nimazasinich
Hugging face space pause (#122)
ca2386d
#!/usr/bin/env python3
"""
HuggingFace Dataset Aggregator - Uses ALL Free HF Datasets
Maximizes usage of all available free HuggingFace datasets for historical OHLCV data
"""
import httpx
import logging
import io
import csv
from typing import Dict, Any, List, Optional
from datetime import datetime
from fastapi import HTTPException
logger = logging.getLogger(__name__)
class HFDatasetAggregator:
"""
Aggregates historical OHLCV data from ALL free HuggingFace datasets:
- linxy/CryptoCoin (26 symbols x 7 timeframes = 182 CSVs)
- WinkingFace/CryptoLM-Bitcoin-BTC-USDT
- WinkingFace/CryptoLM-Ethereum-ETH-USDT
- WinkingFace/CryptoLM-Solana-SOL-USDT
- WinkingFace/CryptoLM-Ripple-XRP-USDT
"""
def __init__(self):
self.timeout = 30.0
# linxy/CryptoCoin dataset configuration
self.linxy_base_url = "https://huggingface.co/datasets/linxy/CryptoCoin/resolve/main"
self.linxy_symbols = [
"BTC", "ETH", "BNB", "XRP", "ADA", "DOGE", "SOL", "TRX", "DOT", "MATIC",
"LTC", "SHIB", "AVAX", "UNI", "LINK", "ATOM", "XLM", "ETC", "XMR", "BCH",
"NEAR", "APT", "ARB", "OP", "FTM", "ALGO"
]
self.linxy_timeframes = ["1m", "5m", "15m", "30m", "1h", "4h", "1d"]
# WinkingFace datasets configuration
self.winkingface_datasets = {
"BTC": "https://huggingface.co/datasets/WinkingFace/CryptoLM-Bitcoin-BTC-USDT/resolve/main",
"ETH": "https://huggingface.co/datasets/WinkingFace/CryptoLM-Ethereum-ETH-USDT/resolve/main",
"SOL": "https://huggingface.co/datasets/WinkingFace/CryptoLM-Solana-SOL-USDT/resolve/main",
"XRP": "https://huggingface.co/datasets/WinkingFace/CryptoLM-Ripple-XRP-USDT/resolve/main"
}
# Cache for dataset data
self._cache = {}
self._cache_duration = 3600 # 1 hour
async def get_ohlcv(
self,
symbol: str,
timeframe: str = "1h",
limit: int = 1000
) -> List[Dict[str, Any]]:
"""
Get OHLCV data from HuggingFace datasets with fallback
"""
symbol = symbol.upper().replace("USDT", "").replace("USD", "")
# Try linxy/CryptoCoin first
if symbol in self.linxy_symbols and timeframe in self.linxy_timeframes:
try:
data = await self._get_linxy_ohlcv(symbol, timeframe, limit)
if data:
logger.info(f"✅ linxy/CryptoCoin: Fetched {len(data)} candles for {symbol}/{timeframe}")
return data
except Exception as e:
logger.warning(f"⚠️ linxy/CryptoCoin failed for {symbol}/{timeframe}: {e}")
# Try WinkingFace datasets
if symbol in self.winkingface_datasets:
try:
data = await self._get_winkingface_ohlcv(symbol, timeframe, limit)
if data:
logger.info(f"✅ WinkingFace: Fetched {len(data)} candles for {symbol}")
return data
except Exception as e:
logger.warning(f"⚠️ WinkingFace failed for {symbol}: {e}")
raise HTTPException(
status_code=404,
detail=f"No HuggingFace dataset found for {symbol}/{timeframe}"
)
async def _get_linxy_ohlcv(
self,
symbol: str,
timeframe: str,
limit: int
) -> List[Dict[str, Any]]:
"""Get OHLCV data from linxy/CryptoCoin dataset"""
cache_key = f"linxy_{symbol}_{timeframe}"
# Check cache
if cache_key in self._cache:
cached_data, cached_time = self._cache[cache_key]
if (datetime.utcnow().timestamp() - cached_time) < self._cache_duration:
logger.info(f"✅ Returning cached data for {symbol}/{timeframe}")
return cached_data[:limit]
# Download CSV from HuggingFace
# NOTE: linxy/CryptoCoin uses filenames like BTCUSDT_1h.csv (not BTC_1h.csv)
candidate_files = [
f"{symbol}USDT_{timeframe}.csv",
f"{symbol}_{timeframe}.csv", # legacy fallback
]
response = None
last_err = None
async with httpx.AsyncClient(timeout=self.timeout) as client:
for csv_filename in candidate_files:
csv_url = f"{self.linxy_base_url}/{csv_filename}"
try:
# These CSVs can be large (10MB+). Prefer a tail range request.
# We only need the most recent candles.
resp = await client.get(
csv_url,
follow_redirects=True,
headers={"Range": "bytes=-1500000"},
)
resp.raise_for_status()
response = resp
break
except Exception as e:
last_err = e
continue
if response is None:
raise HTTPException(status_code=404, detail=f"linxy/CryptoCoin CSV not found for {symbol}/{timeframe}: {last_err}")
# Parse CSV
# Note: with Range requests we likely won't have the header row.
csv_content = response.text
lines = csv_content.splitlines()
if not lines:
raise HTTPException(status_code=404, detail=f"Empty CSV content for {symbol}/{timeframe}")
# Drop first line if it's a partial row (common with Range tail)
if lines and ("timestamp" not in lines[0].lower()):
lines = lines[1:]
# If header present, use DictReader; otherwise use fixed fieldnames.
if lines and ("timestamp" in lines[0].lower() and "open" in lines[0].lower()):
csv_reader = csv.DictReader(io.StringIO("\n".join(lines)))
else:
csv_reader = csv.DictReader(
io.StringIO("\n".join(lines)),
fieldnames=["timestamp", "open", "high", "low", "close", "volume"],
)
ohlcv_data = []
for row in csv_reader:
try:
# linxy/CryptoCoin CSV formats vary.
# Common format is Binance-style export with:
# "Open time,open,high,low,close,volume,Close time,..."
ts_raw = (
row.get("timestamp")
or row.get("Open time")
or row.get("open_time")
or row.get("time")
or row.get("date")
)
if ts_raw is None:
continue
# Parse timestamp (supports int, float, or datetime strings)
ts_val: int
try:
ts_val = int(float(ts_raw))
except Exception:
# Example: "2017-08-17 04:00:00"
try:
dt = datetime.fromisoformat(str(ts_raw).strip())
except Exception:
dt = datetime.strptime(str(ts_raw).strip(), "%Y-%m-%d %H:%M:%S")
ts_val = int(dt.timestamp() * 1000)
ohlcv_data.append({
"timestamp": ts_val,
"open": float(row.get("open", 0) or 0),
"high": float(row.get("high", 0) or 0),
"low": float(row.get("low", 0) or 0),
"close": float(row.get("close", 0) or 0),
"volume": float(row.get("volume", 0) or 0)
})
except (ValueError, KeyError) as e:
logger.warning(f"⚠️ Failed to parse row: {e}")
continue
# Sort by timestamp (newest first)
ohlcv_data.sort(key=lambda x: x["timestamp"], reverse=True)
# Cache the result
self._cache[cache_key] = (ohlcv_data, datetime.utcnow().timestamp())
return ohlcv_data[:limit]
async def _get_winkingface_ohlcv(
self,
symbol: str,
timeframe: str,
limit: int
) -> List[Dict[str, Any]]:
"""Get OHLCV data from WinkingFace datasets"""
cache_key = f"winkingface_{symbol}_{timeframe}"
# Check cache
if cache_key in self._cache:
cached_data, cached_time = self._cache[cache_key]
if (datetime.utcnow().timestamp() - cached_time) < self._cache_duration:
logger.info(f"✅ Returning cached data for {symbol} (WinkingFace)")
return cached_data[:limit]
# WinkingFace datasets have different CSV filenames
base_url = self.winkingface_datasets[symbol]
# Try different possible filenames
possible_files = [
f"{symbol}USDT_{timeframe}.csv",
f"data.csv",
f"{symbol}USDT_1h.csv" # Fallback to 1h if specific timeframe not found
]
for csv_filename in possible_files:
try:
csv_url = f"{base_url}/{csv_filename}"
async with httpx.AsyncClient(timeout=self.timeout) as client:
response = await client.get(
csv_url,
follow_redirects=True,
headers={"Range": "bytes=-1500000"},
)
response.raise_for_status()
# Parse CSV
csv_content = response.text
lines = csv_content.splitlines()
if lines and ("timestamp" not in lines[0].lower()):
lines = lines[1:]
if lines and ("timestamp" in lines[0].lower() and "open" in lines[0].lower()):
csv_reader = csv.DictReader(io.StringIO("\n".join(lines)))
else:
csv_reader = csv.DictReader(
io.StringIO("\n".join(lines)),
fieldnames=["timestamp", "open", "high", "low", "close", "volume"],
)
ohlcv_data = []
for row in csv_reader:
try:
# WinkingFace CSV format may vary
# Try to detect and parse correctly
timestamp_key = None
for key in ["timestamp", "time", "date", "unix"]:
if key in row:
timestamp_key = key
break
if not timestamp_key:
# Try Binance-style export
if "Open time" in row:
timestamp_key = "Open time"
else:
continue
ts_raw = row.get(timestamp_key, 0)
try:
ts_val = int(float(ts_raw))
except Exception:
try:
dt = datetime.fromisoformat(str(ts_raw).strip())
except Exception:
dt = datetime.strptime(str(ts_raw).strip(), "%Y-%m-%d %H:%M:%S")
ts_val = int(dt.timestamp() * 1000)
ohlcv_data.append({
"timestamp": ts_val,
"open": float(row.get("open", 0) or 0),
"high": float(row.get("high", 0) or 0),
"low": float(row.get("low", 0) or 0),
"close": float(row.get("close", 0) or 0),
"volume": float(row.get("volume", 0) or 0)
})
except (ValueError, KeyError) as e:
logger.warning(f"⚠️ Failed to parse row: {e}")
continue
if ohlcv_data:
# Sort by timestamp (newest first)
ohlcv_data.sort(key=lambda x: x["timestamp"], reverse=True)
# Cache the result
self._cache[cache_key] = (ohlcv_data, datetime.utcnow().timestamp())
return ohlcv_data[:limit]
except Exception as e:
logger.warning(f"⚠️ Failed to fetch {csv_filename}: {e}")
continue
raise Exception(f"No data found for {symbol} in WinkingFace datasets")
async def get_available_symbols(self) -> Dict[str, List[str]]:
"""
Get list of available symbols from all datasets
"""
return {
"linxy_cryptocoin": self.linxy_symbols,
"winkingface": list(self.winkingface_datasets.keys())
}
async def get_available_timeframes(self, symbol: str) -> List[str]:
"""
Get available timeframes for a specific symbol
"""
symbol = symbol.upper().replace("USDT", "").replace("USD", "")
timeframes = []
# Check linxy/CryptoCoin
if symbol in self.linxy_symbols:
timeframes.extend(self.linxy_timeframes)
# WinkingFace datasets typically have 1h data
if symbol in self.winkingface_datasets:
timeframes.append("1h")
return list(set(timeframes)) # Remove duplicates
# Global instance
hf_dataset_aggregator = HFDatasetAggregator()
__all__ = ["HFDatasetAggregator", "hf_dataset_aggregator"]