File size: 24,003 Bytes
f71030e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
import torch
from einops import rearrange, repeat
from torch import nn
import copy
from open_flamingo.src.helpers import PerceiverResampler
from robot_flamingo.models.action_head import DeterministicDecoder, DiffusionDecoder, FCDecoder, GPTDecoder
from collections import namedtuple


class BCFlamingo(nn.Module):
    def __init__(
        self,
        vision_encoder: nn.Module,
        lang_encoder: nn.Module,
        eoc_token_id: int,
        media_token_id: int,
        vis_dim: int,
        cross_attn_every_n_layers: int = 1,
        use_media_placement_augmentation: bool = False,
        # this is the window size sampled from the episode
        window_size: int = 8,
        use_gripper=False,
        fusion_mode='',
        sep_resampler=False,
        use_state=False,
        use_diff=False,
        diff_horizon=32,
        last_action=False,
        n_timesteps=150,
        state_dim=15,
        use_hist=False,
        debug=False,
        predict_epsilon=True,
        pad_length=-1,
        multi_step_action=1,
        sep_lm_head=False,
        return_feature = False,
        llm='llama_9b',
        pooling='max',
        residual=False,
        tcp_rel=False,
        replan=-1,
        decoder_type='lstm',
        hidden_size=None,
        fwd_pred=False,
        fwd_pred_hand=False,
        refresh=-1
    ):
        """
        Args:
            vision_encoder (nn.Module): HF CLIPModel
            lang_encoder (nn.Module): HF causal language model
            eoc_token_id (int): Token id for <|endofchunk|>
            media_token_id (int): Token id for <image>
            vis_dim (int): Dimension of the visual features.
                Visual features are projected to match this shape along the last dimension.
            cross_attn_every_n_layers (int, optional): How often to apply cross attention after transformer layer. Defaults to 1.
            use_media_placement_augmentation (bool, optional): Whether to randomly assign images to the preceding or following text in training. Defaults to False.
        """
        super().__init__()
        self.use_gripper = use_gripper
        self.use_state = use_state
        self.fusion_mode = fusion_mode
        self.eoc_token_id = eoc_token_id
        self.media_token_id = media_token_id
        self.use_media_placement_augmentation = use_media_placement_augmentation
        self.vis_dim = vis_dim
        self.window_size = window_size
        self.tcp_rel = tcp_rel
        self.act_step = multi_step_action
        print('window size: {}'.format(window_size))
        self.vision_encoder = vision_encoder
        self.perceiver = PerceiverResampler(dim=self.vis_dim)
        self.sep_resampler = sep_resampler
        self.use_hist = use_hist
        self.lang_encoder = lang_encoder
        self.pad_length = pad_length
        self.replan = replan
        if self.replan != -1:
            self.replan = min(int(replan * self.window_size), 180)
        self.refresh = refresh
        if hasattr(lang_encoder.config, "d_model"):
            self.lang_dim = lang_encoder.config.d_model  # mpt uses d_model
        else:
            self.lang_dim = lang_encoder.config.hidden_size
        
        # print(self.vis_dim, self.lang_dim)
        
        self.residual = residual

        if not debug:
            if 'llama' in llm:
                self.lang_encoder.init_flamingo(
                    media_token_id=media_token_id,
                    vis_hidden_size=self.vis_dim,
                    cross_attn_every_n_layers=cross_attn_every_n_layers,
                    use_media_placement_augmentation=self.use_media_placement_augmentation,
                    residual=residual,
                )
            else:
                self.lang_encoder.init_flamingo(
                    media_token_id=media_token_id,
                    lang_hidden_size=self.lang_dim,
                    vis_hidden_size=self.vis_dim,
                    cross_attn_every_n_layers=cross_attn_every_n_layers,
                    gradient_checkpointing=False,
                )

        if sep_resampler:
            self.perceiver_gripper = PerceiverResampler(dim=self.vis_dim)
            self.perceiver_gripper.load_state_dict(copy.deepcopy(self.perceiver.state_dict()))
        if use_state:
            self.state_fc = nn.Linear(state_dim, self.vis_dim)
        if use_hist:
            self.frame_embs = nn.Parameter(torch.randn(self.window_size, self.vis_dim))
        # To-do: nn archiecture for actor
        self.llm = llm
        if llm=='llama':
            in_features = lang_encoder.lm_head.in_features
        else:
            in_features = self.lang_dim
        self.use_diff = use_diff
        self.decoder_type = decoder_type
        if decoder_type == 'lstm':
            lm_head = DeterministicDecoder(in_features, self.window_size, 
            use_diff=use_diff, last_action=last_action, fusion_mode=fusion_mode, use_state=use_state, return_feature=return_feature, multi_step_action=multi_step_action, pooling=pooling)
            self.lang_encoder.lm_head = lm_head
        elif decoder_type == 'fc':
            if use_hist:
                self.lang_encoder.lm_head = self.action_head = FCDecoder(in_features, self.window_size, 
                use_diff=use_diff, last_action=last_action, fusion_mode=fusion_mode, use_state=use_state, return_feature=return_feature, multi_step_action=multi_step_action)
            elif 'vit_concat' in fusion_mode:
                self.lang_encoder.lm_head = self.action_head = FCDecoder(in_features, self.window_size, 
                use_diff=use_diff, last_action=last_action, fusion_mode=fusion_mode, use_state=use_state, return_feature=return_feature, multi_step_action=multi_step_action)
            else:
                raise NotImplementedError
        elif decoder_type == 'diffusion':
            if use_diff:
                self.diffusion_model = DiffusionDecoder(
                    self.action_head.hidden_size, 
                    self.window_size,
                    input_dim=self.action_head.out_features+1,
                    n_timesteps=n_timesteps,
                    horizon=diff_horizon,
                    predict_epsilon=predict_epsilon,
                )
            else:
                raise NotImplementedError
        elif decoder_type=='gpt':
            lm_head = GPTDecoder(in_features, self.window_size, use_diff=use_diff, last_action=last_action, fusion_mode=fusion_mode, multi_step_action=multi_step_action, pooling=pooling, hidden_size=hidden_size)
            self.lang_encoder.lm_head = self.action_head = lm_head
        else:
            raise NotImplementedError

        self.sep_lm_head = sep_lm_head
        if sep_lm_head:
            self.lm_head = self.lang_encoder.lm_head
            self.lang_encoder.lm_head = nn.Identity()

    def forward(
        self,
        vision_x: torch.Tensor,
        lang_x: torch.Tensor,
        attention_mask: torch.Tensor = None,
        labels: torch.Tensor = None,
        use_cached_vision_x: bool = False,
        clear_conditioned_layers: bool = True,
        past_key_values=None,
        use_cache: bool = False,
        vision_gripper = None,
        state_tensor = None,
        return_feature = False,
        policy_mask=None
    ):
        """
        Forward pass of Flamingo.

        Args:
            vision_x (torch.Tensor): Vision input
                shape (B, T_img, F, C, H, W) with F=1
            lang_x (torch.Tensor): Language input ids
                shape (B, T_txt)
            attention_mask (torch.Tensor, optional): Attention mask. Defaults to None.
            labels (torch.Tensor, optional): Labels. Defaults to None.
            clear_conditioned_layers: if True, clear the conditioned layers
                once the foward pass is completed. Set this to false if the
                same set of images will be reused in another subsequent
                forward pass.
            past_key_values: pre-computed values to pass to language model.
                See past_key_values documentation in Hugging Face
                CausalLM models.
            use_cache: whether to use cached key values. See use_cache
                documentation in Hugging Face CausalLM models.
        """
        raw_rgb = vision_x.clone()
        raw_gripper = vision_gripper.clone()
        assert (
            vision_x is not None
        ) or use_cached_vision_x, (
            "Must provide either vision_x or use_cached_vision_x to True."
        )

        if use_cached_vision_x:
            # Case: use cached; vision_x should be cached and other
            # vision-related inputs should not be provided.
            assert (
                vision_x is None
            ), "Expect vision_x to be None when use_cached_vision_x is True."
            assert self.lang_encoder.is_conditioned()

        else:
            # Case: do not use caching (i.e. this is a standard forward pass);
            if self.use_hist:
                self._encode_history_vision_post_fusion(vision_x, vision_gripper, state_tensor)
            else:
                if not self.use_gripper or self.fusion_mode == 'two_way':
                    vision_x = self._encode_vision_x(vision_x=vision_x)
                else:
                    if self.fusion_mode == 'pre':
                        self._encode_multi_vision_pre_fusion(vision_x, vision_gripper, state_tensor)
                    elif self.fusion_mode == 'post':
                        self._encode_multi_vision_post_fusion(vision_x, vision_gripper, state_tensor)
                    elif self.fusion_mode == 'vit_concat':
                        self._encode_history_vision_fc_post(vision_x, vision_gripper, state_tensor)
        
        if 'llama' in self.llm:
            output = self.lang_encoder(
                input_ids=lang_x,
                attention_mask=attention_mask,
                # labels=labels,  # 不输入label,程序就不会计算loss
                past_key_values=past_key_values,
                use_cache=use_cache,
            )
        else:
            output = self.lang_encoder(
                input_ids=lang_x,
                attention_mask=attention_mask
            )
        
        if self.sep_lm_head:
            output_llm = output.logits
            output_lm_head = self.lm_head(output_llm, state_tensor=state_tensor, return_feature=return_feature)
            output.logits = output_lm_head
        
        if clear_conditioned_layers:
            self.lang_encoder.clear_conditioned_layers()

        # action_seq = self.action_head(vision_x)
        return output

    # Generate function with actor for text time adpatation
    def generate(
        self,
        vision_x: torch.Tensor,
        lang_x: torch.Tensor,
        attention_mask: torch.Tensor = None,
        num_beams=1,
        max_new_tokens=None,
        temperature=1.0,
        top_k=0,
        top_p=1.0,
        no_repeat_ngram_size=0,
        prefix_allowed_tokens_fn=None,
        length_penalty=1.0,
        num_return_sequences=1,
        do_sample=False,
        early_stopping=False,
    ):
        """
        Generate text conditioned on vision and language inputs.

        Args:
            vision_x (torch.Tensor): Vision input
                shape (B, T_img, F, C, H, W)
                images in the same chunk are collated along T_img, and frames are collated along F
                currently only F=1 is supported (single-frame videos)
            lang_x (torch.Tensor): Language input
                shape (B, T_txt)
            max_length (int, optional): Maximum length of the output. Defaults to None.
            attention_mask (torch.Tensor, optional): Attention mask. Defaults to None.
            num_beams (int, optional): Number of beams. Defaults to 1.
            max_new_tokens (int, optional): Maximum new tokens. Defaults to None.
            temperature (float, optional): Temperature. Defaults to 1.0.
            top_k (int, optional): Top k. Defaults to 0.
            top_p (float, optional): Top p. Defaults to 1.0.
            no_repeat_ngram_size (int, optional): No repeat ngram size. Defaults to 0.
            length_penalty (float, optional): Length penalty. Defaults to 1.0.
            num_return_sequences (int, optional): Number of return sequences. Defaults to 1.
            do_sample (bool, optional): Do sample. Defaults to False.
            early_stopping (bool, optional): Early stopping. Defaults to False.
        Returns:
            torch.Tensor: lang_x with generated tokens appended to it
        """
        if num_beams > 1:
            vision_x = vision_x.repeat_interleave(num_beams, dim=0)

        self._encode_vision_x(vision_x=vision_x)

        output = self.lang_encoder.generate(
            lang_x,
            attention_mask=attention_mask,
            eos_token_id=self.eoc_token_id,
            num_beams=num_beams,
            max_new_tokens=max_new_tokens,
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
            prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
            no_repeat_ngram_size=no_repeat_ngram_size,
            length_penalty=length_penalty,
            num_return_sequences=num_return_sequences,
            do_sample=do_sample,
            early_stopping=early_stopping,
        )

        self.lang_encoder.clear_conditioned_layers()
        return output

    def _encode_vision_x(self, vision_x: torch.Tensor):
        """
        Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
        Args:
            vision_x (torch.Tensor): Vision input
                shape (B, T_img, F, C, H, W)
                Images in the same chunk are collated along T_img, and frames are collated along F
                Currently only F=1 is supported (single-frame videos)

        rearrange code based on https://github.com/dhansmair/flamingo-mini
        """

        assert vision_x.ndim == 6, "vision_x should be of shape (b, T_img, F, C, H, W)"
        b, T, F = vision_x.shape[:3]
        assert F == 1, "Only single frame supported"

        vision_x = rearrange(vision_x, "b T F c h w -> (b T F) c h w")
        with torch.no_grad():
            vision_x = self.vision_encoder.visual(vision_x)[1]
        vision_x = rearrange(vision_x, "(b T F) v d -> b T F v d", b=b, T=T, F=F)

        vision_x = self.perceiver(vision_x)  # reshapes to (b, T, n, d)

        for layer in self.lang_encoder._get_decoder_layers():
            layer.condition_vis_x(vision_x)

        return vision_x

    def _encode_vision(self, vision_x: torch.Tensor, state_tensor=None):
        """
        Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
        Args:
            vision_x (torch.Tensor): Vision input
                shape (B, T_img, F, C, H, W)
                Images in the same chunk are collated along T_img, and frames are collated along F
                Currently only F=1 is supported (single-frame videos)

        rearrange code based on https://github.com/dhansmair/flamingo-mini
        """

        assert vision_x.ndim == 6, "vision_x should be of shape (b, T_img, F, C, H, W)"
        b, T, F = vision_x.shape[:3]
        assert F == 1, "Only single frame supported"

        vision_x = rearrange(vision_x, "b T F c h w -> (b T F) c h w")
        with torch.no_grad():
            vision_x = self.vision_encoder.visual(vision_x)[1]
        vision_x = rearrange(vision_x, "(b T F) v d -> b T F v d", b=b, T=T, F=F)
        return vision_x

    def _encode_multi_vision_pre_fusion(self, vision_rgb: torch.Tensor, vision_gripper: torch.Tensor, state_tensor=None):
        """
        Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
        Args:
            vision_rgb (torch.Tensor): Vision rgb input
                shape (B, T_img, F, C, H, W)
            vision_gripper (torch.Tensor): Vision rgb input
                shape (B, T_img, F, C, H, W)
            Images in the same chunk are collated along T_img, and frames are collated along F
            Currently only F=1 is supported (single-frame videos)

        rearrange code based on https://github.com/dhansmair/flamingo-mini
        """
        vision_rgb = self._encode_vision(vision_rgb)
        vision_gripper = self._encode_vision(vision_gripper)
        vision_x = torch.cat([vision_rgb, vision_gripper], dim=3)

        vision_x = self.perceiver(vision_x)  # reshapes to (b, T, n, d)

        for layer in self.lang_encoder._get_decoder_layers():
            layer.condition_vis_x(vision_x)

        return vision_x

    def _encode_multi_vision_post_fusion(self, vision_rgb: torch.Tensor, vision_gripper: torch.Tensor, state_tensor=None):
        """
        Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
        Args:
            vision_rgb (torch.Tensor): Vision rgb input
                shape (B, T_img, F, C, H, W)
            vision_gripper (torch.Tensor): Vision rgb input
                shape (B, T_img, F, C, H, W)
            Images in the same chunk are collated along T_img, and frames are collated along F
            Currently only F=1 is supported (single-frame videos)

        rearrange code based on https://github.com/dhansmair/flamingo-mini
        """
        vision_rgb = self._encode_vision(vision_rgb)
        vision_gripper = self._encode_vision(vision_gripper)
        vision_rgb = self.perceiver(vision_rgb)
        if self.sep_resampler:
            vision_gripper = self.perceiver_gripper(vision_gripper)
        else:
            vision_gripper = self.perceiver(vision_gripper)

        vision_x = torch.cat([vision_rgb, vision_gripper], dim=2)  # reshapes to (b, T, 2*n, d)
        if self.use_state and state_tensor is not None:
            # state_tensor = state_tensor.double()
            state_tensor = self.state_fc(state_tensor)
            vision_x = torch.cat([vision_x, state_tensor], dim=2)  # reshapes to (b, T, 2*n+1, d)
        for layer in self.lang_encoder._get_decoder_layers():
            layer.condition_vis_x(vision_x)

        return vision_x

    def _encode_multi_vision_two_way(self, vision_rgb: torch.Tensor, vision_gripper: torch.Tensor, state_tensor=None):
        """
        Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
        Args:
            vision_rgb (torch.Tensor): Vision rgb input
                shape (B, T_img, F, C, H, W)
            vision_gripper (torch.Tensor): Vision rgb input
                shape (B, T_img, F, C, H, W)
            Images in the same chunk are collated along T_img, and frames are collated along F
            Currently only F=1 is supported (single-frame videos)

        rearrange code based on https://github.com/dhansmair/flamingo-mini
        """
        vision_rgb = self._encode_vision(vision_rgb)
        vision_gripper = self._encode_vision(vision_gripper)
        vision_rgb = self.perceiver(vision_rgb)
        if self.sep_resampler:
            vision_gripper = self.perceiver_gripper(vision_gripper)
        else:
            vision_gripper = self.perceiver(vision_gripper)

        vision_x = torch.cat([vision_rgb, vision_gripper], dim=0)  # reshapes to (b, T, 2*n, d)
        if self.use_state and state_tensor is not None:
            state_tensor = self.state_fc(state_tensor)
            vision_x = torch.cat([vision_x, state_tensor], dim=0)  # reshapes to (b, T, 2*n+1, d)
        for layer in self.lang_encoder._get_decoder_layers():
            layer.condition_vis_x(vision_x)

        return vision_x

    def _encode_history_vision_post_fusion(self, vision_rgb: torch.Tensor, vision_gripper: torch.Tensor, state_tensor=None):
        """
        Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
        Args:
            vision_rgb (torch.Tensor): Vision rgb input
                shape (B, T_img, F, C, H, W)
            vision_gripper (torch.Tensor): Vision rgb input
                shape (B, T_img, F, C, H, W)
            Images in the same chunk are collated along T_img, and frames are collated along F
            Currently only F=1 is supported (single-frame videos)

        rearrange code based on https://github.com/dhansmair/flamingo-mini
        """
        vision_rgb = self._encode_vision(vision_rgb)
        vision_gripper = self._encode_vision(vision_gripper)
        bs = int(vision_rgb.shape[0] // self.window_size)
        vision_rgb = vision_rgb.view(bs, self.window_size, *vision_rgb.shape[1:])
        _, _, T, p, v_tok, dim = vision_rgb.shape[:6]
        frame_embs = repeat(self.frame_embs, 'F d -> b F T p v d', b=bs, T=T, p=p, v=v_tok)
        vision_rgb = vision_rgb + frame_embs
        vision_rgb = rearrange(vision_rgb, 'b F T p v d -> (b F) T p v d')
        vision_rgb = self.perceiver(vision_rgb)

        vision_gripper = vision_gripper.view(vision_gripper.shape[0] // self.window_size, self.window_size,
                                             *vision_gripper.shape[1:])
        frame_embs = repeat(self.frame_embs, 'F d -> b F T p v d', b=bs, T=T, p=p, v=v_tok)
        vision_gripper = vision_gripper + frame_embs
        vision_gripper = rearrange(vision_gripper, 'b F T p v d -> (b F) T p v d')
        if self.sep_resampler:
            vision_gripper = self.perceiver_gripper(vision_gripper)
        else:
            vision_gripper = self.perceiver(vision_gripper)

        vision_x = torch.cat([vision_rgb, vision_gripper], dim=2)  # reshapes to (b, T, 2*n, d)
        if self.use_state and state_tensor is not None:
            state_tensor = self.state_fc(state_tensor)
            vision_x = torch.cat([vision_x, state_tensor], dim=2)  # reshapes to (b, T, 2*n+1, d)
        for layer in self.lang_encoder._get_decoder_layers():
            layer.condition_vis_x(vision_x)

        return vision_x
    
    def _encode_history_vision_fc_post(self, vision_rgb: torch.Tensor, vision_gripper: torch.Tensor, state_tensor=None):
        """
        Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
        Args:
            vision_rgb (torch.Tensor): Vision rgb input
                shape (B, T_img, F, C, H, W)
            vision_gripper (torch.Tensor): Vision rgb input
                shape (B, T_img, F, C, H, W)
            Images in the same chunk are collated along T_img, and frames are collated along F
            Currently only F=1 is supported (single-frame videos)

        rearrange code based on https://github.com/dhansmair/flamingo-mini
        """
        bs = int(vision_rgb.shape[0] // self.window_size)
        vision_rgb = self._encode_vision(vision_rgb)
        vision_rgb = self.perceiver(vision_rgb) # BxL, T, n, d
        vision_rgb = vision_rgb.view(-1, self.window_size, *vision_rgb.shape[1:]) # B, L, T, n, d
        vision_rgb = rearrange(vision_rgb, 'b L T n d -> b T (n L) d')

        vision_gripper = self._encode_vision(vision_gripper)
        if self.sep_resampler:
            vision_gripper = self.perceiver_gripper(vision_gripper)
        else:
            vision_gripper = self.perceiver(vision_gripper)
        vision_gripper = vision_gripper.view(-1, self.window_size, *vision_gripper.shape[1:]) # B, L, T, n, d
        vision_gripper = rearrange(vision_gripper, 'b L T n d -> b T (n L) d')

        vision_x = torch.cat([vision_rgb, vision_gripper], dim=2)

        if self.use_state and state_tensor is not None:
            state_tensor = self.state_fc(state_tensor)
            vision_x = torch.cat([vision_x, state_tensor], dim=2)  # reshapes to (b, T, 2*n+1, d)
        
        for layer in self.lang_encoder._get_decoder_layers():
            layer.condition_vis_x(vision_x)

        return vision_x