Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import pipeline | |
| from PIL import Image | |
| import requests | |
| from transformers import pipeline | |
| checkpoint = "openai/clip-vit-large-patch14" | |
| detector = pipeline(model=checkpoint, task="zero-shot-image-classification") | |
| # Function to predict dog category | |
| def predict_dog_category(image): | |
| # List of dog categories | |
| dog_category = [ | |
| 'Siberian Husky', 'Boxer', # Working Dogs | |
| 'Border Collie', 'Australian Shepherd', # Herding Dogs | |
| 'Chihuahua', 'Pomeranian', # Toy Dogs | |
| 'Labrador Retriever', 'Golden Retriever', # Sporting Dogs | |
| 'Yorkshire Terrier', 'Bull Terrier', # Terriers | |
| 'Bulldog', 'Poodle' # Non-Sporting Dogs | |
| ] | |
| # Use CLIP model to predict dog category | |
| predictions = detector(image, candidate_labels=dog_category) | |
| return {predictions[i]['label']: float(predictions[i]['score']) for i in range(len(predictions))} | |
| # Create Gradio interface | |
| iface = gr.Interface( | |
| fn=predict_dog_category, | |
| inputs=gr.Image(type="pil"), | |
| outputs=gr.Label(num_top_classes=12) | |
| ) | |
| iface.launch(share=True) | |