Spaces:
Paused
Paused
File size: 24,003 Bytes
f71030e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
import torch
from einops import rearrange, repeat
from torch import nn
import copy
from open_flamingo.src.helpers import PerceiverResampler
from robot_flamingo.models.action_head import DeterministicDecoder, DiffusionDecoder, FCDecoder, GPTDecoder
from collections import namedtuple
class BCFlamingo(nn.Module):
def __init__(
self,
vision_encoder: nn.Module,
lang_encoder: nn.Module,
eoc_token_id: int,
media_token_id: int,
vis_dim: int,
cross_attn_every_n_layers: int = 1,
use_media_placement_augmentation: bool = False,
# this is the window size sampled from the episode
window_size: int = 8,
use_gripper=False,
fusion_mode='',
sep_resampler=False,
use_state=False,
use_diff=False,
diff_horizon=32,
last_action=False,
n_timesteps=150,
state_dim=15,
use_hist=False,
debug=False,
predict_epsilon=True,
pad_length=-1,
multi_step_action=1,
sep_lm_head=False,
return_feature = False,
llm='llama_9b',
pooling='max',
residual=False,
tcp_rel=False,
replan=-1,
decoder_type='lstm',
hidden_size=None,
fwd_pred=False,
fwd_pred_hand=False,
refresh=-1
):
"""
Args:
vision_encoder (nn.Module): HF CLIPModel
lang_encoder (nn.Module): HF causal language model
eoc_token_id (int): Token id for <|endofchunk|>
media_token_id (int): Token id for <image>
vis_dim (int): Dimension of the visual features.
Visual features are projected to match this shape along the last dimension.
cross_attn_every_n_layers (int, optional): How often to apply cross attention after transformer layer. Defaults to 1.
use_media_placement_augmentation (bool, optional): Whether to randomly assign images to the preceding or following text in training. Defaults to False.
"""
super().__init__()
self.use_gripper = use_gripper
self.use_state = use_state
self.fusion_mode = fusion_mode
self.eoc_token_id = eoc_token_id
self.media_token_id = media_token_id
self.use_media_placement_augmentation = use_media_placement_augmentation
self.vis_dim = vis_dim
self.window_size = window_size
self.tcp_rel = tcp_rel
self.act_step = multi_step_action
print('window size: {}'.format(window_size))
self.vision_encoder = vision_encoder
self.perceiver = PerceiverResampler(dim=self.vis_dim)
self.sep_resampler = sep_resampler
self.use_hist = use_hist
self.lang_encoder = lang_encoder
self.pad_length = pad_length
self.replan = replan
if self.replan != -1:
self.replan = min(int(replan * self.window_size), 180)
self.refresh = refresh
if hasattr(lang_encoder.config, "d_model"):
self.lang_dim = lang_encoder.config.d_model # mpt uses d_model
else:
self.lang_dim = lang_encoder.config.hidden_size
# print(self.vis_dim, self.lang_dim)
self.residual = residual
if not debug:
if 'llama' in llm:
self.lang_encoder.init_flamingo(
media_token_id=media_token_id,
vis_hidden_size=self.vis_dim,
cross_attn_every_n_layers=cross_attn_every_n_layers,
use_media_placement_augmentation=self.use_media_placement_augmentation,
residual=residual,
)
else:
self.lang_encoder.init_flamingo(
media_token_id=media_token_id,
lang_hidden_size=self.lang_dim,
vis_hidden_size=self.vis_dim,
cross_attn_every_n_layers=cross_attn_every_n_layers,
gradient_checkpointing=False,
)
if sep_resampler:
self.perceiver_gripper = PerceiverResampler(dim=self.vis_dim)
self.perceiver_gripper.load_state_dict(copy.deepcopy(self.perceiver.state_dict()))
if use_state:
self.state_fc = nn.Linear(state_dim, self.vis_dim)
if use_hist:
self.frame_embs = nn.Parameter(torch.randn(self.window_size, self.vis_dim))
# To-do: nn archiecture for actor
self.llm = llm
if llm=='llama':
in_features = lang_encoder.lm_head.in_features
else:
in_features = self.lang_dim
self.use_diff = use_diff
self.decoder_type = decoder_type
if decoder_type == 'lstm':
lm_head = DeterministicDecoder(in_features, self.window_size,
use_diff=use_diff, last_action=last_action, fusion_mode=fusion_mode, use_state=use_state, return_feature=return_feature, multi_step_action=multi_step_action, pooling=pooling)
self.lang_encoder.lm_head = lm_head
elif decoder_type == 'fc':
if use_hist:
self.lang_encoder.lm_head = self.action_head = FCDecoder(in_features, self.window_size,
use_diff=use_diff, last_action=last_action, fusion_mode=fusion_mode, use_state=use_state, return_feature=return_feature, multi_step_action=multi_step_action)
elif 'vit_concat' in fusion_mode:
self.lang_encoder.lm_head = self.action_head = FCDecoder(in_features, self.window_size,
use_diff=use_diff, last_action=last_action, fusion_mode=fusion_mode, use_state=use_state, return_feature=return_feature, multi_step_action=multi_step_action)
else:
raise NotImplementedError
elif decoder_type == 'diffusion':
if use_diff:
self.diffusion_model = DiffusionDecoder(
self.action_head.hidden_size,
self.window_size,
input_dim=self.action_head.out_features+1,
n_timesteps=n_timesteps,
horizon=diff_horizon,
predict_epsilon=predict_epsilon,
)
else:
raise NotImplementedError
elif decoder_type=='gpt':
lm_head = GPTDecoder(in_features, self.window_size, use_diff=use_diff, last_action=last_action, fusion_mode=fusion_mode, multi_step_action=multi_step_action, pooling=pooling, hidden_size=hidden_size)
self.lang_encoder.lm_head = self.action_head = lm_head
else:
raise NotImplementedError
self.sep_lm_head = sep_lm_head
if sep_lm_head:
self.lm_head = self.lang_encoder.lm_head
self.lang_encoder.lm_head = nn.Identity()
def forward(
self,
vision_x: torch.Tensor,
lang_x: torch.Tensor,
attention_mask: torch.Tensor = None,
labels: torch.Tensor = None,
use_cached_vision_x: bool = False,
clear_conditioned_layers: bool = True,
past_key_values=None,
use_cache: bool = False,
vision_gripper = None,
state_tensor = None,
return_feature = False,
policy_mask=None
):
"""
Forward pass of Flamingo.
Args:
vision_x (torch.Tensor): Vision input
shape (B, T_img, F, C, H, W) with F=1
lang_x (torch.Tensor): Language input ids
shape (B, T_txt)
attention_mask (torch.Tensor, optional): Attention mask. Defaults to None.
labels (torch.Tensor, optional): Labels. Defaults to None.
clear_conditioned_layers: if True, clear the conditioned layers
once the foward pass is completed. Set this to false if the
same set of images will be reused in another subsequent
forward pass.
past_key_values: pre-computed values to pass to language model.
See past_key_values documentation in Hugging Face
CausalLM models.
use_cache: whether to use cached key values. See use_cache
documentation in Hugging Face CausalLM models.
"""
raw_rgb = vision_x.clone()
raw_gripper = vision_gripper.clone()
assert (
vision_x is not None
) or use_cached_vision_x, (
"Must provide either vision_x or use_cached_vision_x to True."
)
if use_cached_vision_x:
# Case: use cached; vision_x should be cached and other
# vision-related inputs should not be provided.
assert (
vision_x is None
), "Expect vision_x to be None when use_cached_vision_x is True."
assert self.lang_encoder.is_conditioned()
else:
# Case: do not use caching (i.e. this is a standard forward pass);
if self.use_hist:
self._encode_history_vision_post_fusion(vision_x, vision_gripper, state_tensor)
else:
if not self.use_gripper or self.fusion_mode == 'two_way':
vision_x = self._encode_vision_x(vision_x=vision_x)
else:
if self.fusion_mode == 'pre':
self._encode_multi_vision_pre_fusion(vision_x, vision_gripper, state_tensor)
elif self.fusion_mode == 'post':
self._encode_multi_vision_post_fusion(vision_x, vision_gripper, state_tensor)
elif self.fusion_mode == 'vit_concat':
self._encode_history_vision_fc_post(vision_x, vision_gripper, state_tensor)
if 'llama' in self.llm:
output = self.lang_encoder(
input_ids=lang_x,
attention_mask=attention_mask,
# labels=labels, # 不输入label,程序就不会计算loss
past_key_values=past_key_values,
use_cache=use_cache,
)
else:
output = self.lang_encoder(
input_ids=lang_x,
attention_mask=attention_mask
)
if self.sep_lm_head:
output_llm = output.logits
output_lm_head = self.lm_head(output_llm, state_tensor=state_tensor, return_feature=return_feature)
output.logits = output_lm_head
if clear_conditioned_layers:
self.lang_encoder.clear_conditioned_layers()
# action_seq = self.action_head(vision_x)
return output
# Generate function with actor for text time adpatation
def generate(
self,
vision_x: torch.Tensor,
lang_x: torch.Tensor,
attention_mask: torch.Tensor = None,
num_beams=1,
max_new_tokens=None,
temperature=1.0,
top_k=0,
top_p=1.0,
no_repeat_ngram_size=0,
prefix_allowed_tokens_fn=None,
length_penalty=1.0,
num_return_sequences=1,
do_sample=False,
early_stopping=False,
):
"""
Generate text conditioned on vision and language inputs.
Args:
vision_x (torch.Tensor): Vision input
shape (B, T_img, F, C, H, W)
images in the same chunk are collated along T_img, and frames are collated along F
currently only F=1 is supported (single-frame videos)
lang_x (torch.Tensor): Language input
shape (B, T_txt)
max_length (int, optional): Maximum length of the output. Defaults to None.
attention_mask (torch.Tensor, optional): Attention mask. Defaults to None.
num_beams (int, optional): Number of beams. Defaults to 1.
max_new_tokens (int, optional): Maximum new tokens. Defaults to None.
temperature (float, optional): Temperature. Defaults to 1.0.
top_k (int, optional): Top k. Defaults to 0.
top_p (float, optional): Top p. Defaults to 1.0.
no_repeat_ngram_size (int, optional): No repeat ngram size. Defaults to 0.
length_penalty (float, optional): Length penalty. Defaults to 1.0.
num_return_sequences (int, optional): Number of return sequences. Defaults to 1.
do_sample (bool, optional): Do sample. Defaults to False.
early_stopping (bool, optional): Early stopping. Defaults to False.
Returns:
torch.Tensor: lang_x with generated tokens appended to it
"""
if num_beams > 1:
vision_x = vision_x.repeat_interleave(num_beams, dim=0)
self._encode_vision_x(vision_x=vision_x)
output = self.lang_encoder.generate(
lang_x,
attention_mask=attention_mask,
eos_token_id=self.eoc_token_id,
num_beams=num_beams,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
no_repeat_ngram_size=no_repeat_ngram_size,
length_penalty=length_penalty,
num_return_sequences=num_return_sequences,
do_sample=do_sample,
early_stopping=early_stopping,
)
self.lang_encoder.clear_conditioned_layers()
return output
def _encode_vision_x(self, vision_x: torch.Tensor):
"""
Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
Args:
vision_x (torch.Tensor): Vision input
shape (B, T_img, F, C, H, W)
Images in the same chunk are collated along T_img, and frames are collated along F
Currently only F=1 is supported (single-frame videos)
rearrange code based on https://github.com/dhansmair/flamingo-mini
"""
assert vision_x.ndim == 6, "vision_x should be of shape (b, T_img, F, C, H, W)"
b, T, F = vision_x.shape[:3]
assert F == 1, "Only single frame supported"
vision_x = rearrange(vision_x, "b T F c h w -> (b T F) c h w")
with torch.no_grad():
vision_x = self.vision_encoder.visual(vision_x)[1]
vision_x = rearrange(vision_x, "(b T F) v d -> b T F v d", b=b, T=T, F=F)
vision_x = self.perceiver(vision_x) # reshapes to (b, T, n, d)
for layer in self.lang_encoder._get_decoder_layers():
layer.condition_vis_x(vision_x)
return vision_x
def _encode_vision(self, vision_x: torch.Tensor, state_tensor=None):
"""
Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
Args:
vision_x (torch.Tensor): Vision input
shape (B, T_img, F, C, H, W)
Images in the same chunk are collated along T_img, and frames are collated along F
Currently only F=1 is supported (single-frame videos)
rearrange code based on https://github.com/dhansmair/flamingo-mini
"""
assert vision_x.ndim == 6, "vision_x should be of shape (b, T_img, F, C, H, W)"
b, T, F = vision_x.shape[:3]
assert F == 1, "Only single frame supported"
vision_x = rearrange(vision_x, "b T F c h w -> (b T F) c h w")
with torch.no_grad():
vision_x = self.vision_encoder.visual(vision_x)[1]
vision_x = rearrange(vision_x, "(b T F) v d -> b T F v d", b=b, T=T, F=F)
return vision_x
def _encode_multi_vision_pre_fusion(self, vision_rgb: torch.Tensor, vision_gripper: torch.Tensor, state_tensor=None):
"""
Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
Args:
vision_rgb (torch.Tensor): Vision rgb input
shape (B, T_img, F, C, H, W)
vision_gripper (torch.Tensor): Vision rgb input
shape (B, T_img, F, C, H, W)
Images in the same chunk are collated along T_img, and frames are collated along F
Currently only F=1 is supported (single-frame videos)
rearrange code based on https://github.com/dhansmair/flamingo-mini
"""
vision_rgb = self._encode_vision(vision_rgb)
vision_gripper = self._encode_vision(vision_gripper)
vision_x = torch.cat([vision_rgb, vision_gripper], dim=3)
vision_x = self.perceiver(vision_x) # reshapes to (b, T, n, d)
for layer in self.lang_encoder._get_decoder_layers():
layer.condition_vis_x(vision_x)
return vision_x
def _encode_multi_vision_post_fusion(self, vision_rgb: torch.Tensor, vision_gripper: torch.Tensor, state_tensor=None):
"""
Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
Args:
vision_rgb (torch.Tensor): Vision rgb input
shape (B, T_img, F, C, H, W)
vision_gripper (torch.Tensor): Vision rgb input
shape (B, T_img, F, C, H, W)
Images in the same chunk are collated along T_img, and frames are collated along F
Currently only F=1 is supported (single-frame videos)
rearrange code based on https://github.com/dhansmair/flamingo-mini
"""
vision_rgb = self._encode_vision(vision_rgb)
vision_gripper = self._encode_vision(vision_gripper)
vision_rgb = self.perceiver(vision_rgb)
if self.sep_resampler:
vision_gripper = self.perceiver_gripper(vision_gripper)
else:
vision_gripper = self.perceiver(vision_gripper)
vision_x = torch.cat([vision_rgb, vision_gripper], dim=2) # reshapes to (b, T, 2*n, d)
if self.use_state and state_tensor is not None:
# state_tensor = state_tensor.double()
state_tensor = self.state_fc(state_tensor)
vision_x = torch.cat([vision_x, state_tensor], dim=2) # reshapes to (b, T, 2*n+1, d)
for layer in self.lang_encoder._get_decoder_layers():
layer.condition_vis_x(vision_x)
return vision_x
def _encode_multi_vision_two_way(self, vision_rgb: torch.Tensor, vision_gripper: torch.Tensor, state_tensor=None):
"""
Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
Args:
vision_rgb (torch.Tensor): Vision rgb input
shape (B, T_img, F, C, H, W)
vision_gripper (torch.Tensor): Vision rgb input
shape (B, T_img, F, C, H, W)
Images in the same chunk are collated along T_img, and frames are collated along F
Currently only F=1 is supported (single-frame videos)
rearrange code based on https://github.com/dhansmair/flamingo-mini
"""
vision_rgb = self._encode_vision(vision_rgb)
vision_gripper = self._encode_vision(vision_gripper)
vision_rgb = self.perceiver(vision_rgb)
if self.sep_resampler:
vision_gripper = self.perceiver_gripper(vision_gripper)
else:
vision_gripper = self.perceiver(vision_gripper)
vision_x = torch.cat([vision_rgb, vision_gripper], dim=0) # reshapes to (b, T, 2*n, d)
if self.use_state and state_tensor is not None:
state_tensor = self.state_fc(state_tensor)
vision_x = torch.cat([vision_x, state_tensor], dim=0) # reshapes to (b, T, 2*n+1, d)
for layer in self.lang_encoder._get_decoder_layers():
layer.condition_vis_x(vision_x)
return vision_x
def _encode_history_vision_post_fusion(self, vision_rgb: torch.Tensor, vision_gripper: torch.Tensor, state_tensor=None):
"""
Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
Args:
vision_rgb (torch.Tensor): Vision rgb input
shape (B, T_img, F, C, H, W)
vision_gripper (torch.Tensor): Vision rgb input
shape (B, T_img, F, C, H, W)
Images in the same chunk are collated along T_img, and frames are collated along F
Currently only F=1 is supported (single-frame videos)
rearrange code based on https://github.com/dhansmair/flamingo-mini
"""
vision_rgb = self._encode_vision(vision_rgb)
vision_gripper = self._encode_vision(vision_gripper)
bs = int(vision_rgb.shape[0] // self.window_size)
vision_rgb = vision_rgb.view(bs, self.window_size, *vision_rgb.shape[1:])
_, _, T, p, v_tok, dim = vision_rgb.shape[:6]
frame_embs = repeat(self.frame_embs, 'F d -> b F T p v d', b=bs, T=T, p=p, v=v_tok)
vision_rgb = vision_rgb + frame_embs
vision_rgb = rearrange(vision_rgb, 'b F T p v d -> (b F) T p v d')
vision_rgb = self.perceiver(vision_rgb)
vision_gripper = vision_gripper.view(vision_gripper.shape[0] // self.window_size, self.window_size,
*vision_gripper.shape[1:])
frame_embs = repeat(self.frame_embs, 'F d -> b F T p v d', b=bs, T=T, p=p, v=v_tok)
vision_gripper = vision_gripper + frame_embs
vision_gripper = rearrange(vision_gripper, 'b F T p v d -> (b F) T p v d')
if self.sep_resampler:
vision_gripper = self.perceiver_gripper(vision_gripper)
else:
vision_gripper = self.perceiver(vision_gripper)
vision_x = torch.cat([vision_rgb, vision_gripper], dim=2) # reshapes to (b, T, 2*n, d)
if self.use_state and state_tensor is not None:
state_tensor = self.state_fc(state_tensor)
vision_x = torch.cat([vision_x, state_tensor], dim=2) # reshapes to (b, T, 2*n+1, d)
for layer in self.lang_encoder._get_decoder_layers():
layer.condition_vis_x(vision_x)
return vision_x
def _encode_history_vision_fc_post(self, vision_rgb: torch.Tensor, vision_gripper: torch.Tensor, state_tensor=None):
"""
Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
Args:
vision_rgb (torch.Tensor): Vision rgb input
shape (B, T_img, F, C, H, W)
vision_gripper (torch.Tensor): Vision rgb input
shape (B, T_img, F, C, H, W)
Images in the same chunk are collated along T_img, and frames are collated along F
Currently only F=1 is supported (single-frame videos)
rearrange code based on https://github.com/dhansmair/flamingo-mini
"""
bs = int(vision_rgb.shape[0] // self.window_size)
vision_rgb = self._encode_vision(vision_rgb)
vision_rgb = self.perceiver(vision_rgb) # BxL, T, n, d
vision_rgb = vision_rgb.view(-1, self.window_size, *vision_rgb.shape[1:]) # B, L, T, n, d
vision_rgb = rearrange(vision_rgb, 'b L T n d -> b T (n L) d')
vision_gripper = self._encode_vision(vision_gripper)
if self.sep_resampler:
vision_gripper = self.perceiver_gripper(vision_gripper)
else:
vision_gripper = self.perceiver(vision_gripper)
vision_gripper = vision_gripper.view(-1, self.window_size, *vision_gripper.shape[1:]) # B, L, T, n, d
vision_gripper = rearrange(vision_gripper, 'b L T n d -> b T (n L) d')
vision_x = torch.cat([vision_rgb, vision_gripper], dim=2)
if self.use_state and state_tensor is not None:
state_tensor = self.state_fc(state_tensor)
vision_x = torch.cat([vision_x, state_tensor], dim=2) # reshapes to (b, T, 2*n+1, d)
for layer in self.lang_encoder._get_decoder_layers():
layer.condition_vis_x(vision_x)
return vision_x |