Add comprehensive site-level KPI analysis with heatmaps, distribution histograms, traffic-based filtering, and preset management functionality
Browse files
documentations/kpi_health_check_plan.md
CHANGED
|
@@ -205,16 +205,16 @@ Objectif: **app modulaire**, pas un fichier monolithique.
|
|
| 205 |
- [DONE] RESOLVED (dégradé puis OK)
|
| 206 |
- [DONE] Support ZIP multi-CSV
|
| 207 |
- [N/A] Support “cell-level” vs “site-level” (switch) (KPI confirmés par site)
|
| 208 |
-
- [
|
| 209 |
- [DONE] Table “Top anomalies” multi-RAT (cross-RAT)
|
| 210 |
-
- [
|
| 211 |
|
| 212 |
### V3 (industrialisation)
|
| 213 |
|
| 214 |
-
- [
|
| 215 |
- [TODO] Gestion profils / sauvegarde de configuration
|
| 216 |
-
- [TODO] Import automatique de “liste des sites plaintes
|
| 217 |
-
- [
|
| 218 |
|
| 219 |
## 8) Points ouverts à confirmer
|
| 220 |
|
|
|
|
| 205 |
- [DONE] RESOLVED (dégradé puis OK)
|
| 206 |
- [DONE] Support ZIP multi-CSV
|
| 207 |
- [N/A] Support “cell-level” vs “site-level” (switch) (KPI confirmés par site)
|
| 208 |
+
- [DONE] Score de criticité (pondération trafic OK avec conversion 2G MB -> GB; pas de données population/criticité client)
|
| 209 |
- [DONE] Table “Top anomalies” multi-RAT (cross-RAT)
|
| 210 |
+
- [DONE] Visualisations avancées (heatmap par jour, histogrammes, etc.)
|
| 211 |
|
| 212 |
### V3 (industrialisation)
|
| 213 |
|
| 214 |
+
- [DONE] Presets de règles (JSON local) + sauvegarde/chargement dans l'UI
|
| 215 |
- [TODO] Gestion profils / sauvegarde de configuration
|
| 216 |
+
- [TODO] Import automatique de “liste des sites plaintes”
|
| 217 |
+
- [N/A] Génération PDF (optionnel) et pack de preuves
|
| 218 |
|
| 219 |
## 8) Points ouverts à confirmer
|
| 220 |
|
panel_app/kpi_health_check_panel.py
CHANGED
|
@@ -1,17 +1,23 @@
|
|
| 1 |
import io
|
| 2 |
import os
|
| 3 |
import sys
|
| 4 |
-
from datetime import date
|
| 5 |
|
|
|
|
| 6 |
import pandas as pd
|
| 7 |
import panel as pn
|
| 8 |
import plotly.express as px
|
|
|
|
| 9 |
|
| 10 |
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
| 11 |
if ROOT_DIR not in sys.path:
|
| 12 |
sys.path.insert(0, ROOT_DIR)
|
| 13 |
|
| 14 |
-
from process_kpi.kpi_health_check.engine import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
from process_kpi.kpi_health_check.export import build_export_bytes
|
| 16 |
from process_kpi.kpi_health_check.io import read_bytes_to_df
|
| 17 |
from process_kpi.kpi_health_check.multi_rat import compute_multirat_views
|
|
@@ -20,6 +26,12 @@ from process_kpi.kpi_health_check.normalization import (
|
|
| 20 |
infer_date_col,
|
| 21 |
infer_id_col,
|
| 22 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
from process_kpi.kpi_health_check.rules import infer_kpi_direction, infer_kpi_sla
|
| 24 |
|
| 25 |
pn.extension("plotly", "tabulator")
|
|
@@ -39,7 +51,9 @@ current_rules_df: pd.DataFrame | None = None
|
|
| 39 |
current_status_df: pd.DataFrame | None = None
|
| 40 |
current_summary_df: pd.DataFrame | None = None
|
| 41 |
current_multirat_df: pd.DataFrame | None = None
|
|
|
|
| 42 |
current_top_anomalies_df: pd.DataFrame | None = None
|
|
|
|
| 43 |
current_export_bytes: bytes | None = None
|
| 44 |
|
| 45 |
file_2g = pn.widgets.FileInput(name="2G KPI report", accept=".csv,.zip")
|
|
@@ -56,6 +70,25 @@ min_consecutive_days = pn.widgets.IntInput(
|
|
| 56 |
name="Min consecutive bad days (persistent)", value=3
|
| 57 |
)
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
load_button = pn.widgets.Button(
|
| 60 |
name="Load datasets & build rules", button_type="primary"
|
| 61 |
)
|
|
@@ -111,6 +144,8 @@ site_kpi_table = pn.widgets.Tabulator(
|
|
| 111 |
height=260, sizing_mode="stretch_width", layout="fit_data_table"
|
| 112 |
)
|
| 113 |
trend_plot_pane = pn.pane.Plotly(sizing_mode="stretch_both", config=PLOTLY_CONFIG)
|
|
|
|
|
|
|
| 114 |
|
| 115 |
export_button = pn.widgets.FileDownload(
|
| 116 |
label="Download KPI Health Check report",
|
|
@@ -190,6 +225,8 @@ def _update_site_view(event=None) -> None:
|
|
| 190 |
if current_status_df is None or current_status_df.empty:
|
| 191 |
site_kpi_table.value = pd.DataFrame()
|
| 192 |
trend_plot_pane.object = None
|
|
|
|
|
|
|
| 193 |
return
|
| 194 |
|
| 195 |
code = site_select.value
|
|
@@ -199,6 +236,8 @@ def _update_site_view(event=None) -> None:
|
|
| 199 |
if code is None or rat is None:
|
| 200 |
site_kpi_table.value = pd.DataFrame()
|
| 201 |
trend_plot_pane.object = None
|
|
|
|
|
|
|
| 202 |
return
|
| 203 |
|
| 204 |
site_df = current_status_df[
|
|
@@ -210,12 +249,16 @@ def _update_site_view(event=None) -> None:
|
|
| 210 |
daily = current_daily_by_rat.get(rat)
|
| 211 |
if daily is None or daily.empty or not kpi or kpi not in daily.columns:
|
| 212 |
trend_plot_pane.object = None
|
|
|
|
|
|
|
| 213 |
return
|
| 214 |
|
| 215 |
d = _filtered_daily(daily)
|
| 216 |
s = d[d["site_code"] == int(code)].copy().sort_values("date_only")
|
| 217 |
if s.empty:
|
| 218 |
trend_plot_pane.object = None
|
|
|
|
|
|
|
| 219 |
return
|
| 220 |
|
| 221 |
title = f"{rat} - {kpi} - site {int(code)}"
|
|
@@ -223,6 +266,440 @@ def _update_site_view(event=None) -> None:
|
|
| 223 |
fig.update_layout(template="plotly_white", title=title)
|
| 224 |
trend_plot_pane.object = fig
|
| 225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
def load_datasets(event=None) -> None:
|
| 228 |
try:
|
|
@@ -231,14 +708,16 @@ def load_datasets(event=None) -> None:
|
|
| 231 |
|
| 232 |
global current_daily_by_rat, current_rules_df
|
| 233 |
global current_status_df, current_summary_df, current_export_bytes
|
| 234 |
-
global current_multirat_df, current_top_anomalies_df
|
| 235 |
|
| 236 |
current_daily_by_rat = {}
|
| 237 |
current_rules_df = None
|
| 238 |
current_status_df = None
|
| 239 |
current_summary_df = None
|
| 240 |
current_multirat_df = None
|
|
|
|
| 241 |
current_top_anomalies_df = None
|
|
|
|
| 242 |
current_export_bytes = None
|
| 243 |
|
| 244 |
site_summary_table.value = pd.DataFrame()
|
|
@@ -246,6 +725,8 @@ def load_datasets(event=None) -> None:
|
|
| 246 |
top_anomalies_table.value = pd.DataFrame()
|
| 247 |
site_kpi_table.value = pd.DataFrame()
|
| 248 |
trend_plot_pane.object = None
|
|
|
|
|
|
|
| 249 |
|
| 250 |
inputs = {"2G": file_2g, "3G": file_3g, "LTE": file_lte}
|
| 251 |
rows = []
|
|
@@ -329,7 +810,8 @@ def run_health_check(event=None) -> None:
|
|
| 329 |
status_pane.object = "Running health check..."
|
| 330 |
|
| 331 |
global current_status_df, current_summary_df, current_export_bytes
|
| 332 |
-
global current_multirat_df,
|
|
|
|
| 333 |
|
| 334 |
rules_df = (
|
| 335 |
rules_table.value
|
|
@@ -366,11 +848,64 @@ def run_health_check(event=None) -> None:
|
|
| 366 |
)
|
| 367 |
site_summary_table.value = current_summary_df
|
| 368 |
|
| 369 |
-
|
| 370 |
current_status_df
|
| 371 |
)
|
| 372 |
-
|
| 373 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 374 |
|
| 375 |
current_export_bytes = _build_export_bytes()
|
| 376 |
|
|
@@ -408,19 +943,35 @@ def _build_export_bytes() -> bytes:
|
|
| 408 |
|
| 409 |
|
| 410 |
def _export_callback() -> io.BytesIO:
|
| 411 |
-
|
| 412 |
-
if
|
| 413 |
-
|
| 414 |
-
|
|
|
|
|
|
|
|
|
|
| 415 |
|
| 416 |
|
| 417 |
load_button.on_click(load_datasets)
|
| 418 |
run_button.on_click(run_health_check)
|
| 419 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
rat_select.param.watch(lambda e: (_update_kpi_options(), _update_site_view()), "value")
|
| 421 |
site_select.param.watch(_update_site_view, "value")
|
| 422 |
kpi_select.param.watch(_update_site_view, "value")
|
| 423 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 424 |
export_button.callback = _export_callback
|
| 425 |
|
| 426 |
|
|
@@ -436,6 +987,19 @@ sidebar = pn.Column(
|
|
| 436 |
rel_threshold_pct,
|
| 437 |
min_consecutive_days,
|
| 438 |
"---",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 439 |
load_button,
|
| 440 |
run_button,
|
| 441 |
"---",
|
|
@@ -461,6 +1025,10 @@ main = pn.Column(
|
|
| 461 |
pn.Column(site_kpi_table, sizing_mode="stretch_width"),
|
| 462 |
pn.Column(trend_plot_pane, sizing_mode="stretch_both"),
|
| 463 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 464 |
)
|
| 465 |
|
| 466 |
|
|
|
|
| 1 |
import io
|
| 2 |
import os
|
| 3 |
import sys
|
| 4 |
+
from datetime import date, timedelta
|
| 5 |
|
| 6 |
+
import numpy as np
|
| 7 |
import pandas as pd
|
| 8 |
import panel as pn
|
| 9 |
import plotly.express as px
|
| 10 |
+
import plotly.graph_objects as go
|
| 11 |
|
| 12 |
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
| 13 |
if ROOT_DIR not in sys.path:
|
| 14 |
sys.path.insert(0, ROOT_DIR)
|
| 15 |
|
| 16 |
+
from process_kpi.kpi_health_check.engine import (
|
| 17 |
+
evaluate_health_check,
|
| 18 |
+
is_bad,
|
| 19 |
+
window_bounds,
|
| 20 |
+
)
|
| 21 |
from process_kpi.kpi_health_check.export import build_export_bytes
|
| 22 |
from process_kpi.kpi_health_check.io import read_bytes_to_df
|
| 23 |
from process_kpi.kpi_health_check.multi_rat import compute_multirat_views
|
|
|
|
| 26 |
infer_date_col,
|
| 27 |
infer_id_col,
|
| 28 |
)
|
| 29 |
+
from process_kpi.kpi_health_check.presets import (
|
| 30 |
+
delete_preset,
|
| 31 |
+
list_presets,
|
| 32 |
+
load_preset,
|
| 33 |
+
save_preset,
|
| 34 |
+
)
|
| 35 |
from process_kpi.kpi_health_check.rules import infer_kpi_direction, infer_kpi_sla
|
| 36 |
|
| 37 |
pn.extension("plotly", "tabulator")
|
|
|
|
| 51 |
current_status_df: pd.DataFrame | None = None
|
| 52 |
current_summary_df: pd.DataFrame | None = None
|
| 53 |
current_multirat_df: pd.DataFrame | None = None
|
| 54 |
+
current_multirat_raw: pd.DataFrame | None = None
|
| 55 |
current_top_anomalies_df: pd.DataFrame | None = None
|
| 56 |
+
current_top_anomalies_raw: pd.DataFrame | None = None
|
| 57 |
current_export_bytes: bytes | None = None
|
| 58 |
|
| 59 |
file_2g = pn.widgets.FileInput(name="2G KPI report", accept=".csv,.zip")
|
|
|
|
| 70 |
name="Min consecutive bad days (persistent)", value=3
|
| 71 |
)
|
| 72 |
|
| 73 |
+
min_criticality = pn.widgets.IntInput(name="Min criticality score", value=0)
|
| 74 |
+
min_anomaly_score = pn.widgets.IntInput(name="Min anomaly score", value=0)
|
| 75 |
+
city_filter = pn.widgets.TextInput(name="City contains (optional)", value="")
|
| 76 |
+
top_rat_filter = pn.widgets.CheckBoxGroup(
|
| 77 |
+
name="Top anomalies RAT", options=["2G", "3G", "LTE"], value=["2G", "3G", "LTE"]
|
| 78 |
+
)
|
| 79 |
+
top_status_filter = pn.widgets.CheckBoxGroup(
|
| 80 |
+
name="Top anomalies status",
|
| 81 |
+
options=["DEGRADED", "PERSISTENT_DEGRADED"],
|
| 82 |
+
value=["DEGRADED", "PERSISTENT_DEGRADED"],
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
preset_select = pn.widgets.Select(name="Rules preset", options=[], value=None)
|
| 86 |
+
preset_name_input = pn.widgets.TextInput(name="Save preset as", value="")
|
| 87 |
+
preset_refresh_button = pn.widgets.Button(name="Refresh presets", button_type="default")
|
| 88 |
+
preset_apply_button = pn.widgets.Button(name="Apply preset", button_type="primary")
|
| 89 |
+
preset_save_button = pn.widgets.Button(name="Save current rules", button_type="primary")
|
| 90 |
+
preset_delete_button = pn.widgets.Button(name="Delete preset", button_type="danger")
|
| 91 |
+
|
| 92 |
load_button = pn.widgets.Button(
|
| 93 |
name="Load datasets & build rules", button_type="primary"
|
| 94 |
)
|
|
|
|
| 144 |
height=260, sizing_mode="stretch_width", layout="fit_data_table"
|
| 145 |
)
|
| 146 |
trend_plot_pane = pn.pane.Plotly(sizing_mode="stretch_both", config=PLOTLY_CONFIG)
|
| 147 |
+
heatmap_plot_pane = pn.pane.Plotly(sizing_mode="stretch_both", config=PLOTLY_CONFIG)
|
| 148 |
+
hist_plot_pane = pn.pane.Plotly(sizing_mode="stretch_both", config=PLOTLY_CONFIG)
|
| 149 |
|
| 150 |
export_button = pn.widgets.FileDownload(
|
| 151 |
label="Download KPI Health Check report",
|
|
|
|
| 225 |
if current_status_df is None or current_status_df.empty:
|
| 226 |
site_kpi_table.value = pd.DataFrame()
|
| 227 |
trend_plot_pane.object = None
|
| 228 |
+
heatmap_plot_pane.object = None
|
| 229 |
+
hist_plot_pane.object = None
|
| 230 |
return
|
| 231 |
|
| 232 |
code = site_select.value
|
|
|
|
| 236 |
if code is None or rat is None:
|
| 237 |
site_kpi_table.value = pd.DataFrame()
|
| 238 |
trend_plot_pane.object = None
|
| 239 |
+
heatmap_plot_pane.object = None
|
| 240 |
+
hist_plot_pane.object = None
|
| 241 |
return
|
| 242 |
|
| 243 |
site_df = current_status_df[
|
|
|
|
| 249 |
daily = current_daily_by_rat.get(rat)
|
| 250 |
if daily is None or daily.empty or not kpi or kpi not in daily.columns:
|
| 251 |
trend_plot_pane.object = None
|
| 252 |
+
heatmap_plot_pane.object = None
|
| 253 |
+
hist_plot_pane.object = None
|
| 254 |
return
|
| 255 |
|
| 256 |
d = _filtered_daily(daily)
|
| 257 |
s = d[d["site_code"] == int(code)].copy().sort_values("date_only")
|
| 258 |
if s.empty:
|
| 259 |
trend_plot_pane.object = None
|
| 260 |
+
heatmap_plot_pane.object = None
|
| 261 |
+
hist_plot_pane.object = None
|
| 262 |
return
|
| 263 |
|
| 264 |
title = f"{rat} - {kpi} - site {int(code)}"
|
|
|
|
| 266 |
fig.update_layout(template="plotly_white", title=title)
|
| 267 |
trend_plot_pane.object = fig
|
| 268 |
|
| 269 |
+
rules_df = (
|
| 270 |
+
rules_table.value
|
| 271 |
+
if isinstance(rules_table.value, pd.DataFrame)
|
| 272 |
+
else pd.DataFrame()
|
| 273 |
+
)
|
| 274 |
+
kpis_for_heatmap = []
|
| 275 |
+
if (
|
| 276 |
+
isinstance(site_df, pd.DataFrame)
|
| 277 |
+
and not site_df.empty
|
| 278 |
+
and "KPI" in site_df.columns
|
| 279 |
+
):
|
| 280 |
+
sev = {
|
| 281 |
+
"PERSISTENT_DEGRADED": 3,
|
| 282 |
+
"DEGRADED": 2,
|
| 283 |
+
"RESOLVED": 1,
|
| 284 |
+
"OK": 0,
|
| 285 |
+
"NO_DATA": -1,
|
| 286 |
+
}
|
| 287 |
+
tmp = site_df.copy()
|
| 288 |
+
if "status" in tmp.columns:
|
| 289 |
+
tmp["_sev"] = tmp["status"].map(sev).fillna(0).astype(int)
|
| 290 |
+
tmp = tmp.sort_values(by=["_sev", "KPI"], ascending=[False, True])
|
| 291 |
+
kpis_for_heatmap = tmp["KPI"].astype(str).tolist()[:30]
|
| 292 |
+
|
| 293 |
+
heatmap_plot_pane.object = _build_site_heatmap(
|
| 294 |
+
d, rules_df, int(code), rat, kpis_for_heatmap
|
| 295 |
+
)
|
| 296 |
+
hist_plot_pane.object = _build_baseline_recent_hist(d, int(code), str(kpi))
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
def _apply_city_filter(df: pd.DataFrame) -> pd.DataFrame:
|
| 300 |
+
if df is None or df.empty:
|
| 301 |
+
return pd.DataFrame()
|
| 302 |
+
q = (city_filter.value or "").strip()
|
| 303 |
+
if not q or "City" not in df.columns:
|
| 304 |
+
return df
|
| 305 |
+
return df[df["City"].astype(str).str.contains(q, case=False, na=False)].copy()
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
def _infer_rule_row(rules_df: pd.DataFrame, rat: str, kpi: str) -> dict:
|
| 309 |
+
if rules_df is None or rules_df.empty:
|
| 310 |
+
return {}
|
| 311 |
+
s = rules_df[(rules_df["RAT"] == rat) & (rules_df["KPI"] == kpi)]
|
| 312 |
+
if s.empty:
|
| 313 |
+
return {}
|
| 314 |
+
return dict(s.iloc[0].to_dict())
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
def _compute_site_windows(
|
| 318 |
+
daily_filtered: pd.DataFrame,
|
| 319 |
+
) -> tuple[date, date, date, date] | None:
|
| 320 |
+
if daily_filtered is None or daily_filtered.empty:
|
| 321 |
+
return None
|
| 322 |
+
end_date = max(daily_filtered["date_only"])
|
| 323 |
+
recent_start, recent_end = window_bounds(end_date, int(recent_days.value))
|
| 324 |
+
baseline_end = recent_start - timedelta(days=1)
|
| 325 |
+
baseline_start = baseline_end - timedelta(days=int(baseline_days.value) - 1)
|
| 326 |
+
return baseline_start, baseline_end, recent_start, recent_end
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
def _build_site_heatmap(
|
| 330 |
+
daily_filtered: pd.DataFrame,
|
| 331 |
+
rules_df: pd.DataFrame,
|
| 332 |
+
site_code: int,
|
| 333 |
+
rat: str,
|
| 334 |
+
kpis: list[str],
|
| 335 |
+
) -> go.Figure | None:
|
| 336 |
+
if daily_filtered is None or daily_filtered.empty:
|
| 337 |
+
return None
|
| 338 |
+
windows = _compute_site_windows(daily_filtered)
|
| 339 |
+
if windows is None:
|
| 340 |
+
return None
|
| 341 |
+
baseline_start, baseline_end, recent_start, recent_end = windows
|
| 342 |
+
|
| 343 |
+
site_daily = daily_filtered[daily_filtered["site_code"] == int(site_code)].copy()
|
| 344 |
+
if site_daily.empty:
|
| 345 |
+
return None
|
| 346 |
+
site_daily = site_daily.sort_values("date_only")
|
| 347 |
+
|
| 348 |
+
dates = []
|
| 349 |
+
cur = recent_start
|
| 350 |
+
while cur <= recent_end:
|
| 351 |
+
dates.append(cur)
|
| 352 |
+
cur = cur + timedelta(days=1)
|
| 353 |
+
|
| 354 |
+
z = []
|
| 355 |
+
hover = []
|
| 356 |
+
y_labels = []
|
| 357 |
+
for kpi in kpis:
|
| 358 |
+
if kpi not in site_daily.columns:
|
| 359 |
+
continue
|
| 360 |
+
rule = _infer_rule_row(rules_df, rat, kpi)
|
| 361 |
+
direction = str(rule.get("direction", "higher_is_better"))
|
| 362 |
+
sla_raw = rule.get("sla", None)
|
| 363 |
+
try:
|
| 364 |
+
sla_val = float(sla_raw) if pd.notna(sla_raw) else None
|
| 365 |
+
except Exception: # noqa: BLE001
|
| 366 |
+
sla_val = None
|
| 367 |
+
|
| 368 |
+
s = site_daily[["date_only", kpi]].dropna(subset=[kpi])
|
| 369 |
+
baseline_mask = (s["date_only"] >= baseline_start) & (
|
| 370 |
+
s["date_only"] <= baseline_end
|
| 371 |
+
)
|
| 372 |
+
baseline = s.loc[baseline_mask, kpi].median() if baseline_mask.any() else np.nan
|
| 373 |
+
baseline_val = float(baseline) if pd.notna(baseline) else None
|
| 374 |
+
|
| 375 |
+
row_z = []
|
| 376 |
+
row_h = []
|
| 377 |
+
for d in dates:
|
| 378 |
+
v_series = site_daily.loc[site_daily["date_only"] == d, kpi]
|
| 379 |
+
v = v_series.iloc[0] if not v_series.empty else np.nan
|
| 380 |
+
if v is None or (isinstance(v, float) and np.isnan(v)):
|
| 381 |
+
row_z.append(None)
|
| 382 |
+
row_h.append(f"{kpi}<br>{d}: NO_DATA")
|
| 383 |
+
continue
|
| 384 |
+
bad = is_bad(
|
| 385 |
+
float(v) if pd.notna(v) else None,
|
| 386 |
+
baseline_val,
|
| 387 |
+
direction,
|
| 388 |
+
float(rel_threshold_pct.value),
|
| 389 |
+
sla_val,
|
| 390 |
+
)
|
| 391 |
+
row_z.append(1 if bad else 0)
|
| 392 |
+
row_h.append(
|
| 393 |
+
f"{kpi}<br>{d}: {float(v):.3f}<br>baseline: {baseline_val if baseline_val is not None else 'NA'}<br>sla: {sla_val if sla_val is not None else 'NA'}"
|
| 394 |
+
)
|
| 395 |
+
|
| 396 |
+
z.append(row_z)
|
| 397 |
+
hover.append(row_h)
|
| 398 |
+
y_labels.append(kpi)
|
| 399 |
+
|
| 400 |
+
if not z:
|
| 401 |
+
return None
|
| 402 |
+
|
| 403 |
+
fig = go.Figure(
|
| 404 |
+
data=[
|
| 405 |
+
go.Heatmap(
|
| 406 |
+
z=z,
|
| 407 |
+
x=[str(d) for d in dates],
|
| 408 |
+
y=y_labels,
|
| 409 |
+
colorscale=[[0.0, "#2ca02c"], [1.0, "#d62728"]],
|
| 410 |
+
zmin=0,
|
| 411 |
+
zmax=1,
|
| 412 |
+
showscale=False,
|
| 413 |
+
hovertext=hover,
|
| 414 |
+
hovertemplate="%{hovertext}<extra></extra>",
|
| 415 |
+
)
|
| 416 |
+
]
|
| 417 |
+
)
|
| 418 |
+
fig.update_layout(
|
| 419 |
+
template="plotly_white",
|
| 420 |
+
title=f"{rat} - Site {int(site_code)} - Recent window heatmap",
|
| 421 |
+
xaxis_title="date",
|
| 422 |
+
yaxis_title="KPI",
|
| 423 |
+
height=420,
|
| 424 |
+
margin=dict(l=40, r=20, t=60, b=40),
|
| 425 |
+
)
|
| 426 |
+
return fig
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
def _build_baseline_recent_hist(
|
| 430 |
+
daily_filtered: pd.DataFrame,
|
| 431 |
+
site_code: int,
|
| 432 |
+
kpi: str,
|
| 433 |
+
) -> go.Figure | None:
|
| 434 |
+
if (
|
| 435 |
+
daily_filtered is None
|
| 436 |
+
or daily_filtered.empty
|
| 437 |
+
or not kpi
|
| 438 |
+
or kpi not in daily_filtered.columns
|
| 439 |
+
):
|
| 440 |
+
return None
|
| 441 |
+
|
| 442 |
+
windows = _compute_site_windows(daily_filtered)
|
| 443 |
+
if windows is None:
|
| 444 |
+
return None
|
| 445 |
+
baseline_start, baseline_end, recent_start, recent_end = windows
|
| 446 |
+
|
| 447 |
+
site_daily = daily_filtered[daily_filtered["site_code"] == int(site_code)].copy()
|
| 448 |
+
if site_daily.empty:
|
| 449 |
+
return None
|
| 450 |
+
|
| 451 |
+
s = site_daily[["date_only", kpi]].dropna(subset=[kpi])
|
| 452 |
+
baseline_mask = (s["date_only"] >= baseline_start) & (
|
| 453 |
+
s["date_only"] <= baseline_end
|
| 454 |
+
)
|
| 455 |
+
recent_mask = (s["date_only"] >= recent_start) & (s["date_only"] <= recent_end)
|
| 456 |
+
|
| 457 |
+
baseline_vals = (
|
| 458 |
+
pd.to_numeric(s.loc[baseline_mask, kpi], errors="coerce").dropna().astype(float)
|
| 459 |
+
)
|
| 460 |
+
recent_vals = (
|
| 461 |
+
pd.to_numeric(s.loc[recent_mask, kpi], errors="coerce").dropna().astype(float)
|
| 462 |
+
)
|
| 463 |
+
if baseline_vals.empty and recent_vals.empty:
|
| 464 |
+
return None
|
| 465 |
+
|
| 466 |
+
dfh = pd.concat(
|
| 467 |
+
[
|
| 468 |
+
pd.DataFrame({"window": "baseline", "value": baseline_vals}),
|
| 469 |
+
pd.DataFrame({"window": "recent", "value": recent_vals}),
|
| 470 |
+
],
|
| 471 |
+
ignore_index=True,
|
| 472 |
+
)
|
| 473 |
+
fig = px.histogram(
|
| 474 |
+
dfh,
|
| 475 |
+
x="value",
|
| 476 |
+
color="window",
|
| 477 |
+
barmode="overlay",
|
| 478 |
+
opacity=0.6,
|
| 479 |
+
)
|
| 480 |
+
fig.update_layout(
|
| 481 |
+
template="plotly_white",
|
| 482 |
+
title=f"{kpi} distribution (baseline vs recent)",
|
| 483 |
+
xaxis_title=kpi,
|
| 484 |
+
yaxis_title="count",
|
| 485 |
+
height=420,
|
| 486 |
+
margin=dict(l=40, r=20, t=60, b=40),
|
| 487 |
+
)
|
| 488 |
+
return fig
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
def _compute_site_traffic_gb(daily_by_rat: dict[str, pd.DataFrame]) -> pd.DataFrame:
|
| 492 |
+
MB_PER_GB = 1024.0
|
| 493 |
+
rows = []
|
| 494 |
+
|
| 495 |
+
for rat, daily in daily_by_rat.items():
|
| 496 |
+
if daily is None or daily.empty:
|
| 497 |
+
continue
|
| 498 |
+
d = _filtered_daily(daily)
|
| 499 |
+
if d.empty or "site_code" not in d.columns:
|
| 500 |
+
continue
|
| 501 |
+
|
| 502 |
+
cols: list[str] = []
|
| 503 |
+
if rat == "2G":
|
| 504 |
+
for c in d.columns:
|
| 505 |
+
key = str(c).lower().replace(" ", "_")
|
| 506 |
+
if "traffic_ps" in key:
|
| 507 |
+
cols.append(c)
|
| 508 |
+
elif rat == "3G":
|
| 509 |
+
if "Total_Data_Traffic" in d.columns:
|
| 510 |
+
cols.append("Total_Data_Traffic")
|
| 511 |
+
elif rat == "LTE":
|
| 512 |
+
for c in d.columns:
|
| 513 |
+
key = str(c).lower().replace(" ", "_")
|
| 514 |
+
if "traffic_volume" in key and "gbytes" in key:
|
| 515 |
+
cols.append(c)
|
| 516 |
+
|
| 517 |
+
cols = [c for c in cols if c in d.columns]
|
| 518 |
+
if not cols:
|
| 519 |
+
continue
|
| 520 |
+
|
| 521 |
+
traffic = pd.to_numeric(
|
| 522 |
+
d[cols].sum(axis=1, skipna=True), errors="coerce"
|
| 523 |
+
).fillna(0)
|
| 524 |
+
if rat == "2G":
|
| 525 |
+
traffic = traffic / MB_PER_GB
|
| 526 |
+
|
| 527 |
+
tmp = pd.DataFrame(
|
| 528 |
+
{
|
| 529 |
+
"site_code": d["site_code"].astype(int),
|
| 530 |
+
"RAT": rat,
|
| 531 |
+
"traffic_gb": traffic.astype(float),
|
| 532 |
+
}
|
| 533 |
+
)
|
| 534 |
+
tmp = tmp.groupby(["site_code", "RAT"], as_index=False)["traffic_gb"].sum()
|
| 535 |
+
rows.append(tmp)
|
| 536 |
+
|
| 537 |
+
if not rows:
|
| 538 |
+
return pd.DataFrame(columns=["site_code", "traffic_gb_total"])
|
| 539 |
+
|
| 540 |
+
all_rows = pd.concat(rows, ignore_index=True)
|
| 541 |
+
pivot = (
|
| 542 |
+
all_rows.pivot_table(
|
| 543 |
+
index="site_code",
|
| 544 |
+
columns="RAT",
|
| 545 |
+
values="traffic_gb",
|
| 546 |
+
aggfunc="sum",
|
| 547 |
+
fill_value=0,
|
| 548 |
+
)
|
| 549 |
+
.reset_index()
|
| 550 |
+
.copy()
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
traffic_cols = []
|
| 554 |
+
for rat in ["2G", "3G", "LTE"]:
|
| 555 |
+
if rat in pivot.columns:
|
| 556 |
+
pivot = pivot.rename(columns={rat: f"traffic_gb_{rat}"})
|
| 557 |
+
traffic_cols.append(f"traffic_gb_{rat}")
|
| 558 |
+
|
| 559 |
+
if traffic_cols:
|
| 560 |
+
pivot["traffic_gb_total"] = (
|
| 561 |
+
pd.to_numeric(pivot[traffic_cols].sum(axis=1), errors="coerce")
|
| 562 |
+
.fillna(0)
|
| 563 |
+
.astype(float)
|
| 564 |
+
)
|
| 565 |
+
else:
|
| 566 |
+
pivot["traffic_gb_total"] = 0.0
|
| 567 |
+
|
| 568 |
+
return pivot
|
| 569 |
+
|
| 570 |
+
|
| 571 |
+
def _refresh_filtered_results(event=None) -> None:
|
| 572 |
+
global current_multirat_df, current_top_anomalies_df, current_export_bytes
|
| 573 |
+
|
| 574 |
+
if current_multirat_raw is not None and not current_multirat_raw.empty:
|
| 575 |
+
m = _apply_city_filter(current_multirat_raw)
|
| 576 |
+
score_col = (
|
| 577 |
+
"criticality_score_weighted"
|
| 578 |
+
if "criticality_score_weighted" in m.columns
|
| 579 |
+
else "criticality_score"
|
| 580 |
+
)
|
| 581 |
+
if score_col in m.columns:
|
| 582 |
+
m = m[
|
| 583 |
+
pd.to_numeric(m[score_col], errors="coerce").fillna(0)
|
| 584 |
+
>= int(min_criticality.value)
|
| 585 |
+
]
|
| 586 |
+
m = m.sort_values(by=[score_col], ascending=False)
|
| 587 |
+
current_multirat_df = m
|
| 588 |
+
multirat_summary_table.value = current_multirat_df
|
| 589 |
+
else:
|
| 590 |
+
current_multirat_df = pd.DataFrame()
|
| 591 |
+
multirat_summary_table.value = current_multirat_df
|
| 592 |
+
|
| 593 |
+
if current_top_anomalies_raw is not None and not current_top_anomalies_raw.empty:
|
| 594 |
+
t = _apply_city_filter(current_top_anomalies_raw)
|
| 595 |
+
if top_rat_filter.value:
|
| 596 |
+
t = t[t["RAT"].isin(list(top_rat_filter.value))]
|
| 597 |
+
if top_status_filter.value and "status" in t.columns:
|
| 598 |
+
t = t[t["status"].isin(list(top_status_filter.value))]
|
| 599 |
+
score_col = (
|
| 600 |
+
"anomaly_score_weighted"
|
| 601 |
+
if "anomaly_score_weighted" in t.columns
|
| 602 |
+
else "anomaly_score"
|
| 603 |
+
)
|
| 604 |
+
if score_col in t.columns:
|
| 605 |
+
t = t[
|
| 606 |
+
pd.to_numeric(t[score_col], errors="coerce").fillna(0)
|
| 607 |
+
>= int(min_anomaly_score.value)
|
| 608 |
+
]
|
| 609 |
+
t = t.sort_values(by=[score_col], ascending=False)
|
| 610 |
+
current_top_anomalies_df = t
|
| 611 |
+
top_anomalies_table.value = current_top_anomalies_df
|
| 612 |
+
else:
|
| 613 |
+
current_top_anomalies_df = pd.DataFrame()
|
| 614 |
+
top_anomalies_table.value = current_top_anomalies_df
|
| 615 |
+
|
| 616 |
+
current_export_bytes = None
|
| 617 |
+
|
| 618 |
+
|
| 619 |
+
def _refresh_presets(event=None) -> None:
|
| 620 |
+
names = list_presets()
|
| 621 |
+
preset_select.options = [""] + names
|
| 622 |
+
if preset_select.value not in preset_select.options:
|
| 623 |
+
preset_select.value = ""
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
def _apply_preset(event=None) -> None:
|
| 627 |
+
global current_export_bytes
|
| 628 |
+
try:
|
| 629 |
+
if not preset_select.value:
|
| 630 |
+
return
|
| 631 |
+
preset_df = load_preset(str(preset_select.value))
|
| 632 |
+
if preset_df is None or preset_df.empty:
|
| 633 |
+
return
|
| 634 |
+
except Exception as exc: # noqa: BLE001
|
| 635 |
+
status_pane.alert_type = "danger"
|
| 636 |
+
status_pane.object = f"Error loading preset: {exc}"
|
| 637 |
+
return
|
| 638 |
+
|
| 639 |
+
cur = (
|
| 640 |
+
rules_table.value
|
| 641 |
+
if isinstance(rules_table.value, pd.DataFrame)
|
| 642 |
+
else pd.DataFrame()
|
| 643 |
+
)
|
| 644 |
+
if cur is None or cur.empty:
|
| 645 |
+
rules_table.value = preset_df
|
| 646 |
+
return
|
| 647 |
+
|
| 648 |
+
key = ["RAT", "KPI"]
|
| 649 |
+
upd_cols = [c for c in ["direction", "sla"] if c in preset_df.columns]
|
| 650 |
+
preset_df2 = preset_df[key + upd_cols].copy()
|
| 651 |
+
|
| 652 |
+
merged = pd.merge(cur, preset_df2, on=key, how="left", suffixes=("", "_preset"))
|
| 653 |
+
for c in upd_cols:
|
| 654 |
+
pc = f"{c}_preset"
|
| 655 |
+
if pc in merged.columns:
|
| 656 |
+
merged[c] = merged[pc].where(merged[pc].notna(), merged[c])
|
| 657 |
+
merged = merged.drop(columns=[pc])
|
| 658 |
+
|
| 659 |
+
rules_table.value = merged
|
| 660 |
+
status_pane.alert_type = "success"
|
| 661 |
+
status_pane.object = f"Preset applied: {preset_select.value}"
|
| 662 |
+
current_export_bytes = None
|
| 663 |
+
|
| 664 |
+
|
| 665 |
+
def _save_current_rules_as_preset(event=None) -> None:
|
| 666 |
+
try:
|
| 667 |
+
name = (preset_name_input.value or "").strip()
|
| 668 |
+
if not name:
|
| 669 |
+
name = str(preset_select.value or "").strip()
|
| 670 |
+
if not name:
|
| 671 |
+
raise ValueError("Please provide a preset name")
|
| 672 |
+
cur = (
|
| 673 |
+
rules_table.value
|
| 674 |
+
if isinstance(rules_table.value, pd.DataFrame)
|
| 675 |
+
else pd.DataFrame()
|
| 676 |
+
)
|
| 677 |
+
save_preset(name, cur)
|
| 678 |
+
preset_name_input.value = ""
|
| 679 |
+
_refresh_presets()
|
| 680 |
+
preset_select.value = name
|
| 681 |
+
status_pane.alert_type = "success"
|
| 682 |
+
status_pane.object = f"Preset saved: {name}"
|
| 683 |
+
except Exception as exc: # noqa: BLE001
|
| 684 |
+
status_pane.alert_type = "danger"
|
| 685 |
+
status_pane.object = f"Error saving preset: {exc}"
|
| 686 |
+
|
| 687 |
+
|
| 688 |
+
def _delete_selected_preset(event=None) -> None:
|
| 689 |
+
global current_export_bytes
|
| 690 |
+
try:
|
| 691 |
+
name = str(preset_select.value or "").strip()
|
| 692 |
+
if not name:
|
| 693 |
+
return
|
| 694 |
+
delete_preset(name)
|
| 695 |
+
_refresh_presets()
|
| 696 |
+
status_pane.alert_type = "success"
|
| 697 |
+
status_pane.object = f"Preset deleted: {name}"
|
| 698 |
+
current_export_bytes = None
|
| 699 |
+
except Exception as exc: # noqa: BLE001
|
| 700 |
+
status_pane.alert_type = "danger"
|
| 701 |
+
status_pane.object = f"Error deleting preset: {exc}"
|
| 702 |
+
|
| 703 |
|
| 704 |
def load_datasets(event=None) -> None:
|
| 705 |
try:
|
|
|
|
| 708 |
|
| 709 |
global current_daily_by_rat, current_rules_df
|
| 710 |
global current_status_df, current_summary_df, current_export_bytes
|
| 711 |
+
global current_multirat_df, current_multirat_raw, current_top_anomalies_df, current_top_anomalies_raw
|
| 712 |
|
| 713 |
current_daily_by_rat = {}
|
| 714 |
current_rules_df = None
|
| 715 |
current_status_df = None
|
| 716 |
current_summary_df = None
|
| 717 |
current_multirat_df = None
|
| 718 |
+
current_multirat_raw = None
|
| 719 |
current_top_anomalies_df = None
|
| 720 |
+
current_top_anomalies_raw = None
|
| 721 |
current_export_bytes = None
|
| 722 |
|
| 723 |
site_summary_table.value = pd.DataFrame()
|
|
|
|
| 725 |
top_anomalies_table.value = pd.DataFrame()
|
| 726 |
site_kpi_table.value = pd.DataFrame()
|
| 727 |
trend_plot_pane.object = None
|
| 728 |
+
heatmap_plot_pane.object = None
|
| 729 |
+
hist_plot_pane.object = None
|
| 730 |
|
| 731 |
inputs = {"2G": file_2g, "3G": file_3g, "LTE": file_lte}
|
| 732 |
rows = []
|
|
|
|
| 810 |
status_pane.object = "Running health check..."
|
| 811 |
|
| 812 |
global current_status_df, current_summary_df, current_export_bytes
|
| 813 |
+
global current_multirat_df, current_multirat_raw
|
| 814 |
+
global current_top_anomalies_df, current_top_anomalies_raw
|
| 815 |
|
| 816 |
rules_df = (
|
| 817 |
rules_table.value
|
|
|
|
| 848 |
)
|
| 849 |
site_summary_table.value = current_summary_df
|
| 850 |
|
| 851 |
+
current_multirat_raw, current_top_anomalies_raw = compute_multirat_views(
|
| 852 |
current_status_df
|
| 853 |
)
|
| 854 |
+
|
| 855 |
+
traffic_df = _compute_site_traffic_gb(current_daily_by_rat)
|
| 856 |
+
if traffic_df is not None and not traffic_df.empty:
|
| 857 |
+
if current_multirat_raw is not None and not current_multirat_raw.empty:
|
| 858 |
+
current_multirat_raw = pd.merge(
|
| 859 |
+
current_multirat_raw, traffic_df, on="site_code", how="left"
|
| 860 |
+
)
|
| 861 |
+
w = 1.0 + np.log1p(
|
| 862 |
+
pd.to_numeric(
|
| 863 |
+
current_multirat_raw["traffic_gb_total"], errors="coerce"
|
| 864 |
+
)
|
| 865 |
+
.fillna(0)
|
| 866 |
+
.astype(float)
|
| 867 |
+
)
|
| 868 |
+
current_multirat_raw["criticality_score_weighted"] = (
|
| 869 |
+
(
|
| 870 |
+
pd.to_numeric(
|
| 871 |
+
current_multirat_raw["criticality_score"], errors="coerce"
|
| 872 |
+
)
|
| 873 |
+
.fillna(0)
|
| 874 |
+
.astype(float)
|
| 875 |
+
* w
|
| 876 |
+
)
|
| 877 |
+
.round(0)
|
| 878 |
+
.astype(int)
|
| 879 |
+
)
|
| 880 |
+
|
| 881 |
+
if (
|
| 882 |
+
current_top_anomalies_raw is not None
|
| 883 |
+
and not current_top_anomalies_raw.empty
|
| 884 |
+
):
|
| 885 |
+
current_top_anomalies_raw = pd.merge(
|
| 886 |
+
current_top_anomalies_raw, traffic_df, on="site_code", how="left"
|
| 887 |
+
)
|
| 888 |
+
w = 1.0 + np.log1p(
|
| 889 |
+
pd.to_numeric(
|
| 890 |
+
current_top_anomalies_raw["traffic_gb_total"], errors="coerce"
|
| 891 |
+
)
|
| 892 |
+
.fillna(0)
|
| 893 |
+
.astype(float)
|
| 894 |
+
)
|
| 895 |
+
current_top_anomalies_raw["anomaly_score_weighted"] = (
|
| 896 |
+
(
|
| 897 |
+
pd.to_numeric(
|
| 898 |
+
current_top_anomalies_raw["anomaly_score"], errors="coerce"
|
| 899 |
+
)
|
| 900 |
+
.fillna(0)
|
| 901 |
+
.astype(float)
|
| 902 |
+
* w
|
| 903 |
+
)
|
| 904 |
+
.round(0)
|
| 905 |
+
.astype(int)
|
| 906 |
+
)
|
| 907 |
+
|
| 908 |
+
_refresh_filtered_results()
|
| 909 |
|
| 910 |
current_export_bytes = _build_export_bytes()
|
| 911 |
|
|
|
|
| 943 |
|
| 944 |
|
| 945 |
def _export_callback() -> io.BytesIO:
|
| 946 |
+
global current_export_bytes
|
| 947 |
+
if current_export_bytes is None:
|
| 948 |
+
try:
|
| 949 |
+
current_export_bytes = _build_export_bytes()
|
| 950 |
+
except Exception: # noqa: BLE001
|
| 951 |
+
current_export_bytes = b""
|
| 952 |
+
return io.BytesIO(current_export_bytes or b"")
|
| 953 |
|
| 954 |
|
| 955 |
load_button.on_click(load_datasets)
|
| 956 |
run_button.on_click(run_health_check)
|
| 957 |
|
| 958 |
+
preset_refresh_button.on_click(_refresh_presets)
|
| 959 |
+
preset_apply_button.on_click(_apply_preset)
|
| 960 |
+
preset_save_button.on_click(_save_current_rules_as_preset)
|
| 961 |
+
preset_delete_button.on_click(_delete_selected_preset)
|
| 962 |
+
|
| 963 |
+
_refresh_presets()
|
| 964 |
+
|
| 965 |
rat_select.param.watch(lambda e: (_update_kpi_options(), _update_site_view()), "value")
|
| 966 |
site_select.param.watch(_update_site_view, "value")
|
| 967 |
kpi_select.param.watch(_update_site_view, "value")
|
| 968 |
|
| 969 |
+
min_criticality.param.watch(_refresh_filtered_results, "value")
|
| 970 |
+
min_anomaly_score.param.watch(_refresh_filtered_results, "value")
|
| 971 |
+
city_filter.param.watch(_refresh_filtered_results, "value")
|
| 972 |
+
top_rat_filter.param.watch(_refresh_filtered_results, "value")
|
| 973 |
+
top_status_filter.param.watch(_refresh_filtered_results, "value")
|
| 974 |
+
|
| 975 |
export_button.callback = _export_callback
|
| 976 |
|
| 977 |
|
|
|
|
| 987 |
rel_threshold_pct,
|
| 988 |
min_consecutive_days,
|
| 989 |
"---",
|
| 990 |
+
pn.pane.Markdown("### Filters"),
|
| 991 |
+
min_criticality,
|
| 992 |
+
min_anomaly_score,
|
| 993 |
+
city_filter,
|
| 994 |
+
top_rat_filter,
|
| 995 |
+
top_status_filter,
|
| 996 |
+
"---",
|
| 997 |
+
pn.pane.Markdown("### Rule presets"),
|
| 998 |
+
preset_select,
|
| 999 |
+
pn.Row(preset_refresh_button, preset_apply_button),
|
| 1000 |
+
preset_name_input,
|
| 1001 |
+
pn.Row(preset_save_button, preset_delete_button),
|
| 1002 |
+
"---",
|
| 1003 |
load_button,
|
| 1004 |
run_button,
|
| 1005 |
"---",
|
|
|
|
| 1025 |
pn.Column(site_kpi_table, sizing_mode="stretch_width"),
|
| 1026 |
pn.Column(trend_plot_pane, sizing_mode="stretch_both"),
|
| 1027 |
),
|
| 1028 |
+
pn.Row(
|
| 1029 |
+
pn.Column(heatmap_plot_pane, sizing_mode="stretch_both"),
|
| 1030 |
+
pn.Column(hist_plot_pane, sizing_mode="stretch_both"),
|
| 1031 |
+
),
|
| 1032 |
)
|
| 1033 |
|
| 1034 |
|
process_kpi/kpi_health_check/multi_rat.py
CHANGED
|
@@ -87,9 +87,31 @@ def compute_multirat_views(
|
|
| 87 |
|
| 88 |
metric_cols = [c for c in out.columns if c != "City"]
|
| 89 |
out[metric_cols] = out[metric_cols].fillna(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
out = out.sort_values(
|
| 91 |
-
by=[
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
)
|
| 94 |
|
| 95 |
top = df[df["is_degraded"]].copy()
|
|
@@ -100,14 +122,30 @@ def compute_multirat_views(
|
|
| 100 |
if col not in top.columns:
|
| 101 |
top[col] = pd.NA
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
top = top.sort_values(
|
| 104 |
-
by=["severity", "max_streak_recent", "bad_days_recent"],
|
| 105 |
-
ascending=[False, False, False],
|
| 106 |
)
|
| 107 |
|
| 108 |
top_cols = [
|
| 109 |
c
|
| 110 |
for c in [
|
|
|
|
| 111 |
"severity",
|
| 112 |
"RAT",
|
| 113 |
"site_code",
|
|
|
|
| 87 |
|
| 88 |
metric_cols = [c for c in out.columns if c != "City"]
|
| 89 |
out[metric_cols] = out[metric_cols].fillna(0)
|
| 90 |
+
|
| 91 |
+
resolved_total = (
|
| 92 |
+
out["resolved_kpis_total"].astype(float)
|
| 93 |
+
if "resolved_kpis_total" in out.columns
|
| 94 |
+
else 0.0
|
| 95 |
+
)
|
| 96 |
+
out["criticality_score"] = (
|
| 97 |
+
(
|
| 98 |
+
out["persistent_kpis_total"].astype(float) * 5.0
|
| 99 |
+
+ out["degraded_kpis_total"].astype(float) * 2.0
|
| 100 |
+
+ out["impacted_rats"].astype(float) * 1.0
|
| 101 |
+
+ resolved_total * 0.5
|
| 102 |
+
)
|
| 103 |
+
.round(0)
|
| 104 |
+
.astype(int)
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
out = out.sort_values(
|
| 108 |
+
by=[
|
| 109 |
+
"criticality_score",
|
| 110 |
+
"persistent_kpis_total",
|
| 111 |
+
"degraded_kpis_total",
|
| 112 |
+
"impacted_rats",
|
| 113 |
+
],
|
| 114 |
+
ascending=[False, False, False, False],
|
| 115 |
)
|
| 116 |
|
| 117 |
top = df[df["is_degraded"]].copy()
|
|
|
|
| 122 |
if col not in top.columns:
|
| 123 |
top[col] = pd.NA
|
| 124 |
|
| 125 |
+
top["anomaly_score"] = (
|
| 126 |
+
(
|
| 127 |
+
top["severity"].astype(float) * 100.0
|
| 128 |
+
+ pd.to_numeric(top["max_streak_recent"], errors="coerce")
|
| 129 |
+
.fillna(0)
|
| 130 |
+
.astype(float)
|
| 131 |
+
* 10.0
|
| 132 |
+
+ pd.to_numeric(top["bad_days_recent"], errors="coerce")
|
| 133 |
+
.fillna(0)
|
| 134 |
+
.astype(float)
|
| 135 |
+
)
|
| 136 |
+
.round(0)
|
| 137 |
+
.astype(int)
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
top = top.sort_values(
|
| 141 |
+
by=["anomaly_score", "severity", "max_streak_recent", "bad_days_recent"],
|
| 142 |
+
ascending=[False, False, False, False],
|
| 143 |
)
|
| 144 |
|
| 145 |
top_cols = [
|
| 146 |
c
|
| 147 |
for c in [
|
| 148 |
+
"anomaly_score",
|
| 149 |
"severity",
|
| 150 |
"RAT",
|
| 151 |
"site_code",
|
process_kpi/kpi_health_check/presets.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def presets_dir() -> str:
|
| 9 |
+
root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
| 10 |
+
return os.path.join(root, "data", "kpi_health_check_presets")
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def _safe_name(name: str) -> str:
|
| 14 |
+
s = (name or "").strip()
|
| 15 |
+
s = s.replace("..", "")
|
| 16 |
+
s = s.replace("/", "_").replace("\\", "_")
|
| 17 |
+
s = "_".join([p for p in s.split() if p])
|
| 18 |
+
return s
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def list_presets() -> list[str]:
|
| 22 |
+
d = presets_dir()
|
| 23 |
+
if not os.path.isdir(d):
|
| 24 |
+
return []
|
| 25 |
+
out = []
|
| 26 |
+
for fn in os.listdir(d):
|
| 27 |
+
if fn.lower().endswith(".json"):
|
| 28 |
+
out.append(os.path.splitext(fn)[0])
|
| 29 |
+
return sorted(set(out))
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def load_preset(name: str) -> pd.DataFrame:
|
| 33 |
+
d = presets_dir()
|
| 34 |
+
safe = _safe_name(name)
|
| 35 |
+
path = os.path.join(d, f"{safe}.json")
|
| 36 |
+
with open(path, "r", encoding="utf-8") as f:
|
| 37 |
+
obj = json.load(f)
|
| 38 |
+
rows = obj.get("rules", []) if isinstance(obj, dict) else []
|
| 39 |
+
df = pd.DataFrame(rows)
|
| 40 |
+
if not df.empty:
|
| 41 |
+
df["RAT"] = df["RAT"].astype(str)
|
| 42 |
+
df["KPI"] = df["KPI"].astype(str)
|
| 43 |
+
return df
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def save_preset(name: str, rules_df: pd.DataFrame) -> str:
|
| 47 |
+
safe = _safe_name(name)
|
| 48 |
+
if not safe:
|
| 49 |
+
raise ValueError("Preset name is empty")
|
| 50 |
+
|
| 51 |
+
d = presets_dir()
|
| 52 |
+
os.makedirs(d, exist_ok=True)
|
| 53 |
+
path = os.path.join(d, f"{safe}.json")
|
| 54 |
+
|
| 55 |
+
df = rules_df.copy() if isinstance(rules_df, pd.DataFrame) else pd.DataFrame()
|
| 56 |
+
if df.empty:
|
| 57 |
+
raise ValueError("Rules dataframe is empty")
|
| 58 |
+
|
| 59 |
+
keep = [c for c in ["RAT", "KPI", "direction", "sla"] if c in df.columns]
|
| 60 |
+
df = df[keep].copy()
|
| 61 |
+
|
| 62 |
+
obj = {
|
| 63 |
+
"name": safe,
|
| 64 |
+
"saved_at": datetime.utcnow().isoformat() + "Z",
|
| 65 |
+
"rules": df.to_dict(orient="records"),
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
with open(path, "w", encoding="utf-8") as f:
|
| 69 |
+
json.dump(obj, f, ensure_ascii=False, indent=2)
|
| 70 |
+
|
| 71 |
+
return path
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def delete_preset(name: str) -> None:
|
| 75 |
+
d = presets_dir()
|
| 76 |
+
safe = _safe_name(name)
|
| 77 |
+
path = os.path.join(d, f"{safe}.json")
|
| 78 |
+
if os.path.isfile(path):
|
| 79 |
+
os.remove(path)
|