Spaces:
Build error
Build error
Commit
·
6fdf224
1
Parent(s):
b45f399
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,17 +12,41 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
| 12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
| 13 |
|
| 14 |
# load text-to-speech checkpoint and speaker embeddings
|
| 15 |
-
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
| 16 |
|
| 17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
| 18 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
| 19 |
|
| 20 |
-
|
| 21 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
| 22 |
|
|
|
|
|
|
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
def translate(audio):
|
| 25 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
|
|
|
| 26 |
return outputs["text"]
|
| 27 |
|
| 28 |
|
|
|
|
| 12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
| 13 |
|
| 14 |
# load text-to-speech checkpoint and speaker embeddings
|
| 15 |
+
# processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
| 16 |
|
| 17 |
+
# model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
| 18 |
+
# vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
| 19 |
|
| 20 |
+
processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
|
|
|
|
| 21 |
|
| 22 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
|
| 23 |
+
vocoder = SpeechT5HifiGan.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
|
| 24 |
|
| 25 |
+
# embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
| 26 |
+
# speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
| 27 |
+
|
| 28 |
+
dataset_nl = load_dataset("facebook/voxpopuli", "nl", split="train", streaming=True)
|
| 29 |
+
data_list = []
|
| 30 |
+
speaker_embeddings_list = []
|
| 31 |
+
|
| 32 |
+
for i, data in enumerate(iter(dataset_nl)):
|
| 33 |
+
# print(i)
|
| 34 |
+
if(i > 5):
|
| 35 |
+
break
|
| 36 |
+
data_list.append(data)
|
| 37 |
+
# data = next(iter(dataset_nl))
|
| 38 |
+
text = data["raw_text"]
|
| 39 |
+
# print(data)
|
| 40 |
+
speaker_embeddings = create_speaker_embedding(data["audio"]["array"])
|
| 41 |
+
speaker_embeddings = torch.tensor(speaker_embeddings)[None]
|
| 42 |
+
speaker_embeddings_list.append(speaker_embeddings)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
speaker_embeddings = speaker_embeddings_list[4]
|
| 46 |
+
|
| 47 |
def translate(audio):
|
| 48 |
+
# outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
| 49 |
+
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"language":"<|nl|>","task": "transcribe"})
|
| 50 |
return outputs["text"]
|
| 51 |
|
| 52 |
|