File size: 8,495 Bytes
d9a1fb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6177940
d9a1fb2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import gradio as gr
import torch
import numpy as np
import pickle
from PIL import Image
import os
from convnext_original import ConvNeXt as ConvNeXtOriginal
from convnext_finetune import ConvNeXt

# Global variables for models
content_model = None
quality_model = None
scaler = None
regression_model = None
device = None

def get_activation(name, activations):
    """Hook function to capture activations."""
    def hook(model, input, output):
        activations[name] = output.detach()
    return hook

def register_hooks(model):
    """Register hooks for each layer in the model."""
    activations = {}
    for name, module in model.named_modules():
        module.register_forward_hook(get_activation(name, activations))
    return activations

def preprocess_image(image):
    """Preprocess image for model input."""
    # ImageNet normalization parameters
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    
    img_array = np.array(image, dtype=np.float32) / 255.0
    img_array = (img_array - mean) / std
    return torch.from_numpy(img_array).permute(2, 0, 1).unsqueeze(0).float()

def load_models():
    """Load all required models."""
    global content_model, quality_model, scaler, regression_model, device
    
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    # Check if model files exist
    required_files = [
        'feature_models/convnext_tiny_22k_224.pth',
        'feature_models/triqa_quality_aware.pth',
        'Regression_Models/KonIQ_scaler.save',
        'Regression_Models/KonIQ_TRIQA.save'
    ]
    
    missing_files = [f for f in required_files if not os.path.exists(f)]
    if missing_files:
        print(f"Missing model files: {missing_files}")
        print("Please download model files from the Box link and place them in the correct directories.")
        return None, None
    
    try:
        # Load content-aware model (using original ConvNeXt)
        content_model = ConvNeXtOriginal(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768])
        content_state_dict = torch.load('feature_models/convnext_tiny_22k_224.pth', map_location=device)['model']
        content_state_dict = {k: v for k, v in content_state_dict.items() if not k.startswith('head.')}
        content_model.load_state_dict(content_state_dict, strict=False)
        content_model.to(device).eval()
        
        # Load quality-aware model
        quality_model = ConvNeXt(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768])
        quality_state_dict = torch.load('feature_models/triqa_quality_aware.pth', map_location=device)
        quality_model.load_state_dict(quality_state_dict, strict=True)
        quality_model.to(device).eval()
        
        # Register hooks for feature extraction
        content_activations = register_hooks(content_model)
        quality_activations = register_hooks(quality_model)
        
        # Load scaler and regression model
        with open('Regression_Models/KonIQ_scaler.save', 'rb') as f:
            scaler = pickle.load(f)
        with open('Regression_Models/KonIQ_TRIQA.save', 'rb') as f:
            regression_model = pickle.load(f)
        
        return content_activations, quality_activations
    except Exception as e:
        print(f"Error loading models: {e}")
        return None, None

def predict_quality(image):
    """Predict image quality score on 1-5 scale."""
    global content_model, quality_model, scaler, regression_model, device
    
    if content_model is None or quality_model is None:
        return "Models not loaded. Please wait..."
    
    # Load and preprocess image
    image_half = image.resize((image.size[0]//2, image.size[1]//2), Image.LANCZOS)
    
    img_full = preprocess_image(image).to(device)
    img_half = preprocess_image(image_half).to(device)
    
    with torch.no_grad():
        # Extract content features using hooks
        _ = content_model(img_full)
        content_full = content_model.activations['norm'].cpu().numpy().flatten()
        
        _ = content_model(img_half)
        content_half = content_model.activations['norm'].cpu().numpy().flatten()
        
        content_features = np.concatenate([content_full, content_half])
        
        # Extract quality features using hooks
        _ = quality_model(img_full)
        quality_full = quality_model.activations['norm'].cpu().numpy().flatten()
        
        _ = quality_model(img_half)
        quality_half = quality_model.activations['norm'].cpu().numpy().flatten()
        
        quality_features = np.concatenate([quality_full, quality_half])
        
        # Combine features and predict
        combined_features = np.concatenate([content_features, quality_features])
        normalized_features = scaler.transform(combined_features.reshape(1, -1))
        quality_score = regression_model.predict(normalized_features)[0]
    
    return f"Quality Score: {quality_score:.2f}/5.0"

def create_demo():
    """Create the Gradio demo interface."""
    
    # Load models
    try:
        content_activations, quality_activations = load_models()
        content_model.activations = content_activations
        quality_model.activations = quality_activations
        print("Models loaded successfully!")
    except Exception as e:
        print(f"Error loading models: {e}")
        return None
    
    # Create Gradio interface
    with gr.Blocks(title="TRIQA: Image Quality Assessment", theme=gr.themes.Soft()) as demo:
        gr.Markdown("""
        # TRIQA: Image Quality Assessment
        
        **TRIQA** combines content-aware and quality-aware features from ConvNeXt models to predict image quality scores on a 1-5 scale.
        
        ### How to use:
        1. Upload an image using the file uploader below
        2. Click "Assess Quality" to get the quality score
        3. The score ranges from 1-5, where 5 represents the highest quality
        
        ### Paper Links:
        - **arXiv**: [https://arxiv.org/pdf/2507.12687](https://arxiv.org/pdf/2507.12687)
        - **IEEE Xplore**: [https://ieeexplore.ieee.org/abstract/document/11084443](https://ieeexplore.ieee.org/abstract/document/11084443)
        """)
        
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(
                    label="Upload Image",
                    type="pil",
                    height=400
                )
                submit_btn = gr.Button("Assess Quality", variant="primary")
            
            with gr.Column():
                output_text = gr.Textbox(
                    label="Quality Assessment Result",
                    value="Upload an image and click 'Assess Quality' to get the quality score.",
                    interactive=False
                )
                
                gr.Examples(
                    examples=[
                        ["sample_image/233045618.jpg"],
                        ["sample_image/25239707.jpg"],
                        ["sample_image/44009500.jpg"],
                        ["sample_image/5129172.jpg"],
                        ["sample_image/85119046.jpg"]
                    ],
                    inputs=input_image,
                    label="Sample Images"
                )
        
        submit_btn.click(
            fn=predict_quality,
            inputs=input_image,
            outputs=output_text
        )
        
        gr.Markdown("""
        ### Citation:
        If you use this code in your research, please cite our paper:
        
        ```bibtex
        @INPROCEEDINGS{11084443,
          author={Sureddi, Rajesh and Zadtootaghaj, Saman and Barman, Nabajeet and Bovik, Alan C.},
          booktitle={2025 IEEE International Conference on Image Processing (ICIP)}, 
          title={Triqa: Image Quality Assessment by Contrastive Pretraining on Ordered Distortion Triplets}, 
          year={2025},
          volume={},
          number={},
          pages={1744-1749},
          keywords={Image quality;Training;Deep learning;Contrastive learning;Predictive models;Feature extraction;Distortion;Data models;Synthetic data;Image Quality Assessment;Contrastive Learning},
          doi={10.1109/ICIP55913.2025.11084443}}
        ```
        """)
    
    return demo

if __name__ == "__main__":
    demo = create_demo()
    if demo:
        demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
    else:
        print("Failed to create demo. Please check model files.")