Spaces:
Running
Running
File size: 7,176 Bytes
d18b34d 590a604 d18b34d ee1a8a3 1fbc47b 590a604 1fbc47b 590a604 1fbc47b 590a604 1fbc47b b43ba56 1fbc47b 590a604 1fbc47b d18b34d 1fbc47b 590a604 1fbc47b 590a604 1fbc47b 590a604 1fbc47b 590a604 1fbc47b 590a604 1fbc47b 590a604 1fbc47b 590a604 d18b34d 590a604 d18b34d 590a604 1fbc47b 590a604 d18b34d 1fbc47b 590a604 1fbc47b 590a604 d18b34d 590a604 1fbc47b 590a604 d18b34d 590a604 d18b34d 590a604 d18b34d 590a604 d18b34d 590a604 d18b34d 590a604 d18b34d 1fbc47b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
"""
Evaluation script for LexiMind.
Computes ROUGE/BLEU for summarization, multi-label F1 for emotion,
and accuracy with confusion matrix for topic classification.
Author: Oliver Perrin
Date: December 2025
"""
from __future__ import annotations
import argparse
import json
import sys
import time
from pathlib import Path
from typing import Any, Callable, List
import matplotlib.pyplot as plt
import seaborn as sns
import torch
from sklearn.preprocessing import MultiLabelBinarizer
from tqdm import tqdm
PROJECT_ROOT = Path(__file__).resolve().parents[1]
if str(PROJECT_ROOT) not in sys.path:
sys.path.insert(0, str(PROJECT_ROOT))
from src.data.dataset import load_emotion_jsonl, load_summarization_jsonl, load_topic_jsonl
from src.inference.factory import create_inference_pipeline
from src.training.metrics import (
accuracy,
calculate_bleu,
classification_report_dict,
get_confusion_matrix,
multilabel_f1,
rouge_like,
)
from src.utils.config import load_yaml
# --------------- Data Loading ---------------
SPLIT_ALIASES = {"train": ("train",), "val": ("val", "validation"), "test": ("test",)}
def load_split(root: Path, split: str, loader: Callable[[str], List[Any]]) -> List[Any]:
"""Load a dataset split, checking aliases."""
for alias in SPLIT_ALIASES.get(split, (split,)):
for ext in ("jsonl", "json"):
path = root / f"{alias}.{ext}"
if path.exists():
return list(loader(str(path)))
raise FileNotFoundError(f"Missing {split} split in {root}")
def chunks(items: List, size: int):
"""Yield batches of items."""
for i in range(0, len(items), size):
yield items[i : i + size]
# --------------- Visualization ---------------
def plot_confusion_matrix(cm, labels, path: Path) -> None:
"""Save confusion matrix heatmap."""
plt.figure(figsize=(10, 8))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=labels, yticklabels=labels)
plt.xlabel("Predicted")
plt.ylabel("True")
plt.title("Topic Classification Confusion Matrix")
plt.tight_layout()
plt.savefig(path)
plt.close()
# --------------- Main ---------------
def parse_args() -> argparse.Namespace:
p = argparse.ArgumentParser(description="Evaluate LexiMind")
p.add_argument("--split", default="val", choices=["train", "val", "test"])
p.add_argument("--checkpoint", default="checkpoints/best.pt")
p.add_argument("--labels", default="artifacts/labels.json")
p.add_argument("--data-config", default="configs/data/datasets.yaml")
p.add_argument("--model-config", default="configs/model/base.yaml")
p.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu")
p.add_argument("--batch-size", type=int, default=148) # Larger batch for inference (no grads)
p.add_argument("--output-dir", default="outputs")
return p.parse_args()
def main() -> None:
args = parse_args()
start_time = time.perf_counter()
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
# Load pipeline
print("Loading model...")
pipeline, metadata = create_inference_pipeline(
checkpoint_path=args.checkpoint,
labels_path=args.labels,
tokenizer_config=None,
model_config_path=args.model_config,
device=args.device,
)
# Load data
data_cfg = load_yaml(args.data_config).data
summ_data = load_split(
Path(data_cfg["processed"]["summarization"]), args.split, load_summarization_jsonl
)
emot_data = load_split(Path(data_cfg["processed"]["emotion"]), args.split, load_emotion_jsonl)
topic_data = load_split(Path(data_cfg["processed"]["topic"]), args.split, load_topic_jsonl)
print(f"\nEvaluating on {args.split} split:")
print(f" Summarization: {len(summ_data)} samples")
print(f" Emotion: {len(emot_data)} samples")
print(f" Topic: {len(topic_data)} samples")
# --------------- Summarization ---------------
print("\nSummarization...")
preds, refs = [], []
for batch in tqdm(list(chunks(summ_data, args.batch_size)), desc="Summarization", unit="batch"):
preds.extend(pipeline.summarize([ex.source for ex in batch]))
refs.extend([ex.summary for ex in batch])
rouge = rouge_like(preds, refs)
bleu = calculate_bleu(preds, refs)
print(f" ROUGE-like: {rouge:.4f}, BLEU: {bleu:.4f}")
# --------------- Emotion ---------------
print("\nEmotion Classification...")
binarizer = MultiLabelBinarizer(classes=metadata.emotion)
binarizer.fit([[label] for label in metadata.emotion])
label_idx = {label: i for i, label in enumerate(metadata.emotion)}
pred_vecs, target_vecs = [], []
for batch in tqdm(list(chunks(emot_data, args.batch_size)), desc="Emotion", unit="batch"):
emotion_results = pipeline.predict_emotions([ex.text for ex in batch], threshold=0.3)
targets = binarizer.transform([list(ex.emotions) for ex in batch])
for pred, target in zip(emotion_results, targets, strict=False):
vec = torch.zeros(len(metadata.emotion))
for lbl in pred.labels:
if lbl in label_idx:
vec[label_idx[lbl]] = 1.0
pred_vecs.append(vec)
target_vecs.append(torch.tensor(target, dtype=torch.float32))
emotion_f1 = multilabel_f1(torch.stack(pred_vecs), torch.stack(target_vecs))
print(f" F1 (macro): {emotion_f1:.4f}")
# --------------- Topic ---------------
print("\nTopic Classification...")
topic_pred_labels: List[str] = []
topic_true_labels: List[str] = []
for batch in tqdm(list(chunks(topic_data, args.batch_size)), desc="Topic", unit="batch"):
topic_results = pipeline.predict_topics([ex.text for ex in batch])
topic_pred_labels.extend([r.label for r in topic_results])
topic_true_labels.extend([ex.topic for ex in batch])
topic_acc = accuracy(topic_pred_labels, topic_true_labels)
topic_report = classification_report_dict(
topic_pred_labels, topic_true_labels, labels=metadata.topic
)
topic_cm = get_confusion_matrix(topic_pred_labels, topic_true_labels, labels=metadata.topic)
print(f" Accuracy: {topic_acc:.4f}")
# Save confusion matrix
cm_path = output_dir / "topic_confusion_matrix.png"
plot_confusion_matrix(topic_cm, metadata.topic, cm_path)
print(f" Confusion matrix saved: {cm_path}")
# --------------- Save Results ---------------
results = {
"split": args.split,
"summarization": {"rouge_like": rouge, "bleu": bleu},
"emotion": {"f1_macro": emotion_f1},
"topic": {"accuracy": topic_acc, "classification_report": topic_report},
}
report_path = output_dir / "evaluation_report.json"
with open(report_path, "w") as f:
json.dump(results, f, indent=2)
total_time = time.perf_counter() - start_time
print(f"\n{'=' * 50}")
print(f"Evaluation complete in {total_time:.1f}s")
print(f"Report saved: {report_path}")
print(f"{'=' * 50}")
print(json.dumps(results, indent=2))
if __name__ == "__main__":
main()
|