File size: 6,027 Bytes
590a604
1bdd1c1
590a604
 
 
 
 
1bdd1c1
590a604
 
1bdd1c1
ee1a8a3
a18e93d
1bdd1c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b43ba56
1bdd1c1
 
b43ba56
1bdd1c1
 
 
b43ba56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bdd1c1
 
 
b43ba56
 
 
 
1bdd1c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
590a604
 
 
 
 
 
1bdd1c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a18e93d
 
 
 
 
 
 
1bdd1c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a18e93d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
"""Prediction heads for Transformer models.

This module provides task-specific output heads:
- ClassificationHead: Sequence-level classification with pooling (mean/cls/max)
- TokenClassificationHead: Per-token classification (NER, POS tagging)
- LMHead: Language modeling logits with optional weight tying
- ProjectionHead: MLP for representation learning / contrastive tasks

Author: Oliver Perrin
Date: 2025-10-23
"""

from typing import Literal, Optional

import torch
import torch.nn as nn


class ClassificationHead(nn.Module):
    """
    Sequence-level classification head.

    Args:
        d_model: hidden size from encoder/decoder
        num_labels: number of output classes
        pooler: one of 'mean', 'cls', 'max' - how to pool the sequence
        dropout: dropout probability before final linear layer
    """

    def __init__(
        self,
        d_model: int,
        num_labels: int,
        pooler: Literal["mean", "cls", "max"] = "mean",
        dropout: float = 0.1,
    ):
        super().__init__()
        assert pooler in ("mean", "cls", "max"), "pooler must be 'mean'|'cls'|'max'"
        self.pooler = pooler
        self.dropout = nn.Dropout(dropout)
        self.out_proj = nn.Linear(d_model, num_labels)

    def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
        """
        x: (batch, seq_len, d_model)
        mask: (batch, seq_len) - True for valid tokens, False for padding
        returns: (batch, num_labels)
        """
        if self.pooler == "mean":
            if mask is not None:
                # mask is (B, S)
                # x is (B, S, D)
                # Expand mask to (B, S, 1)
                mask_expanded = mask.unsqueeze(-1).float()
                # Zero out padding
                x = x * mask_expanded
                # Sum over sequence
                sum_embeddings = x.sum(dim=1)
                # Count valid tokens
                sum_mask = mask_expanded.sum(dim=1)
                # Avoid division by zero
                sum_mask = torch.clamp(sum_mask, min=1e-9)
                pooled = sum_embeddings / sum_mask
            else:
                pooled = x.mean(dim=1)
        elif self.pooler == "cls":
            pooled = x[:, 0, :]
        else:  # max
            if mask is not None:
                # Mask padding with -inf
                mask_expanded = mask.unsqueeze(-1)
                x = x.masked_fill(~mask_expanded, float("-inf"))
            pooled, _ = x.max(dim=1)
        pooled = self.dropout(pooled)
        return self.out_proj(pooled)


class TokenClassificationHead(nn.Module):
    """
    Per-token classification head. Useful for NER, POS, etc.

    Args:
        d_model: hidden size
        num_labels: number of per-token classes
        dropout: dropout probability applied before the linear layer
    """

    def __init__(self, d_model: int, num_labels: int, dropout: float = 0.1):
        super().__init__()
        self.dropout = nn.Dropout(dropout)
        self.out_proj = nn.Linear(d_model, num_labels)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        x: (batch, seq_len, d_model)
        returns: (batch, seq_len, num_labels)
        """
        x = self.dropout(x)
        return self.out_proj(x)


class LMHead(nn.Module):
    """
    Language modeling head: maps hidden states to logits over vocabulary.

    Args:
        d_model: hidden size
        vocab_size: vocabulary size
        tie_embedding: optional nn.Embedding instance to tie weights with
    """

    def __init__(self, d_model: int, vocab_size: int, tie_embedding: Optional[nn.Embedding] = None):
        super().__init__()
        self.vocab_size = vocab_size
        self.d_model = d_model
        self.proj = nn.Linear(d_model, vocab_size, bias=True)

        if tie_embedding is not None:
            # Validate sizes
            assert tie_embedding.num_embeddings == vocab_size, (
                "vocab size mismatch for weight tying"
            )
            assert tie_embedding.embedding_dim == d_model, (
                "embedding dim must match d_model for weight tying"
            )
            # Tie weights: point the projection weight to the embedding weight Tensor
            # Remove the existing projection parameter in favor of the embedding weight
            # This keeps the same Parameter object, so updates affect both modules.
            self.proj.weight = tie_embedding.weight

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        """
        hidden_states: (batch, seq_len, d_model)
        returns logits: (batch, seq_len, vocab_size)
        """
        return self.proj(hidden_states)


class ProjectionHead(nn.Module):
    """
    Simple projection head for representation learning.

    Args:
        d_model: input dimension
        proj_dim: output projection dimension
        hidden_dim: intermediate dimension (optional)
        dropout: dropout probability
    """

    def __init__(
        self,
        d_model: int,
        proj_dim: int = 128,
        hidden_dim: Optional[int] = None,
        dropout: float = 0.1,
    ):
        super().__init__()
        if hidden_dim is None:
            hidden_dim = max(d_model, proj_dim)
        self.net = nn.Sequential(
            nn.Linear(d_model, hidden_dim),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim, proj_dim),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        x: (batch, d_model) or (batch, seq_len, d_model) - both supported.
        Returns:
            If input is 3D: (batch, seq_len, proj_dim)
            If input is 2D: (batch, proj_dim)
        """
        orig_dim = x.dim()
        if orig_dim == 3:
            B, T, D = x.shape
            out = self.net(x.view(B * T, D))
            return out.view(B, T, -1)
        elif orig_dim == 2:
            return self.net(x)
        else:
            raise ValueError("Input must be 2D or 3D tensor")