Spaces:
Runtime error
Runtime error
Create train.py
Browse files
train.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from datasets import load_dataset, Dataset
|
| 3 |
+
from transformers import (
|
| 4 |
+
AutoTokenizer,
|
| 5 |
+
AutoModelForCausalLM,
|
| 6 |
+
TrainingArguments
|
| 7 |
+
)
|
| 8 |
+
from peft import LoraConfig
|
| 9 |
+
from trl import SFTTrainer
|
| 10 |
+
|
| 11 |
+
# ---------- 1. Load rubpy dataset ----------
|
| 12 |
+
with open("rubpy_full_dataset.json", encoding="utf-8") as f:
|
| 13 |
+
rubpy_data = json.load(f)
|
| 14 |
+
|
| 15 |
+
rubpy_dataset = Dataset.from_list([
|
| 16 |
+
{
|
| 17 |
+
"text": f"""### Instruction:
|
| 18 |
+
{item['instruction']}
|
| 19 |
+
|
| 20 |
+
### Response:
|
| 21 |
+
{item['output']}"""
|
| 22 |
+
}
|
| 23 |
+
for item in rubpy_data
|
| 24 |
+
])
|
| 25 |
+
|
| 26 |
+
# ---------- 2. Load public code dataset ----------
|
| 27 |
+
public_dataset = load_dataset(
|
| 28 |
+
"deepmind/code_contests",
|
| 29 |
+
split="train"
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
public_dataset = public_dataset.map(lambda x: {
|
| 33 |
+
"text": f"""### Instruction:
|
| 34 |
+
مسئله برنامهنویسی را حل کن:
|
| 35 |
+
|
| 36 |
+
{x['description']}
|
| 37 |
+
|
| 38 |
+
### Response:
|
| 39 |
+
{x['solution']}"""
|
| 40 |
+
})
|
| 41 |
+
|
| 42 |
+
# ---------- 3. Combine datasets ----------
|
| 43 |
+
final_dataset = rubpy_dataset.concatenate(
|
| 44 |
+
public_dataset.shuffle(seed=42).select(range(len(rubpy_dataset)))
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
# ---------- 4. Model ----------
|
| 48 |
+
MODEL_NAME = "Qwen/Qwen2.5-Coder-7B-Instruct"
|
| 49 |
+
|
| 50 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 51 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 52 |
+
|
| 53 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 54 |
+
MODEL_NAME,
|
| 55 |
+
load_in_4bit=True,
|
| 56 |
+
device_map="auto"
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# ---------- 5. LoRA ----------
|
| 60 |
+
lora_config = LoraConfig(
|
| 61 |
+
r=16,
|
| 62 |
+
lora_alpha=32,
|
| 63 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
|
| 64 |
+
lora_dropout=0.05,
|
| 65 |
+
bias="none",
|
| 66 |
+
task_type="CAUSAL_LM"
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# ---------- 6. Training ----------
|
| 70 |
+
training_args = TrainingArguments(
|
| 71 |
+
output_dir="./rubpy-model",
|
| 72 |
+
per_device_train_batch_size=1,
|
| 73 |
+
gradient_accumulation_steps=8,
|
| 74 |
+
learning_rate=2e-4,
|
| 75 |
+
num_train_epochs=3,
|
| 76 |
+
logging_steps=10,
|
| 77 |
+
save_steps=500,
|
| 78 |
+
save_total_limit=2,
|
| 79 |
+
bf16=True,
|
| 80 |
+
report_to="none"
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
trainer = SFTTrainer(
|
| 84 |
+
model=model,
|
| 85 |
+
tokenizer=tokenizer,
|
| 86 |
+
train_dataset=final_dataset,
|
| 87 |
+
peft_config=lora_config,
|
| 88 |
+
args=training_args,
|
| 89 |
+
max_seq_length=2048
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
trainer.train()
|
| 93 |
+
|
| 94 |
+
trainer.save_model("./rubpy-model")
|