Spaces:
Running
Running
File size: 21,989 Bytes
f32d4c7 532fc72 d57f9ad f32d4c7 532fc72 f32d4c7 532fc72 f32d4c7 d57f9ad f32d4c7 d57f9ad f32d4c7 d57f9ad f32d4c7 d57f9ad f32d4c7 d57f9ad f32d4c7 532fc72 f32d4c7 d57f9ad f32d4c7 532fc72 f32d4c7 532fc72 d57f9ad f32d4c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
"""
Configuration for Arabic Tokenizer Arena
=========================================
Tokenizer registry, dataset configs, and sample texts
"""
from dataclasses import dataclass, field
from typing import List, Dict
from enum import Enum
class TokenizerType(Enum):
ARABIC_SPECIFIC = "Arabic-Specific"
MULTILINGUAL_LLM = "Multilingual LLM"
ARABIC_LLM = "Arabic LLM"
ENCODER_ONLY = "Encoder-Only (BERT)"
DECODER_ONLY = "Decoder-Only (GPT)"
class TokenizerAlgorithm(Enum):
BPE = "Byte-Pair Encoding (BPE)"
BBPE = "Byte-Level BPE"
WORDPIECE = "WordPiece"
SENTENCEPIECE = "SentencePiece"
UNIGRAM = "Unigram"
TIKTOKEN = "Tiktoken"
@dataclass
class TokenizerInfo:
"""Metadata about a tokenizer"""
name: str
model_id: str
type: TokenizerType
algorithm: TokenizerAlgorithm
vocab_size: int
description: str
organization: str
arabic_support: str # Native, Adapted, Limited
dialect_support: List[str] = field(default_factory=list)
special_features: List[str] = field(default_factory=list)
@dataclass
class TokenizationMetrics:
"""Comprehensive tokenization evaluation metrics"""
total_tokens: int
total_words: int
total_characters: int
total_bytes: int
fertility: float
compression_ratio: float
char_per_token: float
oov_count: int
oov_percentage: float
single_token_words: int
single_token_retention_rate: float
avg_subwords_per_word: float
max_subwords_per_word: int
continued_words_ratio: float
arabic_char_count: int
arabic_token_count: int
arabic_fertility: float
diacritic_preservation: bool
tokenization_time_ms: float
tokens: List[str] = field(default_factory=list)
token_ids: List[int] = field(default_factory=list)
decoded_text: str = ""
# ============================================================================
# TOKENIZER REGISTRY
# ============================================================================
TOKENIZER_REGISTRY: Dict[str, TokenizerInfo] = {
# ========== ARABIC-SPECIFIC BERT MODELS ==========
"aubmindlab/bert-base-arabertv2": TokenizerInfo(
name="AraBERT v2",
model_id="aubmindlab/bert-base-arabertv2",
type=TokenizerType.ENCODER_ONLY,
algorithm=TokenizerAlgorithm.WORDPIECE,
vocab_size=64000,
description="Arabic BERT with Farasa segmentation, optimized for MSA",
organization="AUB MIND Lab",
arabic_support="Native",
dialect_support=["MSA"],
special_features=["Farasa preprocessing", "Morphological segmentation"]
),
"aubmindlab/bert-large-arabertv2": TokenizerInfo(
name="AraBERT v2 Large",
model_id="aubmindlab/bert-large-arabertv2",
type=TokenizerType.ENCODER_ONLY,
algorithm=TokenizerAlgorithm.WORDPIECE,
vocab_size=64000,
description="Large Arabic BERT with enhanced capacity",
organization="AUB MIND Lab",
arabic_support="Native",
dialect_support=["MSA"],
special_features=["Large model", "Farasa preprocessing"]
),
"CAMeL-Lab/bert-base-arabic-camelbert-mix": TokenizerInfo(
name="CAMeLBERT Mix",
model_id="CAMeL-Lab/bert-base-arabic-camelbert-mix",
type=TokenizerType.ENCODER_ONLY,
algorithm=TokenizerAlgorithm.WORDPIECE,
vocab_size=30000,
description="Pre-trained on MSA, DA, and Classical Arabic mix",
organization="CAMeL Lab NYU Abu Dhabi",
arabic_support="Native",
dialect_support=["MSA", "DA", "CA"],
special_features=["Multi-variant Arabic", "Classical Arabic support"]
),
"CAMeL-Lab/bert-base-arabic-camelbert-msa": TokenizerInfo(
name="CAMeLBERT MSA",
model_id="CAMeL-Lab/bert-base-arabic-camelbert-msa",
type=TokenizerType.ENCODER_ONLY,
algorithm=TokenizerAlgorithm.WORDPIECE,
vocab_size=30000,
description="Specialized for Modern Standard Arabic",
organization="CAMeL Lab NYU Abu Dhabi",
arabic_support="Native",
dialect_support=["MSA"],
special_features=["MSA optimized"]
),
"CAMeL-Lab/bert-base-arabic-camelbert-da": TokenizerInfo(
name="CAMeLBERT DA",
model_id="CAMeL-Lab/bert-base-arabic-camelbert-da",
type=TokenizerType.ENCODER_ONLY,
algorithm=TokenizerAlgorithm.WORDPIECE,
vocab_size=30000,
description="Specialized for Dialectal Arabic",
organization="CAMeL Lab NYU Abu Dhabi",
arabic_support="Native",
dialect_support=["Egyptian", "Gulf", "Levantine", "Maghrebi"],
special_features=["Dialect optimized"]
),
"CAMeL-Lab/bert-base-arabic-camelbert-ca": TokenizerInfo(
name="CAMeLBERT CA",
model_id="CAMeL-Lab/bert-base-arabic-camelbert-ca",
type=TokenizerType.ENCODER_ONLY,
algorithm=TokenizerAlgorithm.WORDPIECE,
vocab_size=30000,
description="Specialized for Classical Arabic",
organization="CAMeL Lab NYU Abu Dhabi",
arabic_support="Native",
dialect_support=["Classical"],
special_features=["Classical Arabic", "Religious texts"]
),
"UBC-NLP/MARBERT": TokenizerInfo(
name="MARBERT",
model_id="UBC-NLP/MARBERT",
type=TokenizerType.ENCODER_ONLY,
algorithm=TokenizerAlgorithm.WORDPIECE,
vocab_size=100000,
description="Multi-dialectal Arabic BERT trained on Twitter data",
organization="UBC NLP",
arabic_support="Native",
dialect_support=["MSA", "Egyptian", "Gulf", "Levantine", "Maghrebi"],
special_features=["Twitter data", "100K vocabulary", "Multi-dialect"]
),
"UBC-NLP/ARBERT": TokenizerInfo(
name="ARBERT",
model_id="UBC-NLP/ARBERT",
type=TokenizerType.ENCODER_ONLY,
algorithm=TokenizerAlgorithm.WORDPIECE,
vocab_size=100000,
description="Arabic BERT focused on MSA with large vocabulary",
organization="UBC NLP",
arabic_support="Native",
dialect_support=["MSA"],
special_features=["100K vocabulary", "MSA focused"]
),
"asafaya/bert-base-arabic": TokenizerInfo(
name="Arabic BERT (Safaya)",
model_id="asafaya/bert-base-arabic",
type=TokenizerType.ENCODER_ONLY,
algorithm=TokenizerAlgorithm.WORDPIECE,
vocab_size=32000,
description="Arabic BERT trained on MSA and dialectal Arabic",
organization="Safaya",
arabic_support="Native",
dialect_support=["MSA", "DA"],
special_features=["TPU trained", "Dialect support"]
),
# ========== ARABIC-SPECIFIC TOKENIZERS ==========
"riotu-lab/Aranizer-PBE-86k": TokenizerInfo(
name="Aranizer PBE 86K",
model_id="riotu-lab/Aranizer-PBE-86k",
type=TokenizerType.ARABIC_SPECIFIC,
algorithm=TokenizerAlgorithm.BPE,
vocab_size=86000,
description="Pair Byte Encoding tokenizer optimized for Arabic LLMs",
organization="RIOTU Lab",
arabic_support="Native",
dialect_support=["MSA"],
special_features=["Low fertility", "LLM optimized", "86K vocab"]
),
"riotu-lab/Aranizer-SP-86k": TokenizerInfo(
name="Aranizer SP 86K",
model_id="riotu-lab/Aranizer-SP-86k",
type=TokenizerType.ARABIC_SPECIFIC,
algorithm=TokenizerAlgorithm.SENTENCEPIECE,
vocab_size=86000,
description="SentencePiece tokenizer optimized for Arabic",
organization="RIOTU Lab",
arabic_support="Native",
dialect_support=["MSA"],
special_features=["Low fertility", "SentencePiece", "86K vocab"]
),
"riotu-lab/Aranizer-PBE-32k": TokenizerInfo(
name="Aranizer PBE 32K",
model_id="riotu-lab/Aranizer-PBE-32k",
type=TokenizerType.ARABIC_SPECIFIC,
algorithm=TokenizerAlgorithm.BPE,
vocab_size=32000,
description="Compact PBE tokenizer for Arabic",
organization="RIOTU Lab",
arabic_support="Native",
dialect_support=["MSA"],
special_features=["Compact", "LLM compatible"]
),
"riotu-lab/Aranizer-SP-32k": TokenizerInfo(
name="Aranizer SP 32K",
model_id="riotu-lab/Aranizer-SP-32k",
type=TokenizerType.ARABIC_SPECIFIC,
algorithm=TokenizerAlgorithm.SENTENCEPIECE,
vocab_size=32000,
description="Compact SentencePiece tokenizer for Arabic",
organization="RIOTU Lab",
arabic_support="Native",
dialect_support=["MSA"],
special_features=["Compact", "Efficient"]
),
# ========== ARABIC LLMs ==========
"inception-mbzuai/jais-13b": TokenizerInfo(
name="Jais 13B",
model_id="inception-mbzuai/jais-13b",
type=TokenizerType.ARABIC_LLM,
algorithm=TokenizerAlgorithm.SENTENCEPIECE,
vocab_size=84992,
description="World's most advanced Arabic LLM, trained from scratch",
organization="Inception/MBZUAI",
arabic_support="Native",
dialect_support=["MSA", "Gulf", "Egyptian", "Levantine"],
special_features=["Arabic-first", "Lowest fertility", "UAE-native"]
),
"inceptionai/jais-family-30b-8k-chat": TokenizerInfo(
name="Jais 30B Chat",
model_id="inceptionai/jais-family-30b-8k-chat",
type=TokenizerType.ARABIC_LLM,
algorithm=TokenizerAlgorithm.SENTENCEPIECE,
vocab_size=84992,
description="Enhanced 30B version with chat capabilities",
organization="Inception AI",
arabic_support="Native",
dialect_support=["MSA", "Gulf", "Egyptian", "Levantine"],
special_features=["30B parameters", "Chat optimized", "8K context"]
),
"FreedomIntelligence/AceGPT-13B-chat": TokenizerInfo(
name="AceGPT 13B Chat",
model_id="FreedomIntelligence/AceGPT-13B-chat",
type=TokenizerType.ARABIC_LLM,
algorithm=TokenizerAlgorithm.SENTENCEPIECE,
vocab_size=32000,
description="Arabic-enhanced LLaMA with cultural alignment and chat",
organization="Freedom Intelligence",
arabic_support="Adapted",
dialect_support=["MSA"],
special_features=["LLaMA-based", "Cultural alignment", "RLHF", "Chat"]
),
"silma-ai/SILMA-9B-Instruct-v1.0": TokenizerInfo(
name="SILMA 9B Instruct",
model_id="silma-ai/SILMA-9B-Instruct-v1.0",
type=TokenizerType.ARABIC_LLM,
algorithm=TokenizerAlgorithm.SENTENCEPIECE,
vocab_size=256000,
description="Top-ranked Arabic LLM based on Gemma, outperforms larger models",
organization="SILMA AI",
arabic_support="Native",
dialect_support=["MSA", "Gulf", "Egyptian", "Levantine"],
special_features=["Gemma-based", "SOTA 9B class", "Efficient"]
),
"silma-ai/SILMA-Kashif-2B-Instruct-v1.0": TokenizerInfo(
name="SILMA Kashif 2B (RAG)",
model_id="silma-ai/SILMA-Kashif-2B-Instruct-v1.0",
type=TokenizerType.ARABIC_LLM,
algorithm=TokenizerAlgorithm.SENTENCEPIECE,
vocab_size=256000,
description="RAG-optimized Arabic model, excellent for context-based QA",
organization="SILMA AI",
arabic_support="Native",
dialect_support=["MSA"],
special_features=["RAG optimized", "12K context", "Compact"]
),
"QCRI/Fanar-1-9B-Instruct": TokenizerInfo(
name="Fanar 9B Instruct",
model_id="QCRI/Fanar-1-9B-Instruct",
type=TokenizerType.ARABIC_LLM,
algorithm=TokenizerAlgorithm.SENTENCEPIECE,
vocab_size=256000,
description="Qatar's Arabic LLM aligned with Islamic values and Arab culture",
organization="QCRI (Qatar)",
arabic_support="Native",
dialect_support=["MSA", "Gulf", "Egyptian", "Levantine"],
special_features=["Islamic RAG", "Cultural alignment", "Gemma-based"]
),
"stabilityai/ar-stablelm-2-chat": TokenizerInfo(
name="Arabic StableLM 2 Chat",
model_id="stabilityai/ar-stablelm-2-chat",
type=TokenizerType.ARABIC_LLM,
algorithm=TokenizerAlgorithm.BPE,
vocab_size=100289,
description="Stability AI's Arabic instruction-tuned 1.6B model",
organization="Stability AI",
arabic_support="Native",
dialect_support=["MSA"],
special_features=["Compact 1.6B", "Chat optimized", "Efficient"]
),
"Navid-AI/Yehia-7B-preview": TokenizerInfo(
name="Yehia 7B Preview",
model_id="Navid-AI/Yehia-7B-preview",
type=TokenizerType.ARABIC_LLM,
algorithm=TokenizerAlgorithm.BPE,
vocab_size=128256,
description="Best Arabic model on AraGen-Leaderboard (0.5B-25B), GRPO trained",
organization="Navid AI",
arabic_support="Native",
dialect_support=["MSA", "Gulf", "Egyptian", "Levantine"],
special_features=["GRPO trained", "3C3H aligned", "SOTA AraGen"]
),
# ========== DIALECT-SPECIFIC MODELS ==========
"MBZUAI-Paris/Atlas-Chat-9B": TokenizerInfo(
name="Atlas-Chat 9B (Darija)",
model_id="MBZUAI-Paris/Atlas-Chat-9B",
type=TokenizerType.ARABIC_LLM,
algorithm=TokenizerAlgorithm.SENTENCEPIECE,
vocab_size=256000,
description="First LLM for Moroccan Arabic (Darija), Gemma-based",
organization="MBZUAI Paris",
arabic_support="Native",
dialect_support=["Darija", "MSA"],
special_features=["Moroccan dialect", "Transliteration", "Cultural"]
),
"MBZUAI-Paris/Atlas-Chat-2B": TokenizerInfo(
name="Atlas-Chat 2B (Darija)",
model_id="MBZUAI-Paris/Atlas-Chat-2B",
type=TokenizerType.ARABIC_LLM,
algorithm=TokenizerAlgorithm.SENTENCEPIECE,
vocab_size=256000,
description="Compact Moroccan Arabic model for edge deployment",
organization="MBZUAI Paris",
arabic_support="Native",
dialect_support=["Darija", "MSA"],
special_features=["Compact", "Moroccan dialect", "Edge-ready"]
),
# ========== MULTILINGUAL LLMs ==========
"Qwen/Qwen2.5-7B": TokenizerInfo(
name="Qwen 2.5 7B",
model_id="Qwen/Qwen2.5-7B",
type=TokenizerType.MULTILINGUAL_LLM,
algorithm=TokenizerAlgorithm.BPE,
vocab_size=151936,
description="Alibaba's multilingual LLM with 30+ language support",
organization="Alibaba Qwen",
arabic_support="Supported",
dialect_support=["MSA"],
special_features=["152K vocab", "128K context", "30+ languages"]
),
"google/gemma-2-9b": TokenizerInfo(
name="Gemma 2 9B",
model_id="google/gemma-2-9b",
type=TokenizerType.MULTILINGUAL_LLM,
algorithm=TokenizerAlgorithm.SENTENCEPIECE,
vocab_size=256000,
description="Google's efficient multilingual model",
organization="Google",
arabic_support="Supported",
dialect_support=["MSA"],
special_features=["256K vocab", "Efficient architecture"]
),
"mistralai/Mistral-7B-v0.3": TokenizerInfo(
name="Mistral 7B v0.3",
model_id="mistralai/Mistral-7B-v0.3",
type=TokenizerType.MULTILINGUAL_LLM,
algorithm=TokenizerAlgorithm.SENTENCEPIECE,
vocab_size=32768,
description="Efficient multilingual model with sliding window attention",
organization="Mistral AI",
arabic_support="Limited",
dialect_support=["MSA"],
special_features=["Sliding window", "Efficient"]
),
"mistralai/Mistral-Nemo-Base-2407": TokenizerInfo(
name="Mistral Nemo",
model_id="mistralai/Mistral-Nemo-Base-2407",
type=TokenizerType.MULTILINGUAL_LLM,
algorithm=TokenizerAlgorithm.TIKTOKEN,
vocab_size=131072,
description="Uses Tekken tokenizer, optimized for multilingual",
organization="Mistral AI + NVIDIA",
arabic_support="Supported",
dialect_support=["MSA"],
special_features=["Tekken tokenizer", "131K vocab", "Multilingual optimized"]
),
"xlm-roberta-base": TokenizerInfo(
name="XLM-RoBERTa Base",
model_id="xlm-roberta-base",
type=TokenizerType.MULTILINGUAL_LLM,
algorithm=TokenizerAlgorithm.SENTENCEPIECE,
vocab_size=250002,
description="Cross-lingual model covering 100 languages",
organization="Facebook AI",
arabic_support="Supported",
dialect_support=["MSA"],
special_features=["250K vocab", "100 languages"]
),
"bert-base-multilingual-cased": TokenizerInfo(
name="mBERT",
model_id="bert-base-multilingual-cased",
type=TokenizerType.MULTILINGUAL_LLM,
algorithm=TokenizerAlgorithm.WORDPIECE,
vocab_size=119547,
description="Original multilingual BERT, baseline for comparison",
organization="Google",
arabic_support="Limited",
dialect_support=["MSA"],
special_features=["Baseline model", "104 languages"]
),
"tiiuae/falcon-7b": TokenizerInfo(
name="Falcon 7B",
model_id="tiiuae/falcon-7b",
type=TokenizerType.MULTILINGUAL_LLM,
algorithm=TokenizerAlgorithm.BPE,
vocab_size=65024,
description="TII's powerful open-source LLM",
organization="Technology Innovation Institute",
arabic_support="Limited",
dialect_support=["MSA"],
special_features=["65K vocab", "RefinedWeb trained"]
),
}
# ============================================================================
# LEADERBOARD DATASETS - Real HuggingFace Datasets
# ============================================================================
LEADERBOARD_DATASETS = {
"arabic_mmlu": {
"hf_id": "MBZUAI/ArabicMMLU",
"name": "ArabicMMLU",
"category": "MSA Benchmark",
"text_column": "Question",
"split": "test",
"subset": "All",
"samples": 5000,
"description": "Multi-task benchmark from Arab school exams"
},
"astd": {
"hf_id": "arbml/ASTD",
"name": "ASTD (Egyptian)",
"category": "Egyptian Dialect",
"text_column": "tweet",
"split": "train",
"subset": None,
"samples": 5000,
"description": "Egyptian Arabic sentiment tweets"
},
"athar": {
"hf_id": "mohamed-khalil/ATHAR",
"name": "ATHAR Classical",
"category": "Classical Arabic",
"text_column": "arabic",
"split": "train",
"subset": None,
"samples": 5000,
"description": "Classical Arabic sentences"
},
"arcd": {
"hf_id": "arcd",
"name": "ARCD",
"category": "QA Dataset",
"text_column": "context",
"split": "train",
"subset": None,
"samples": 1395,
"description": "Arabic Reading Comprehension Dataset"
},
"ashaar": {
"hf_id": "arbml/Ashaar_dataset",
"name": "Ashaar Poetry",
"category": "Poetry",
"text_column": "poem_text",
"split": "train",
"subset": None,
"samples": 5000,
"description": "Arabic poetry verses"
},
"hadith": {
"hf_id": "gurgutan/sunnah_ar_en_dataset",
"name": "Hadith",
"category": "Religious",
"text_column": "hadith_text_ar",
"split": "train",
"subset": None,
"samples": 5000,
"description": "Hadith collection"
},
"arabic_sentiment": {
"hf_id": "arbml/Arabic_Sentiment_Twitter_Corpus",
"name": "Arabic Sentiment",
"category": "Social Media",
"text_column": "tweet",
"split": "train",
"subset": None,
"samples": 5000,
"description": "Arabic Twitter sentiment"
},
"sanad": {
"hf_id": "arbml/SANAD",
"name": "SANAD News",
"category": "News",
"text_column": "Article",
"split": "train",
"subset": None,
"samples": 5000,
"description": "Arabic news articles"
},
}
# ============================================================================
# SAMPLE TEXTS
# ============================================================================
SAMPLE_TEXTS = {
"MSA News": "أعلنت وزارة التربية والتعليم عن بدء العام الدراسي الجديد في الأول من سبتمبر، حيث ستعود المدارس لاستقبال الطلاب بعد العطلة الصيفية الطويلة.",
"MSA Formal": "إن تطوير تقنيات الذكاء الاصطناعي يمثل نقلة نوعية في مجال معالجة اللغات الطبيعية، وخاصة فيما يتعلق باللغة العربية ذات الخصائص المورفولوجية الغنية.",
"Egyptian Dialect": "ازيك يا صاحبي؟ إيه أخبارك؟ عامل إيه النهارده؟ قولي هنروح فين بكره؟",
"Gulf Dialect": "شلونك؟ شخبارك؟ وش تسوي الحين؟ ودك تروح وياي للسوق؟",
"Levantine Dialect": "كيفك؟ شو أخبارك؟ شو عم تعمل هلق؟ بدك تيجي معي على السوق؟",
"Classical Arabic (Quran)": "بِسْمِ اللَّهِ الرَّحْمَٰنِ الرَّحِيمِ الْحَمْدُ لِلَّهِ رَبِّ الْعَالَمِينَ",
"Poetry": "وما من كاتبٍ إلا سيفنى ويُبقي الدهرُ ما كتبت يداهُ",
"Technical": "يستخدم نموذج المحولات آلية الانتباه الذاتي لمعالجة تسلسلات النصوص بشكل متوازي.",
"Mixed Arabic-English": "The Arabic language العربية is a Semitic language with over 400 million speakers worldwide.",
"With Diacritics": "إِنَّ اللَّهَ وَمَلَائِكَتَهُ يُصَلُّونَ عَلَى النَّبِيِّ",
}
|