Adding Monthly data and Week column
Browse files
apps/kpi_analysis/trafic_analysis.py
CHANGED
|
@@ -1,4 +1,7 @@
|
|
|
|
|
|
|
|
| 1 |
from datetime import datetime
|
|
|
|
| 2 |
|
| 3 |
import pandas as pd
|
| 4 |
import plotly.express as px
|
|
@@ -8,6 +11,29 @@ from utils.convert_to_excel import convert_dfs, save_dataframe
|
|
| 8 |
from utils.utils_vars import get_physical_db
|
| 9 |
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
class TraficAnalysis:
|
| 12 |
last_period_df: pd.DataFrame = None
|
| 13 |
|
|
@@ -145,6 +171,39 @@ def merge_and_compare(df_2g, df_3g, df_lte, pre_range, post_range, last_period_r
|
|
| 145 |
return df, last_period, pivot.round(2)
|
| 146 |
|
| 147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
############################## UI #########################
|
| 149 |
st.title("📊 Global Trafic Analysis - 2G / 3G / LTE")
|
| 150 |
doc_col, image_col = st.columns(2)
|
|
@@ -165,17 +224,11 @@ with doc_col:
|
|
| 165 |
|
| 166 |
upload_2g_col, upload_3g_col, upload_lte_col = st.columns(3)
|
| 167 |
with upload_2g_col:
|
| 168 |
-
two_g_file = st.file_uploader(
|
| 169 |
-
"Upload 2G Traffic Report", type=["csv", "xls", "xlsx"]
|
| 170 |
-
)
|
| 171 |
with upload_3g_col:
|
| 172 |
-
three_g_file = st.file_uploader(
|
| 173 |
-
"Upload 3G Traffic Report", type=["csv", "xls", "xlsx"]
|
| 174 |
-
)
|
| 175 |
with upload_lte_col:
|
| 176 |
-
lte_file = st.file_uploader(
|
| 177 |
-
"Upload LTE Traffic Report", type=["csv", "xls", "xlsx"]
|
| 178 |
-
)
|
| 179 |
|
| 180 |
pre_range_col, post_range_col = st.columns(2)
|
| 181 |
with pre_range_col:
|
|
@@ -200,9 +253,9 @@ if not all([two_g_file, three_g_file, lte_file]):
|
|
| 200 |
|
| 201 |
if st.button("🔍 Run Analysis"):
|
| 202 |
|
| 203 |
-
df_2g =
|
| 204 |
-
df_3g =
|
| 205 |
-
df_lte =
|
| 206 |
|
| 207 |
df_2g_clean = preprocess_2g(df_2g)
|
| 208 |
df_3g_clean = preprocess_3g(df_3g)
|
|
@@ -212,6 +265,11 @@ if st.button("🔍 Run Analysis"):
|
|
| 212 |
df_2g_clean, df_3g_clean, df_lte_clean, pre_range, post_range, last_period_range
|
| 213 |
)
|
| 214 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
# 🔍 Display Summary
|
| 216 |
st.success("✅ Analysis completed")
|
| 217 |
st.subheader("📈 Summary Analysis Pre / Post")
|
|
@@ -386,7 +444,13 @@ if TraficAnalysis.last_period_df is not None:
|
|
| 386 |
st.plotly_chart(fig)
|
| 387 |
|
| 388 |
final_dfs = convert_dfs(
|
| 389 |
-
[full_df, summary_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
)
|
| 391 |
# 📥 Bouton de téléchargement
|
| 392 |
st.download_button(
|
|
|
|
| 1 |
+
import io
|
| 2 |
+
import zipfile
|
| 3 |
from datetime import datetime
|
| 4 |
+
from pathlib import Path
|
| 5 |
|
| 6 |
import pandas as pd
|
| 7 |
import plotly.express as px
|
|
|
|
| 11 |
from utils.utils_vars import get_physical_db
|
| 12 |
|
| 13 |
|
| 14 |
+
def read_uploaded_file(uploaded_file):
|
| 15 |
+
"""Read uploaded file, handling both ZIP and CSV formats.
|
| 16 |
+
|
| 17 |
+
Args:
|
| 18 |
+
uploaded_file: Uploaded file object from Streamlit
|
| 19 |
+
|
| 20 |
+
Returns:
|
| 21 |
+
pd.DataFrame: DataFrame containing the data from the uploaded file
|
| 22 |
+
"""
|
| 23 |
+
if uploaded_file.name.endswith(".zip"):
|
| 24 |
+
with zipfile.ZipFile(io.BytesIO(uploaded_file.getvalue())) as z:
|
| 25 |
+
# Get the first CSV file in the zip
|
| 26 |
+
csv_files = [f for f in z.namelist() if f.lower().endswith(".csv")]
|
| 27 |
+
if not csv_files:
|
| 28 |
+
raise ValueError("No CSV file found in the ZIP archive")
|
| 29 |
+
with z.open(csv_files[0]) as f:
|
| 30 |
+
return pd.read_csv(f, encoding="latin1", sep=";", low_memory=False)
|
| 31 |
+
elif uploaded_file.name.endswith(".csv"):
|
| 32 |
+
return pd.read_csv(uploaded_file, encoding="latin1", sep=";", low_memory=False)
|
| 33 |
+
else:
|
| 34 |
+
raise ValueError("Unsupported file format. Please upload a ZIP or CSV file.")
|
| 35 |
+
|
| 36 |
+
|
| 37 |
class TraficAnalysis:
|
| 38 |
last_period_df: pd.DataFrame = None
|
| 39 |
|
|
|
|
| 171 |
return df, last_period, pivot.round(2)
|
| 172 |
|
| 173 |
|
| 174 |
+
def monthly_data_analysis(df: pd.DataFrame) -> pd.DataFrame:
|
| 175 |
+
df["date"] = pd.to_datetime(df["date"])
|
| 176 |
+
|
| 177 |
+
# Create column 'YYYY-MM' for grouping by month while keeping the year
|
| 178 |
+
df["month_year"] = df["date"].dt.to_period("M").astype(str)
|
| 179 |
+
|
| 180 |
+
# Pivot : lines = code, columns = month_year, values = sum
|
| 181 |
+
voice_trafic = df.pivot_table(
|
| 182 |
+
index="code",
|
| 183 |
+
columns="month_year",
|
| 184 |
+
values="total_voice_trafic",
|
| 185 |
+
aggfunc="sum",
|
| 186 |
+
fill_value=0,
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
# Sort columns chronologically
|
| 190 |
+
voice_trafic = voice_trafic.reindex(sorted(voice_trafic.columns), axis=1)
|
| 191 |
+
|
| 192 |
+
data_trafic = df.pivot_table(
|
| 193 |
+
index="code",
|
| 194 |
+
columns="month_year",
|
| 195 |
+
values="total_data_trafic",
|
| 196 |
+
aggfunc="sum",
|
| 197 |
+
fill_value=0,
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
# Sort columns chronologically
|
| 201 |
+
data_trafic = data_trafic.reindex(sorted(data_trafic.columns), axis=1)
|
| 202 |
+
|
| 203 |
+
# Display result
|
| 204 |
+
return voice_trafic, data_trafic
|
| 205 |
+
|
| 206 |
+
|
| 207 |
############################## UI #########################
|
| 208 |
st.title("📊 Global Trafic Analysis - 2G / 3G / LTE")
|
| 209 |
doc_col, image_col = st.columns(2)
|
|
|
|
| 224 |
|
| 225 |
upload_2g_col, upload_3g_col, upload_lte_col = st.columns(3)
|
| 226 |
with upload_2g_col:
|
| 227 |
+
two_g_file = st.file_uploader("Upload 2G Traffic Report", type=["csv", "zip"])
|
|
|
|
|
|
|
| 228 |
with upload_3g_col:
|
| 229 |
+
three_g_file = st.file_uploader("Upload 3G Traffic Report", type=["csv", "zip"])
|
|
|
|
|
|
|
| 230 |
with upload_lte_col:
|
| 231 |
+
lte_file = st.file_uploader("Upload LTE Traffic Report", type=["csv", "zip"])
|
|
|
|
|
|
|
| 232 |
|
| 233 |
pre_range_col, post_range_col = st.columns(2)
|
| 234 |
with pre_range_col:
|
|
|
|
| 253 |
|
| 254 |
if st.button("🔍 Run Analysis"):
|
| 255 |
|
| 256 |
+
df_2g = read_uploaded_file(two_g_file)
|
| 257 |
+
df_3g = read_uploaded_file(three_g_file)
|
| 258 |
+
df_lte = read_uploaded_file(lte_file)
|
| 259 |
|
| 260 |
df_2g_clean = preprocess_2g(df_2g)
|
| 261 |
df_3g_clean = preprocess_3g(df_3g)
|
|
|
|
| 265 |
df_2g_clean, df_3g_clean, df_lte_clean, pre_range, post_range, last_period_range
|
| 266 |
)
|
| 267 |
|
| 268 |
+
monthly_voice_df, monthly_data_df = monthly_data_analysis(full_df)
|
| 269 |
+
|
| 270 |
+
full_df["week"] = full_df["date"].dt.isocalendar().week
|
| 271 |
+
full_df["year"] = full_df["date"].dt.isocalendar().year
|
| 272 |
+
|
| 273 |
# 🔍 Display Summary
|
| 274 |
st.success("✅ Analysis completed")
|
| 275 |
st.subheader("📈 Summary Analysis Pre / Post")
|
|
|
|
| 444 |
st.plotly_chart(fig)
|
| 445 |
|
| 446 |
final_dfs = convert_dfs(
|
| 447 |
+
[full_df, summary_df, monthly_voice_df, monthly_data_df],
|
| 448 |
+
[
|
| 449 |
+
"Global_Trafic_Analysis",
|
| 450 |
+
"Pre_Post_analysis",
|
| 451 |
+
"Monthly_voice_analysis",
|
| 452 |
+
"Monthly_data_analysis",
|
| 453 |
+
],
|
| 454 |
)
|
| 455 |
# 📥 Bouton de téléchargement
|
| 456 |
st.download_button(
|