriate layer-wise sparsity ratios can be pre-chosen for sparse training, which shows to be another important performance booster. Simple as it looks, a randomly pruned subnetwork of Wide ResNet-50 can be sparsely trained to outperforming a dense Wide ResNet-50, on ImageNet. We also observed such randomly pruned networks outperform dense counterparts in other favorable aspects, such as out-of-distribution detection, uncertainty estimation, and adversarial robustness. Overall, our results strongly suggest there is larger-than-expected room for sparse training at scale, and the benefits of sparsity might be more universal beyond carefully designed pruning. Our source code can be found at https://github.com/VITA-Group/Random_Pruning.

  • 7 authors
·
Feb 5, 2022