Spaces:
Paused
Paused
| from typing import Dict, List | |
| import numpy as np | |
| class PreTrainedPipeline(): | |
| def __init__(self, path=""): | |
| # IMPLEMENT_THIS | |
| # Preload all the elements you are going to need at inference. | |
| # For instance your model, processors, tokenizer that might be needed. | |
| # This function is only called once, so do all the heavy processing I/O here""" | |
| raise NotImplementedError( | |
| "Please implement PreTrainedPipeline __init__ function" | |
| ) | |
| def __call__(self, inputs: str) -> List[List[Dict[str, float]]]: | |
| """ | |
| Args: | |
| inputs (:obj:`str`): | |
| a string containing some text | |
| Return: | |
| A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : | |
| - "label": A string representing what the label/class is. There can be multiple labels. | |
| - "score": A score between 0 and 1 describing how confident the model is for this label/class. | |
| """ | |
| # IMPLEMENT_THIS | |
| raise NotImplementedError( | |
| "Please implement PreTrainedPipeline __call__ function" | |
| ) |