Spaces:
Paused
Paused
Commit
·
8421d14
1
Parent(s):
5e44f32
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,6 +5,7 @@ import torch
|
|
| 5 |
from tqdm.auto import tqdm
|
| 6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 7 |
|
|
|
|
| 8 |
# from langchain.vectorstores import Chroma
|
| 9 |
from langchain.vectorstores import FAISS
|
| 10 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
|
@@ -23,28 +24,47 @@ st.set_page_config(
|
|
| 23 |
st.markdown("# Hello")
|
| 24 |
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
|
|
|
| 38 |
|
| 39 |
|
| 40 |
-
st.markdown(f"Number of Documents: {len(ait_web_documents)}")
|
| 41 |
-
st.markdown(f"Number of chunked texts: {len(chunked_text)}")
|
| 42 |
|
| 43 |
|
| 44 |
-
|
|
|
|
|
|
|
| 45 |
model_kwargs = {'device': torch.device('cuda' if torch.cuda.is_available() else 'cpu')})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
print("load done")
|
| 49 |
|
| 50 |
|
|
@@ -57,3 +77,4 @@ def retrieve_document(query_input):
|
|
| 57 |
|
| 58 |
output = st.text_area(label = "Here is the relevant documents",
|
| 59 |
value = retrieve_document(query_input))
|
|
|
|
|
|
| 5 |
from tqdm.auto import tqdm
|
| 6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 7 |
|
| 8 |
+
|
| 9 |
# from langchain.vectorstores import Chroma
|
| 10 |
from langchain.vectorstores import FAISS
|
| 11 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
|
|
|
| 24 |
st.markdown("# Hello")
|
| 25 |
|
| 26 |
|
| 27 |
+
@st.cache_data
|
| 28 |
+
def load_scraped_web_info():
|
| 29 |
+
with open("/Users/carlosito/Library/CloudStorage/OneDrive-Personal/AIT material/99-AIT-thesis/aitGPT/ait-web-document", "rb") as fp:
|
| 30 |
+
ait_web_documents = pickle.load(fp)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 34 |
+
# Set a really small chunk size, just to show.
|
| 35 |
+
chunk_size = 500,
|
| 36 |
+
chunk_overlap = 100,
|
| 37 |
+
length_function = len,
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
chunked_text = text_splitter.create_documents([doc for doc in tqdm(ait_web_documents)])
|
| 41 |
+
|
| 42 |
|
| 43 |
+
st.markdown(f"Number of Documents: {len(ait_web_documents)}")
|
| 44 |
+
st.markdown(f"Number of chunked texts: {len(chunked_text)}")
|
| 45 |
|
| 46 |
|
|
|
|
|
|
|
| 47 |
|
| 48 |
|
| 49 |
+
@st.cache_resource
|
| 50 |
+
def load_embedding_model():
|
| 51 |
+
embedding_model = HuggingFaceInstructEmbeddings(model_name='hkunlp/instructor-base',
|
| 52 |
model_kwargs = {'device': torch.device('cuda' if torch.cuda.is_available() else 'cpu')})
|
| 53 |
+
return embedding_model
|
| 54 |
+
|
| 55 |
+
@st.cache_data
|
| 56 |
+
def load_faiss_index():
|
| 57 |
+
vector_database = FAISS.load_local("faiss_index", embedding_model)
|
| 58 |
+
return vector_database
|
| 59 |
+
|
| 60 |
|
| 61 |
+
#--------------
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
load_scraped_web_info()
|
| 66 |
+
embedding_model = load_embedding_model()
|
| 67 |
+
vector_database = load_faiss_index()
|
| 68 |
print("load done")
|
| 69 |
|
| 70 |
|
|
|
|
| 77 |
|
| 78 |
output = st.text_area(label = "Here is the relevant documents",
|
| 79 |
value = retrieve_document(query_input))
|
| 80 |
+
|