Spaces:
Running
Running
File size: 6,027 Bytes
590a604 1bdd1c1 590a604 1bdd1c1 590a604 1bdd1c1 ee1a8a3 a18e93d 1bdd1c1 b43ba56 1bdd1c1 b43ba56 1bdd1c1 b43ba56 1bdd1c1 b43ba56 1bdd1c1 590a604 1bdd1c1 a18e93d 1bdd1c1 a18e93d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
"""Prediction heads for Transformer models.
This module provides task-specific output heads:
- ClassificationHead: Sequence-level classification with pooling (mean/cls/max)
- TokenClassificationHead: Per-token classification (NER, POS tagging)
- LMHead: Language modeling logits with optional weight tying
- ProjectionHead: MLP for representation learning / contrastive tasks
Author: Oliver Perrin
Date: 2025-10-23
"""
from typing import Literal, Optional
import torch
import torch.nn as nn
class ClassificationHead(nn.Module):
"""
Sequence-level classification head.
Args:
d_model: hidden size from encoder/decoder
num_labels: number of output classes
pooler: one of 'mean', 'cls', 'max' - how to pool the sequence
dropout: dropout probability before final linear layer
"""
def __init__(
self,
d_model: int,
num_labels: int,
pooler: Literal["mean", "cls", "max"] = "mean",
dropout: float = 0.1,
):
super().__init__()
assert pooler in ("mean", "cls", "max"), "pooler must be 'mean'|'cls'|'max'"
self.pooler = pooler
self.dropout = nn.Dropout(dropout)
self.out_proj = nn.Linear(d_model, num_labels)
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
x: (batch, seq_len, d_model)
mask: (batch, seq_len) - True for valid tokens, False for padding
returns: (batch, num_labels)
"""
if self.pooler == "mean":
if mask is not None:
# mask is (B, S)
# x is (B, S, D)
# Expand mask to (B, S, 1)
mask_expanded = mask.unsqueeze(-1).float()
# Zero out padding
x = x * mask_expanded
# Sum over sequence
sum_embeddings = x.sum(dim=1)
# Count valid tokens
sum_mask = mask_expanded.sum(dim=1)
# Avoid division by zero
sum_mask = torch.clamp(sum_mask, min=1e-9)
pooled = sum_embeddings / sum_mask
else:
pooled = x.mean(dim=1)
elif self.pooler == "cls":
pooled = x[:, 0, :]
else: # max
if mask is not None:
# Mask padding with -inf
mask_expanded = mask.unsqueeze(-1)
x = x.masked_fill(~mask_expanded, float("-inf"))
pooled, _ = x.max(dim=1)
pooled = self.dropout(pooled)
return self.out_proj(pooled)
class TokenClassificationHead(nn.Module):
"""
Per-token classification head. Useful for NER, POS, etc.
Args:
d_model: hidden size
num_labels: number of per-token classes
dropout: dropout probability applied before the linear layer
"""
def __init__(self, d_model: int, num_labels: int, dropout: float = 0.1):
super().__init__()
self.dropout = nn.Dropout(dropout)
self.out_proj = nn.Linear(d_model, num_labels)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
x: (batch, seq_len, d_model)
returns: (batch, seq_len, num_labels)
"""
x = self.dropout(x)
return self.out_proj(x)
class LMHead(nn.Module):
"""
Language modeling head: maps hidden states to logits over vocabulary.
Args:
d_model: hidden size
vocab_size: vocabulary size
tie_embedding: optional nn.Embedding instance to tie weights with
"""
def __init__(self, d_model: int, vocab_size: int, tie_embedding: Optional[nn.Embedding] = None):
super().__init__()
self.vocab_size = vocab_size
self.d_model = d_model
self.proj = nn.Linear(d_model, vocab_size, bias=True)
if tie_embedding is not None:
# Validate sizes
assert tie_embedding.num_embeddings == vocab_size, (
"vocab size mismatch for weight tying"
)
assert tie_embedding.embedding_dim == d_model, (
"embedding dim must match d_model for weight tying"
)
# Tie weights: point the projection weight to the embedding weight Tensor
# Remove the existing projection parameter in favor of the embedding weight
# This keeps the same Parameter object, so updates affect both modules.
self.proj.weight = tie_embedding.weight
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
"""
hidden_states: (batch, seq_len, d_model)
returns logits: (batch, seq_len, vocab_size)
"""
return self.proj(hidden_states)
class ProjectionHead(nn.Module):
"""
Simple projection head for representation learning.
Args:
d_model: input dimension
proj_dim: output projection dimension
hidden_dim: intermediate dimension (optional)
dropout: dropout probability
"""
def __init__(
self,
d_model: int,
proj_dim: int = 128,
hidden_dim: Optional[int] = None,
dropout: float = 0.1,
):
super().__init__()
if hidden_dim is None:
hidden_dim = max(d_model, proj_dim)
self.net = nn.Sequential(
nn.Linear(d_model, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, proj_dim),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
x: (batch, d_model) or (batch, seq_len, d_model) - both supported.
Returns:
If input is 3D: (batch, seq_len, proj_dim)
If input is 2D: (batch, proj_dim)
"""
orig_dim = x.dim()
if orig_dim == 3:
B, T, D = x.shape
out = self.net(x.view(B * T, D))
return out.view(B, T, -1)
elif orig_dim == 2:
return self.net(x)
else:
raise ValueError("Input must be 2D or 3D tensor")
|