Spaces:
Sleeping
Sleeping
| # coding=utf-8 | |
| # Copyright 2018 The Google AI Language Team Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Create masked LM/next sentence masked_lm TF examples for BERT.""" | |
| from __future__ import absolute_import | |
| from __future__ import division | |
| from __future__ import print_function | |
| import collections | |
| import random | |
| import tokenization | |
| import tensorflow as tf | |
| flags = tf.flags | |
| FLAGS = flags.FLAGS | |
| flags.DEFINE_string("input_file", None, | |
| "Input raw text file (or comma-separated list of files).") | |
| flags.DEFINE_string( | |
| "output_file", None, | |
| "Output TF example file (or comma-separated list of files).") | |
| flags.DEFINE_string("vocab_file", None, | |
| "The vocabulary file that the BERT model was trained on.") | |
| flags.DEFINE_bool( | |
| "do_lower_case", True, | |
| "Whether to lower case the input text. Should be True for uncased " | |
| "models and False for cased models.") | |
| flags.DEFINE_integer("max_seq_length", 128, "Maximum sequence length.") | |
| flags.DEFINE_integer("max_predictions_per_seq", 20, | |
| "Maximum number of masked LM predictions per sequence.") | |
| flags.DEFINE_integer("random_seed", 12345, "Random seed for data generation.") | |
| flags.DEFINE_integer( | |
| "dupe_factor", 10, | |
| "Number of times to duplicate the input data (with different masks).") | |
| flags.DEFINE_float("masked_lm_prob", 0.15, "Masked LM probability.") | |
| flags.DEFINE_float( | |
| "short_seq_prob", 0.1, | |
| "Probability of creating sequences which are shorter than the " | |
| "maximum length.") | |
| flags.DEFINE_bool( | |
| "thai_text", False, | |
| "Whether to process Thai language.") | |
| flags.DEFINE_string( | |
| "spm_file", None, | |
| "SentencePiece model file for Thai language.") | |
| class TrainingInstance(object): | |
| """A single training instance (sentence pair).""" | |
| def __init__(self, tokens, segment_ids, masked_lm_positions, masked_lm_labels, | |
| is_random_next): | |
| self.tokens = tokens | |
| self.segment_ids = segment_ids | |
| self.is_random_next = is_random_next | |
| self.masked_lm_positions = masked_lm_positions | |
| self.masked_lm_labels = masked_lm_labels | |
| def __str__(self): | |
| s = "" | |
| s += "tokens: %s\n" % (" ".join( | |
| [tokenization.printable_text(x) for x in self.tokens])) | |
| s += "segment_ids: %s\n" % (" ".join([str(x) for x in self.segment_ids])) | |
| s += "is_random_next: %s\n" % self.is_random_next | |
| s += "masked_lm_positions: %s\n" % (" ".join( | |
| [str(x) for x in self.masked_lm_positions])) | |
| s += "masked_lm_labels: %s\n" % (" ".join( | |
| [tokenization.printable_text(x) for x in self.masked_lm_labels])) | |
| s += "\n" | |
| return s | |
| def __repr__(self): | |
| return self.__str__() | |
| def write_instance_to_example_files(instances, tokenizer, max_seq_length, | |
| max_predictions_per_seq, output_files): | |
| """Create TF example files from `TrainingInstance`s.""" | |
| writers = [] | |
| for output_file in output_files: | |
| writers.append(tf.python_io.TFRecordWriter(output_file)) | |
| writer_index = 0 | |
| total_written = 0 | |
| for (inst_index, instance) in enumerate(instances): | |
| input_ids = tokenizer.convert_tokens_to_ids(instance.tokens) | |
| input_mask = [1] * len(input_ids) | |
| segment_ids = list(instance.segment_ids) | |
| assert len(input_ids) <= max_seq_length | |
| while len(input_ids) < max_seq_length: | |
| input_ids.append(0) | |
| input_mask.append(0) | |
| segment_ids.append(0) | |
| assert len(input_ids) == max_seq_length | |
| assert len(input_mask) == max_seq_length | |
| assert len(segment_ids) == max_seq_length | |
| masked_lm_positions = list(instance.masked_lm_positions) | |
| masked_lm_ids = tokenizer.convert_tokens_to_ids(instance.masked_lm_labels) | |
| masked_lm_weights = [1.0] * len(masked_lm_ids) | |
| while len(masked_lm_positions) < max_predictions_per_seq: | |
| masked_lm_positions.append(0) | |
| masked_lm_ids.append(0) | |
| masked_lm_weights.append(0.0) | |
| next_sentence_label = 1 if instance.is_random_next else 0 | |
| features = collections.OrderedDict() | |
| features["input_ids"] = create_int_feature(input_ids) | |
| features["input_mask"] = create_int_feature(input_mask) | |
| features["segment_ids"] = create_int_feature(segment_ids) | |
| features["masked_lm_positions"] = create_int_feature(masked_lm_positions) | |
| features["masked_lm_ids"] = create_int_feature(masked_lm_ids) | |
| features["masked_lm_weights"] = create_float_feature(masked_lm_weights) | |
| features["next_sentence_labels"] = create_int_feature([next_sentence_label]) | |
| tf_example = tf.train.Example(features=tf.train.Features(feature=features)) | |
| writers[writer_index].write(tf_example.SerializeToString()) | |
| writer_index = (writer_index + 1) % len(writers) | |
| total_written += 1 | |
| if inst_index < 20: | |
| tf.logging.info("*** Example ***") | |
| tf.logging.info("tokens: %s" % " ".join( | |
| [tokenization.printable_text(x) for x in instance.tokens])) | |
| for feature_name in features.keys(): | |
| feature = features[feature_name] | |
| values = [] | |
| if feature.int64_list.value: | |
| values = feature.int64_list.value | |
| elif feature.float_list.value: | |
| values = feature.float_list.value | |
| tf.logging.info( | |
| "%s: %s" % (feature_name, " ".join([str(x) for x in values]))) | |
| for writer in writers: | |
| writer.close() | |
| tf.logging.info("Wrote %d total instances", total_written) | |
| def create_int_feature(values): | |
| feature = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) | |
| return feature | |
| def create_float_feature(values): | |
| feature = tf.train.Feature(float_list=tf.train.FloatList(value=list(values))) | |
| return feature | |
| def create_training_instances(input_files, tokenizer, max_seq_length, | |
| dupe_factor, short_seq_prob, masked_lm_prob, | |
| max_predictions_per_seq, rng): | |
| """Create `TrainingInstance`s from raw text.""" | |
| all_documents = [[]] | |
| # Input file format: | |
| # (1) One sentence per line. These should ideally be actual sentences, not | |
| # entire paragraphs or arbitrary spans of text. (Because we use the | |
| # sentence boundaries for the "next sentence prediction" task). | |
| # (2) Blank lines between documents. Document boundaries are needed so | |
| # that the "next sentence prediction" task doesn't span between documents. | |
| for input_file in input_files: | |
| with tf.gfile.GFile(input_file, "r") as reader: | |
| while True: | |
| line = tokenization.convert_to_unicode(reader.readline()) | |
| if not line: | |
| break | |
| line = line.strip() | |
| # Empty lines are used as document delimiters | |
| if not line: | |
| all_documents.append([]) | |
| tokens = tokenizer.tokenize(line) | |
| if tokens: | |
| all_documents[-1].append(tokens) | |
| # Remove empty documents | |
| all_documents = [x for x in all_documents if x] | |
| rng.shuffle(all_documents) | |
| vocab_words = list(tokenizer.vocab.keys()) | |
| instances = [] | |
| for _ in range(dupe_factor): | |
| for document_index in range(len(all_documents)): | |
| instances.extend( | |
| create_instances_from_document( | |
| all_documents, document_index, max_seq_length, short_seq_prob, | |
| masked_lm_prob, max_predictions_per_seq, vocab_words, rng)) | |
| rng.shuffle(instances) | |
| return instances | |
| def create_instances_from_document( | |
| all_documents, document_index, max_seq_length, short_seq_prob, | |
| masked_lm_prob, max_predictions_per_seq, vocab_words, rng): | |
| """Creates `TrainingInstance`s for a single document.""" | |
| document = all_documents[document_index] | |
| # Account for [CLS], [SEP], [SEP] | |
| max_num_tokens = max_seq_length - 3 | |
| # We *usually* want to fill up the entire sequence since we are padding | |
| # to `max_seq_length` anyways, so short sequences are generally wasted | |
| # computation. However, we *sometimes* | |
| # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter | |
| # sequences to minimize the mismatch between pre-training and fine-tuning. | |
| # The `target_seq_length` is just a rough target however, whereas | |
| # `max_seq_length` is a hard limit. | |
| target_seq_length = max_num_tokens | |
| if rng.random() < short_seq_prob: | |
| target_seq_length = rng.randint(2, max_num_tokens) | |
| # We DON'T just concatenate all of the tokens from a document into a long | |
| # sequence and choose an arbitrary split point because this would make the | |
| # next sentence prediction task too easy. Instead, we split the input into | |
| # segments "A" and "B" based on the actual "sentences" provided by the user | |
| # input. | |
| instances = [] | |
| current_chunk = [] | |
| current_length = 0 | |
| i = 0 | |
| while i < len(document): | |
| segment = document[i] | |
| current_chunk.append(segment) | |
| current_length += len(segment) | |
| if i == len(document) - 1 or current_length >= target_seq_length: | |
| if current_chunk: | |
| # `a_end` is how many segments from `current_chunk` go into the `A` | |
| # (first) sentence. | |
| a_end = 1 | |
| if len(current_chunk) >= 2: | |
| a_end = rng.randint(1, len(current_chunk) - 1) | |
| tokens_a = [] | |
| for j in range(a_end): | |
| tokens_a.extend(current_chunk[j]) | |
| tokens_b = [] | |
| # Random next | |
| is_random_next = False | |
| if len(current_chunk) == 1 or rng.random() < 0.5: | |
| is_random_next = True | |
| target_b_length = target_seq_length - len(tokens_a) | |
| # This should rarely go for more than one iteration for large | |
| # corpora. However, just to be careful, we try to make sure that | |
| # the random document is not the same as the document | |
| # we're processing. | |
| for _ in range(10): | |
| random_document_index = rng.randint(0, len(all_documents) - 1) | |
| if random_document_index != document_index: | |
| break | |
| random_document = all_documents[random_document_index] | |
| random_start = rng.randint(0, len(random_document) - 1) | |
| for j in range(random_start, len(random_document)): | |
| tokens_b.extend(random_document[j]) | |
| if len(tokens_b) >= target_b_length: | |
| break | |
| # We didn't actually use these segments so we "put them back" so | |
| # they don't go to waste. | |
| num_unused_segments = len(current_chunk) - a_end | |
| i -= num_unused_segments | |
| # Actual next | |
| else: | |
| is_random_next = False | |
| for j in range(a_end, len(current_chunk)): | |
| tokens_b.extend(current_chunk[j]) | |
| truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng) | |
| assert len(tokens_a) >= 1 | |
| assert len(tokens_b) >= 1 | |
| tokens = [] | |
| segment_ids = [] | |
| tokens.append("[CLS]") | |
| segment_ids.append(0) | |
| for token in tokens_a: | |
| tokens.append(token) | |
| segment_ids.append(0) | |
| tokens.append("[SEP]") | |
| segment_ids.append(0) | |
| for token in tokens_b: | |
| tokens.append(token) | |
| segment_ids.append(1) | |
| tokens.append("[SEP]") | |
| segment_ids.append(1) | |
| (tokens, masked_lm_positions, | |
| masked_lm_labels) = create_masked_lm_predictions( | |
| tokens, masked_lm_prob, max_predictions_per_seq, vocab_words, rng) | |
| instance = TrainingInstance( | |
| tokens=tokens, | |
| segment_ids=segment_ids, | |
| is_random_next=is_random_next, | |
| masked_lm_positions=masked_lm_positions, | |
| masked_lm_labels=masked_lm_labels) | |
| instances.append(instance) | |
| current_chunk = [] | |
| current_length = 0 | |
| i += 1 | |
| return instances | |
| def create_masked_lm_predictions(tokens, masked_lm_prob, | |
| max_predictions_per_seq, vocab_words, rng): | |
| """Creates the predictions for the masked LM objective.""" | |
| cand_indexes = [] | |
| for (i, token) in enumerate(tokens): | |
| if token == "[CLS]" or token == "[SEP]": | |
| continue | |
| cand_indexes.append(i) | |
| rng.shuffle(cand_indexes) | |
| output_tokens = list(tokens) | |
| masked_lm = collections.namedtuple("masked_lm", ["index", "label"]) # pylint: disable=invalid-name | |
| num_to_predict = min(max_predictions_per_seq, | |
| max(1, int(round(len(tokens) * masked_lm_prob)))) | |
| masked_lms = [] | |
| covered_indexes = set() | |
| for index in cand_indexes: | |
| if len(masked_lms) >= num_to_predict: | |
| break | |
| if index in covered_indexes: | |
| continue | |
| covered_indexes.add(index) | |
| masked_token = None | |
| # 80% of the time, replace with [MASK] | |
| if rng.random() < 0.8: | |
| masked_token = "[MASK]" | |
| else: | |
| # 10% of the time, keep original | |
| if rng.random() < 0.5: | |
| masked_token = tokens[index] | |
| # 10% of the time, replace with random word | |
| else: | |
| masked_token = vocab_words[rng.randint(0, len(vocab_words) - 1)] | |
| output_tokens[index] = masked_token | |
| masked_lms.append(masked_lm(index=index, label=tokens[index])) | |
| masked_lms = sorted(masked_lms, key=lambda x: x.index) | |
| masked_lm_positions = [] | |
| masked_lm_labels = [] | |
| for p in masked_lms: | |
| masked_lm_positions.append(p.index) | |
| masked_lm_labels.append(p.label) | |
| return (output_tokens, masked_lm_positions, masked_lm_labels) | |
| def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng): | |
| """Truncates a pair of sequences to a maximum sequence length.""" | |
| while True: | |
| total_length = len(tokens_a) + len(tokens_b) | |
| if total_length <= max_num_tokens: | |
| break | |
| trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b | |
| assert len(trunc_tokens) >= 1 | |
| # We want to sometimes truncate from the front and sometimes from the | |
| # back to add more randomness and avoid biases. | |
| if rng.random() < 0.5: | |
| del trunc_tokens[0] | |
| else: | |
| trunc_tokens.pop() | |
| def main(_): | |
| tf.logging.set_verbosity(tf.logging.INFO) | |
| if FLAGS.thai_text: | |
| if not FLAGS.spm_file: | |
| print("Please specify the SentencePiece model file by using --spm_file.") | |
| return | |
| tokenizer = tokenization.ThaiTokenizer(vocab_file=FLAGS.vocab_file, spm_file=FLAGS.spm_file) | |
| else: | |
| tokenizer = tokenization.FullTokenizer( | |
| vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) | |
| input_files = [] | |
| for input_pattern in FLAGS.input_file.split(","): | |
| input_files.extend(tf.gfile.Glob(input_pattern)) | |
| tf.logging.info("*** Reading from input files ***") | |
| for input_file in input_files: | |
| tf.logging.info(" %s", input_file) | |
| rng = random.Random(FLAGS.random_seed) | |
| instances = create_training_instances( | |
| input_files, tokenizer, FLAGS.max_seq_length, FLAGS.dupe_factor, | |
| FLAGS.short_seq_prob, FLAGS.masked_lm_prob, FLAGS.max_predictions_per_seq, | |
| rng) | |
| output_files = FLAGS.output_file.split(",") | |
| tf.logging.info("*** Writing to output files ***") | |
| for output_file in output_files: | |
| tf.logging.info(" %s", output_file) | |
| write_instance_to_example_files(instances, tokenizer, FLAGS.max_seq_length, | |
| FLAGS.max_predictions_per_seq, output_files) | |
| if __name__ == "__main__": | |
| flags.mark_flag_as_required("input_file") | |
| flags.mark_flag_as_required("output_file") | |
| flags.mark_flag_as_required("vocab_file") | |
| tf.app.run() | |