Spaces:
Running
Running
File size: 31,210 Bytes
590a604 1bdd1c1 ee1a8a3 67c3a83 d18b34d 5a20c96 1ec7405 5a20c96 b43ba56 5a20c96 b43ba56 1ec7405 5a20c96 1bdd1c1 5a20c96 1bdd1c1 5a20c96 1bdd1c1 5a20c96 d18b34d b43ba56 d18b34d 5a20c96 1bdd1c1 d18b34d b43ba56 d18b34d b43ba56 d18b34d b43ba56 d18b34d 5a20c96 1ec7405 5a20c96 d18b34d b43ba56 d18b34d 5a20c96 1bdd1c1 d18b34d b43ba56 5a20c96 1bdd1c1 5a20c96 1bdd1c1 d18b34d b43ba56 d18b34d 1bdd1c1 5a20c96 b43ba56 1bdd1c1 d18b34d b43ba56 d18b34d 1bdd1c1 5a20c96 b43ba56 1bdd1c1 5a20c96 b43ba56 1bdd1c1 5a20c96 1bdd1c1 5a20c96 1bdd1c1 5a20c96 d18b34d b43ba56 1ec7405 5a20c96 b43ba56 1ec7405 b43ba56 1ec7405 b43ba56 5a20c96 b43ba56 5a20c96 d18b34d b43ba56 d18b34d 5a20c96 1ec7405 5a20c96 1bdd1c1 b43ba56 5a20c96 d18b34d 1ec7405 1bdd1c1 5a20c96 b43ba56 1ec7405 5a20c96 1bdd1c1 b43ba56 5a20c96 1bdd1c1 5a20c96 b43ba56 5a20c96 b43ba56 5a20c96 1bdd1c1 5a20c96 1bdd1c1 b43ba56 1bdd1c1 5a20c96 b43ba56 1bdd1c1 1ec7405 5a20c96 1bdd1c1 5a20c96 1bdd1c1 5a20c96 1ec7405 5a20c96 b43ba56 1bdd1c1 5a20c96 1ec7405 5a20c96 1bdd1c1 1ec7405 5a20c96 1bdd1c1 5a20c96 b43ba56 5a20c96 a504116 ea3248a b43ba56 f0493d8 1bdd1c1 5a20c96 b43ba56 5a20c96 1bdd1c1 b43ba56 1bdd1c1 b43ba56 a504116 b43ba56 ea3248a b43ba56 d18b34d b43ba56 ea3248a b43ba56 ea3248a b43ba56 ea3248a a504116 d18b34d ea3248a b43ba56 ea3248a b43ba56 ea3248a d18b34d ea3248a d18b34d ea3248a d18b34d ea3248a b43ba56 a504116 b43ba56 1bdd1c1 b43ba56 1bdd1c1 b43ba56 1bdd1c1 5a20c96 b43ba56 5a20c96 1bdd1c1 5a20c96 1bdd1c1 5a20c96 1bdd1c1 5a20c96 1bdd1c1 b43ba56 67c3a83 b43ba56 67c3a83 b43ba56 67c3a83 b43ba56 67c3a83 b43ba56 1bdd1c1 b43ba56 1bdd1c1 67c3a83 1bdd1c1 d18b34d b43ba56 d18b34d 1bdd1c1 d18b34d 1bdd1c1 d18b34d 1bdd1c1 d18b34d b43ba56 d18b34d 1bdd1c1 d18b34d 1bdd1c1 d18b34d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 |
"""Transformer Decoder implementation (Pre-LN).
This module implements the decoder component of the Transformer architecture:
- create_causal_mask: Generate causal attention masks
- TransformerDecoderLayer: Single decoder block with self-attn + cross-attn + FFN
- TransformerDecoder: Full stack with embeddings, positional encoding, and generation
Design notes:
- Pre-LN with RMSNorm for training stability
- Masks are boolean: True = attend, False = mask
- Supports T5-style relative position bias
Author: Oliver Perrin
Date: 2025-10-23
"""
from typing import Any, Dict, List, Literal, Optional, Tuple, Union, cast
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
from .attention import MultiHeadAttention, T5RelativePositionBias
from .feedforward import FeedForward
from .positional_encoding import LearnedPositionalEncoding, PositionalEncoding
from .t5_layer_norm import T5LayerNorm
def create_causal_mask(seq_len: int, device: Optional[torch.device] = None) -> torch.Tensor:
"""
Create a (seq_len, seq_len) causal mask where entry (i, j) is True iff
j <= i (query at i may attend to keys up to i).
"""
# torch.triu(..., diagonal=1) is True above the diagonal. Invert to get allowed positions.
mask = ~torch.triu(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device), diagonal=1)
return mask # shape: (T, T)
class TransformerDecoderLayer(nn.Module):
"""
Single decoder layer (Pre-LN):
1) Masked self-attention
2) Cross-attention (encoder -> decoder)
3) Feed-forward
Returns the updated tgt and a dict of attention maps.
"""
def __init__(
self,
d_model: int,
num_heads: int,
d_ff: int,
dropout: float = 0.1,
quantization: Optional[str] = None,
activation: Literal["gelu", "relu", "swiglu", "gated-gelu"] = "gated-gelu",
scale_attn_scores: bool = True, # T5 uses False
):
super().__init__()
# use internal MHA dropout = 0.0; the layer handles dropout after sublayers
self.self_attn = MultiHeadAttention(
d_model=d_model,
num_heads=num_heads,
dropout=0.0,
quantization=quantization,
scale_scores=scale_attn_scores,
)
self.cross_attn = MultiHeadAttention(
d_model=d_model,
num_heads=num_heads,
dropout=0.0,
quantization=quantization,
scale_scores=scale_attn_scores,
)
self.ffn = FeedForward(
d_model=d_model,
d_ff=d_ff,
dropout=dropout,
activation=activation,
quantization=quantization,
)
self.norm1 = T5LayerNorm(d_model)
self.norm2 = T5LayerNorm(d_model)
self.norm3 = T5LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
def forward(
self,
tgt: torch.Tensor,
memory: torch.Tensor,
tgt_mask: Optional[torch.Tensor] = None,
memory_mask: Optional[torch.Tensor] = None,
collect_attn: bool = False,
self_attn_position_bias: Optional[torch.Tensor] = None,
cross_attn_position_bias: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Dict[str, Optional[torch.Tensor]]]:
"""
Args:
tgt: (B, T, d_model)
memory: (B, S, d_model)
tgt_mask: optional mask for self-attn - shape (B, T, T) or (B, 1, T, T)
memory_mask: optional mask for cross-attn - shape (B, S) or (B, 1, S) or (B, 1, T, S)
collect_attn: whether to return attention weights
self_attn_position_bias: optional T5 relative position bias for self-attention
cross_attn_position_bias: optional T5 relative position bias for cross-attention
Returns:
(tgt_out, {"self": self_attn_weights, "cross": cross_attn_weights})
"""
# Ensure masks are on same device and boolean
if tgt_mask is not None:
tgt_mask = tgt_mask.to(dtype=torch.bool, device=tgt.device)
if memory_mask is not None:
memory_mask = memory_mask.to(dtype=torch.bool, device=tgt.device)
# If memory_mask is provided as (B, S) (per-key padding), expand to (B, 1, 1, S)
if memory_mask.dim() == 2:
memory_mask = memory_mask.unsqueeze(1).unsqueeze(1) # (B,1,1,S)
# If it's (B, S, S) or (B, 1, S, S) leave as-is; if (B, T, S) convert to (B,1,T,S)
elif memory_mask.dim() == 3 and memory_mask.shape[1] != 1:
# assume (B, T, S) -> make (B, 1, T, S)
memory_mask = memory_mask.unsqueeze(1)
# --- Masked self-attention (Pre-LN) ---
x_norm = self.norm1(tgt)
self_out, self_attn = self.self_attn(
x_norm,
x_norm,
x_norm,
tgt_mask,
return_attn_weights=collect_attn,
position_bias=self_attn_position_bias,
)
tgt = tgt + self.dropout1(self_out)
# Clamp inf values for fp16/bf16 training stability (like HuggingFace T5)
if tgt.dtype == torch.float16 or tgt.dtype == torch.bfloat16:
clamp_value = torch.finfo(tgt.dtype).max - 1000
tgt = torch.clamp(tgt, min=-clamp_value, max=clamp_value)
# --- Cross-attention (Pre-LN) ---
x_norm = self.norm2(tgt)
cross_out, cross_attn = self.cross_attn(
x_norm,
memory,
memory,
memory_mask,
return_attn_weights=collect_attn,
position_bias=cross_attn_position_bias,
)
tgt = tgt + self.dropout2(cross_out)
# Clamp inf values for fp16/bf16 training stability
if tgt.dtype == torch.float16 or tgt.dtype == torch.bfloat16:
clamp_value = torch.finfo(tgt.dtype).max - 1000
tgt = torch.clamp(tgt, min=-clamp_value, max=clamp_value)
# --- Feed-forward (Pre-LN) ---
x_norm = self.norm3(tgt)
ffn_out = self.ffn(x_norm)
tgt = tgt + self.dropout3(ffn_out)
# Clamp inf values for fp16/bf16 training stability
if tgt.dtype == torch.float16 or tgt.dtype == torch.bfloat16:
clamp_value = torch.finfo(tgt.dtype).max - 1000
tgt = torch.clamp(tgt, min=-clamp_value, max=clamp_value)
return tgt, {"self": self_attn, "cross": cross_attn}
class TransformerDecoder(nn.Module):
"""
Decoder stack with token embeddings and positional encoding.
Forward returns logits (B, T, vocab_size) by default; if collect_attn=True returns (logits, attn_list).
"""
def __init__(
self,
vocab_size: int,
d_model: int = 512,
num_layers: int = 6,
num_heads: int = 8,
d_ff: int = 2048,
dropout: float = 0.1,
max_len: int = 512,
pad_token_id: Optional[int] = None,
quantization: Optional[str] = None,
use_learned_pos_enc: bool = False,
activation: Literal["gelu", "relu", "swiglu", "gated-gelu"] = "gated-gelu",
use_relative_position_bias: bool = False, # T5-style relative position bias
gradient_checkpointing: bool = False,
):
super().__init__()
self.vocab_size = vocab_size
self.d_model = d_model
self.pad_token_id = pad_token_id
self.num_heads = num_heads
self.use_relative_position_bias = use_relative_position_bias
self.gradient_checkpointing = gradient_checkpointing
self.embedding = nn.Embedding(vocab_size, d_model, padding_idx=pad_token_id)
# Note: T5 does NOT scale logits (scaling factor removed)
# Positional encoding (disabled when using relative position bias for T5)
self.self_relative_position_bias: Optional[T5RelativePositionBias] = None
self.cross_relative_position_bias: Optional[T5RelativePositionBias] = None
if use_relative_position_bias:
# T5 uses relative position bias instead of absolute positional embeddings
self.pos_encoder = None
# Self-attention position bias (decoder is causal, so is_decoder=True)
self.self_relative_position_bias = T5RelativePositionBias(
num_heads=num_heads,
num_buckets=32,
max_distance=128,
is_decoder=True,
)
# T5 cross-attention does NOT use position bias
elif use_learned_pos_enc:
self.pos_encoder = LearnedPositionalEncoding(
d_model=d_model, max_len=max_len + 2, dropout=dropout
)
else:
self.pos_encoder = PositionalEncoding(d_model=d_model, max_len=max_len, dropout=dropout)
# T5 does NOT scale attention scores by sqrt(d_k), others do
scale_attn_scores = not use_relative_position_bias
self.layers = nn.ModuleList(
[
TransformerDecoderLayer(
d_model=d_model,
num_heads=num_heads,
d_ff=d_ff,
dropout=dropout,
quantization=quantization,
activation=activation,
scale_attn_scores=scale_attn_scores,
)
for _ in range(num_layers)
]
)
self.final_norm = T5LayerNorm(d_model)
self.output_projection = nn.Linear(d_model, vocab_size, bias=False) # T5 has no bias
self.input_dropout = nn.Dropout(dropout)
def _build_padding_mask_from_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
"""
Convert input ids to (B, T, T) boolean mask where True = allowed.
Note: For T5, pad_token_id=0 is also used as decoder_start_token_id.
During generation, we should NOT mask the start token. The caller should
provide an explicit mask or set tgt_mask to avoid this issue.
"""
assert self.pad_token_id is not None, "pad_token_id must be set to build mask from ids"
pad_mask = input_ids != self.pad_token_id # (B, T)
# Always allow attending to the first token (BOS), even if it is pad_token_id
# Avoid in-place mutation for better torch.compile compatibility
if pad_mask.size(1) > 0:
# Create a mask for the first column (B, 1)
first_col_mask = torch.zeros_like(pad_mask[:, :1], dtype=torch.bool)
first_col_mask[:] = True
# Combine: pad_mask OR (column==0)
# We can do this by creating a column index tensor
col_indices = torch.arange(pad_mask.size(1), device=pad_mask.device).unsqueeze(0)
pad_mask = pad_mask | (col_indices == 0)
attn_mask = pad_mask.unsqueeze(1) & pad_mask.unsqueeze(2) # (B, T, T)
return attn_mask
def forward(
self,
inputs: torch.Tensor,
memory: torch.Tensor,
tgt_mask: Optional[torch.Tensor] = None,
memory_mask: Optional[torch.Tensor] = None,
collect_attn: bool = False,
skip_padding_mask: bool = False, # Set True during generation to avoid masking start token
) -> Union[torch.Tensor, Tuple[torch.Tensor, List[Dict[str, Optional[torch.Tensor]]]]]:
"""
Args:
inputs: (B, T) token ids or (B, T, d_model) embeddings
memory: (B, S, d_model)
tgt_mask: optional; if None, will create (causal [+ padding if ids available])
memory_mask: optional; if provided as (B, S) will be expanded to (B, 1, 1, S)
skip_padding_mask: if True, only use causal mask (for generation where start_token=pad_token)
"""
# Prepare embeddings
if inputs.dim() == 2: # token ids
# T5/FLAN-T5 does NOT scale embeddings by sqrt(d_model)
x = self.embedding(inputs)
elif inputs.dim() == 3:
x = inputs
else:
raise ValueError("inputs must be (B, T) token ids or (B, T, d_model) embeddings")
# Apply positional encoding if not using relative position bias
# (T5 uses relative position bias in attention instead of absolute positional embeddings)
if self.pos_encoder is not None:
x = self.pos_encoder(x)
x = self.input_dropout(x)
B, T, _ = x.shape
# Build target mask if not provided: combine causal + padding (if available)
if tgt_mask is None:
causal = create_causal_mask(T, device=x.device) # (T, T)
if inputs.dim() == 2 and self.pad_token_id is not None and not skip_padding_mask:
# During training: combine causal mask with padding mask
pad_pairwise = self._build_padding_mask_from_ids(inputs) # (B, T, T)
combined = pad_pairwise & causal.unsqueeze(0) # (B, T, T)
tgt_mask = combined.unsqueeze(1) # (B, 1, T, T) -> broadcast to heads
else:
# During generation (skip_padding_mask=True) or no padding info:
# Use only causal mask - don't mask based on token values
tgt_mask = causal.unsqueeze(0).unsqueeze(1) # (1, 1, T, T)
else:
# Ensure boolean and device alignment; accept (B, T, T) or (B,1,T,T) or (1,1,T,T)
tgt_mask = tgt_mask.to(dtype=torch.bool, device=x.device)
# If tgt_mask is just causal (T, T), expand it
if tgt_mask.dim() == 2:
tgt_mask = tgt_mask.unsqueeze(0).unsqueeze(0)
elif tgt_mask.dim() == 3:
tgt_mask = tgt_mask.unsqueeze(1)
# Normalize memory_mask dtype/device and expand simple shapes
if memory_mask is not None:
memory_mask = memory_mask.to(dtype=torch.bool, device=x.device)
if memory_mask.dim() == 2: # (B, S) -> (B, 1, 1, S)
memory_mask = memory_mask.unsqueeze(1).unsqueeze(1)
elif memory_mask.dim() == 3: # (B, T, S) -> (B, 1, T, S)
memory_mask = memory_mask.unsqueeze(1)
attn_list: List[Dict[str, Optional[torch.Tensor]]] = []
# Compute relative position biases (T5-style)
# Note: T5 uses relative position bias for self-attention but NOT for cross-attention
if self.use_relative_position_bias and self.self_relative_position_bias is not None:
self_position_bias = self.self_relative_position_bias(
T, T, x.device
) # (1, num_heads, T, T)
else:
self_position_bias = None
# Cross-attention position bias is None for T5 (see T5 paper/implementation)
cross_position_bias = None
# Pass through decoder layers
for layer in self.layers:
if self.gradient_checkpointing and self.training:
# Gradient checkpointing requires the inputs to require grad
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, tgt_mask=tgt_mask, memory_mask=memory_mask, collect_attn=collect_attn, self_attn_position_bias=self_position_bias, cross_attn_position_bias=cross_position_bias)
return custom_forward
x, attn = cast(
Tuple[torch.Tensor, Dict[str, Optional[torch.Tensor]]],
checkpoint(
create_custom_forward(layer),
x,
memory,
use_reentrant=False,
),
)
else:
x, attn = layer(
x,
memory,
tgt_mask=tgt_mask,
memory_mask=memory_mask,
collect_attn=collect_attn,
self_attn_position_bias=self_position_bias,
cross_attn_position_bias=cross_position_bias,
)
if collect_attn:
attn_list.append(attn)
x = self.final_norm(x)
# T5 does NOT scale logits - direct projection to vocabulary
logits = self.output_projection(x) # (B, T, vocab)
if collect_attn:
return logits, attn_list
return logits
def greedy_decode_naive(
self,
memory: torch.Tensor,
max_len: int,
start_token_id: int,
end_token_id: Optional[int] = None,
device: Optional[torch.device] = None,
memory_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Naive greedy decoding using full forward pass (O(N^2) but simpler).
Used for debugging to verify step() correctness.
"""
if device is None:
device = memory.device
B = memory.size(0)
# Initialize with start token
generated = torch.full((B, 1), start_token_id, dtype=torch.long, device=device)
for _ in range(max_len - 1):
# Full forward pass on entire generated sequence
# skip_padding_mask=True because start_token=pad_token for T5
logits = self.forward(
generated, memory, memory_mask=memory_mask, skip_padding_mask=True
)
if isinstance(logits, tuple):
logits = logits[0]
# logits: (B, T, vocab)
# Get logits for last position
next_logits = logits[:, -1, :] # (B, vocab)
# Greedy: pick highest probability token
next_token = next_logits.argmax(dim=-1, keepdim=True) # (B, 1)
# Append to generated
generated = torch.cat([generated, next_token], dim=1)
# Check for EOS
if end_token_id is not None and (next_token == end_token_id).all():
break
return generated
def greedy_decode(
self,
memory: torch.Tensor,
max_len: int,
start_token_id: int,
end_token_id: Optional[int] = None,
device: Optional[torch.device] = None,
*,
min_len: Optional[int] = None,
ban_token_ids: Optional[List[int]] = None,
no_repeat_ngram_size: int = 0,
repetition_penalty: float = 1.0,
memory_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Greedy decoding with KV caching for O(N) complexity.
"""
if device is None:
device = memory.device
B = memory.size(0)
# Initialize generated sequence with start token
generated = torch.full((B, 1), start_token_id, dtype=torch.long, device=device)
# Initialize cache
cache: Dict[str, Any] = {"past_length": 0}
if memory_mask is not None:
cache["memory_mask"] = memory_mask
min_len = 0 if min_len is None else max(0, min_len)
# Keep track of finished sequences
finished = torch.zeros(B, dtype=torch.bool, device=device)
for _ in range(max_len - 1):
# Use the last generated token for the next step
last_token = generated[:, -1:] # (B, 1)
# Run one step of the decoder
logits, cache = self.step(last_token, memory, cache)
# logits: (B, vocab_size)
next_step_logits = logits.clone()
# Apply repetition penalty
if repetition_penalty != 1.0:
for b in range(B):
if finished[b]:
continue
gen_seq = generated[b]
unique_tokens = torch.unique(gen_seq)
current_logits = next_step_logits[b, unique_tokens]
next_step_logits[b, unique_tokens] = torch.where(
current_logits < 0,
current_logits * repetition_penalty,
current_logits / repetition_penalty,
)
# Apply constraints
if end_token_id is not None and generated.size(1) < max(1, min_len):
next_step_logits[:, end_token_id] = float("-inf")
if ban_token_ids:
next_step_logits[:, ban_token_ids] = float("-inf")
# N-gram repetition blocking
if no_repeat_ngram_size > 0:
for b in range(B):
if finished[b]:
continue
gen_seq = generated[b].tolist()
if len(gen_seq) < no_repeat_ngram_size - 1:
continue
prefix = tuple(gen_seq[-(no_repeat_ngram_size - 1) :])
banned_for_this_batch = set()
for i in range(len(gen_seq) - no_repeat_ngram_size + 1):
window = tuple(gen_seq[i : i + no_repeat_ngram_size - 1])
if window == prefix:
if i + no_repeat_ngram_size - 1 < len(gen_seq):
banned_for_this_batch.add(gen_seq[i + no_repeat_ngram_size - 1])
if banned_for_this_batch:
next_step_logits[b, list(banned_for_this_batch)] = float("-inf")
# Greedy selection
next_token = next_step_logits.argmax(dim=-1, keepdim=True) # (B, 1)
# Update generated sequence
generated = torch.cat([generated, next_token], dim=1)
# Check for completion
if end_token_id is not None:
is_end = next_token.squeeze(-1) == end_token_id
finished = finished | is_end
if finished.all() and generated.size(1) >= max(1, min_len):
break
return generated
# -----------------------------
# Incremental single-step API
# -----------------------------
def step(
self,
last_token_ids: torch.Tensor,
memory: torch.Tensor,
cache: Optional[Dict] = None,
) -> Tuple[torch.Tensor, Dict]:
"""
Run one autoregressive step.
Args:
last_token_ids: (B, 1) last generated token ids
memory: encoder outputs (B, S, d_model)
cache: optional dict with previous cached keys/values and 'past_length'.
Returns:
logits: (B, vocab_size) logits for the next-token prediction
new_cache: updated cache dictionary
"""
device = memory.device
B = last_token_ids.size(0)
if cache is None:
cache = {}
past_len = int(cache.get("past_length", 0))
# 1) Embed last token and add positional encoding for position `past_len`
# T5/FLAN-T5 does NOT scale embeddings by sqrt(d_model)
x = self.embedding(last_token_ids) # (B,1,d)
# Handle positional encoding for single step
# Note: When using relative position bias (T5-style), pos_encoder is None
if self.pos_encoder is not None:
if hasattr(self.pos_encoder, "pe"):
# Sinusoidal: use buffer directly
pe: torch.Tensor = self.pos_encoder.pe # type: ignore[union-attr]
pos_idx = past_len
if pos_idx >= pe.size(1):
raise RuntimeError(f"pos_idx {pos_idx} exceeds max_len {pe.size(1)}")
x = x + pe[:, pos_idx : pos_idx + 1, :].to(device)
elif hasattr(self.pos_encoder, "embeddings"):
# Learned: lookup specific position
# Create position ids: [past_len]
pos_idx_t = torch.tensor([past_len], dtype=torch.long, device=device)
# Lookup embedding: (1, d_model)
pos_emb = self.pos_encoder.embeddings(pos_idx_t) # type: ignore[union-attr]
# Add to input: (B, 1, d_model) + (1, 1, d_model) broadcast
x = x + pos_emb.unsqueeze(0)
x = self.pos_encoder.dropout(x) # type: ignore[union-attr]
else:
# fallback: call pos_encoder (likely incorrect for step-by-step if it assumes pos 0)
x = self.pos_encoder(x)
# When pos_encoder is None (relative position bias mode), we skip positional encoding
# The position information is provided via relative_position_bias in attention
# We will update new_cache incrementally
new_cache = dict(cache) # shallow copy
new_cache["past_length"] = past_len + 1
# Optional: memory_mask could be supplied in cache under 'memory_mask'
memory_mask = new_cache.get("memory_mask", None)
if memory_mask is not None:
memory_mask = memory_mask.to(dtype=torch.bool, device=device)
# expand (B, S) -> (B,1,1,S) if necessary
if memory_mask.dim() == 2:
memory_mask = memory_mask.unsqueeze(1).unsqueeze(1)
elif memory_mask.dim() == 3:
memory_mask = memory_mask.unsqueeze(1)
# Compute position biases for incremental step (T5-style)
# For step mode: query_length=1, but actual position is past_len
# Self-attention: query at position past_len attends to keys at positions 0..past_len
# Note: T5 uses relative position bias for self-attention but NOT for cross-attention
if self.use_relative_position_bias and self.self_relative_position_bias is not None:
# Self-attention bias: query_length=1, key_length=past_len+1, offset=past_len
self_position_bias = self.self_relative_position_bias(
query_length=1,
key_length=past_len + 1,
device=device,
query_position_offset=past_len,
) # (1, num_heads, 1, past_len+1)
else:
self_position_bias = None
# Cross-attention position bias is None for T5 (see T5 paper/implementation)
cross_position_bias = None
# Iterate layers, updating caches and computing output for current token only
layer_input = x # (B,1,d_model)
for i, layer_module in enumerate(self.layers):
layer = cast(TransformerDecoderLayer, layer_module)
# -------------------
# 1) Self-attention (incremental)
# -------------------
# Normalize input for pre-LN
x_norm = layer.norm1(layer_input) # (B,1,d)
# Project Q,K,V for the new token
Q_new = layer.self_attn.W_Q(x_norm) # (B,1,d_model)
K_new = layer.self_attn.W_K(x_norm)
V_new = layer.self_attn.W_V(x_norm)
# Reshape into heads: (B, num_heads, 1, d_k)
B_, Lq, _ = Q_new.shape
num_heads = layer.self_attn.num_heads
d_k = layer.self_attn.d_k
Qh = Q_new.view(B_, Lq, num_heads, d_k).transpose(1, 2) # (B, num_heads, 1, d_k)
Kh = K_new.view(B_, Lq, num_heads, d_k).transpose(1, 2)
Vh = V_new.view(B_, Lq, num_heads, d_k).transpose(1, 2)
# Retrieve cached keys/values for self-attn (if exist)
cache_k = cache.get(f"self_k_{i}", None)
cache_v = cache.get(f"self_v_{i}", None)
if cache_k is None or cache_v is None:
K_all = Kh # (B, H, 1, d_k)
V_all = Vh
else:
# concat along sequence dim (dim=2)
K_all = torch.cat([cache_k.to(device), Kh], dim=2)
V_all = torch.cat([cache_v.to(device), Vh], dim=2)
# Store updated caches
new_cache[f"self_k_{i}"] = K_all
new_cache[f"self_v_{i}"] = V_all
# Compute attention for the new token: Query length = 1, Key length = K_all.size(2)
# Explicitly create mask for consistency with forward pass (though None should work)
# mask=True means attend.
step_mask = torch.ones(B_, 1, 1, K_all.size(2), dtype=torch.bool, device=device)
attn_out_heads, self_attn_w = layer.self_attn.attention(
Qh, K_all, V_all, mask=step_mask, position_bias=self_position_bias
)
# attn_out_heads: (B, H, 1, d_k)
# concat heads, project out
attn_out = attn_out_heads.transpose(1, 2).contiguous().view(B_, 1, num_heads * d_k)
attn_out = layer.self_attn.W_O(attn_out) # (B,1,d_model)
attn_out = layer.self_attn.dropout(attn_out)
layer_output = layer_input + layer.dropout1(attn_out)
# -------------------
# 2) Cross-attention (use cached memory projections if available)
# -------------------
x_norm2 = layer.norm2(layer_output) # (B,1,d)
# Ensure memory K/V are cached per layer
mem_k = cache.get(f"mem_k_{i}", None)
mem_v = cache.get(f"mem_v_{i}", None)
if mem_k is None or mem_v is None:
# project memory once for this layer and cache it
# memory: (B, S, d_model)
MK = layer.cross_attn.W_K(memory) # (B, S, d_model)
MV = layer.cross_attn.W_V(memory)
Bm, S, _ = MK.shape
MKh = MK.view(Bm, S, layer.cross_attn.num_heads, layer.cross_attn.d_k).transpose(
1, 2
) # (B,H,S,d_k)
MVh = MV.view(Bm, S, layer.cross_attn.num_heads, layer.cross_attn.d_k).transpose(
1, 2
)
mem_k = MKh
mem_v = MVh
new_cache[f"mem_k_{i}"] = mem_k
new_cache[f"mem_v_{i}"] = mem_v
else:
mem_k = mem_k.to(device)
mem_v = mem_v.to(device)
Qc = layer.cross_attn.W_Q(x_norm2) # (B,1,d_model)
Qch = Qc.view(B, 1, layer.cross_attn.num_heads, layer.cross_attn.d_k).transpose(
1, 2
) # (B,H,1,d_k)
cross_out_heads, cross_attn_w = layer.cross_attn.attention(
Qch, mem_k, mem_v, mask=memory_mask, position_bias=cross_position_bias
)
cross_out = (
cross_out_heads.transpose(1, 2)
.contiguous()
.view(B, 1, layer.cross_attn.num_heads * layer.cross_attn.d_k)
)
cross_out = layer.cross_attn.W_O(cross_out) # (B,1,d_model)
cross_out = layer.cross_attn.dropout(cross_out)
layer_output = layer_output + layer.dropout2(cross_out)
# -------------------
# 3) Feed-forward (incremental)
# -------------------
x_norm3 = layer.norm3(layer_output)
ffn_out = layer.ffn(x_norm3) # (B,1,d_model)
layer_output = layer_output + layer.dropout3(ffn_out)
# Prepare for next layer
layer_input = layer_output
# Final norm + output projection (for this single time step)
out_norm = self.final_norm(layer_input) # (B,1,d_model)
logits = self.output_projection(out_norm) # (B,1,vocab)
logits = logits.squeeze(1) # (B, vocab)
return logits, new_cache
|