aw1app's picture
Deploy real interactive model
c6cb161
"""
Util functions for initializing webdataset objects
"""
import ast
import json
import logging
import os
import random
import sys
from dataclasses import dataclass
from multiprocessing import Value
import braceexpand
import numpy as np
import webdataset as wds
from PIL import Image
from torch.utils.data import DataLoader, IterableDataset, get_worker_info
from torch.utils.data.distributed import DistributedSampler
from webdataset.filters import _shuffle
from webdataset.tariterators import (
base_plus_ext,
tar_file_expander,
url_opener,
valid_sample,
)
try:
import horovod.torch as hvd
except ImportError:
hvd = None
class SharedEpoch:
def __init__(self, epoch: int = 0):
self.shared_epoch = Value("i", epoch)
def set_value(self, epoch):
self.shared_epoch.value = epoch
def get_value(self):
return self.shared_epoch.value
@dataclass
class DataInfo:
dataloader: DataLoader
sampler: DistributedSampler = None
shared_epoch: SharedEpoch = None
def set_epoch(self, epoch):
if self.shared_epoch is not None:
self.shared_epoch.set_value(epoch)
if self.sampler is not None and isinstance(self.sampler, DistributedSampler):
self.sampler.set_epoch(epoch)
def get_dataset_size(shards):
shards_list = list(braceexpand.braceexpand(shards))
dir_path = os.path.dirname(shards[0])
sizes_filename = os.path.join(dir_path, "sizes.json")
len_filename = os.path.join(dir_path, "__len__")
if os.path.exists(sizes_filename):
sizes = json.load(open(sizes_filename, "r"))
total_size = sum(
[
int(sizes[os.path.basename(shard)])
if os.path.basename(shard) in sizes
else 0
for shard in shards_list
]
)
elif os.path.exists(len_filename):
# FIXME this used to be eval(open(...)) but that seemed rather unsafe
total_size = ast.literal_eval(open(len_filename, "r").read())
else:
total_size = None # num samples undefined
# some common dataset sizes (at time of authors last download)
# CC3M (train): 2905954
# CC12M: 10968539
# LAION-400M: 407332084
# LAION-2B (english): 2170337258
num_shards = len(shards_list)
return total_size, num_shards
def count_samples(dataloader):
os.environ["WDS_EPOCH"] = "0"
n_elements, n_batches = 0, 0
for images, texts in dataloader:
n_batches += 1
n_elements += len(images)
assert len(images) == len(texts)
return n_elements, n_batches
def log_and_continue(exn):
"""Call in an exception handler to ignore any exception, issue a warning, and continue."""
logging.warning(f"Handling webdataset error ({repr(exn)}). Ignoring.")
return True
def group_by_keys_nothrow(
data, keys=base_plus_ext, lcase=True, suffixes=None, handler=None
):
"""Return function over iterator that groups key, value pairs into samples.
:param keys: function that splits the key into key and extension (base_plus_ext)
:param lcase: convert suffixes to lower case (Default value = True)
"""
current_sample = None
for filesample in data:
assert isinstance(filesample, dict)
fname, value = filesample["fname"], filesample["data"]
prefix, suffix = keys(fname)
if prefix is None:
continue
if lcase:
suffix = suffix.lower()
# FIXME webdataset version throws if suffix in current_sample, but we have a potential for
# this happening in the current LAION400m dataset if a tar ends with same prefix as the next
# begins, rare, but can happen since prefix aren't unique across tar files in that dataset
if (
current_sample is None
or prefix != current_sample["__key__"]
or suffix in current_sample
):
if valid_sample(current_sample):
yield current_sample
current_sample = dict(__key__=prefix, __url__=filesample["__url__"])
if suffixes is None or suffix in suffixes:
current_sample[suffix] = value
if valid_sample(current_sample):
yield current_sample
def tarfile_to_samples_nothrow(src, handler=log_and_continue):
# NOTE this is a re-impl of the webdataset impl with group_by_keys that doesn't throw
streams = url_opener(src, handler=handler)
files = tar_file_expander(streams, handler=handler)
samples = group_by_keys_nothrow(files, handler=handler)
return samples
def pytorch_worker_seed(increment=0):
"""get dataloader worker seed from pytorch"""
worker_info = get_worker_info()
if worker_info is not None:
# favour using the seed already created for pytorch dataloader workers if it exists
seed = worker_info.seed
if increment:
# space out seed increments so they can't overlap across workers in different iterations
seed += increment * max(1, worker_info.num_workers)
return seed
# fallback to wds rank based seed
return wds.utils.pytorch_worker_seed()
class detshuffle2(wds.PipelineStage):
def __init__(
self,
bufsize=1000,
initial=100,
seed=0,
epoch=-1,
):
self.bufsize = bufsize
self.initial = initial
self.seed = seed
self.epoch = epoch
def run(self, src):
if isinstance(self.epoch, SharedEpoch):
epoch = self.epoch.get_value()
else:
# NOTE: this is epoch tracking is problematic in a multiprocess (dataloader workers or train)
# situation as different workers may wrap at different times (or not at all).
self.epoch += 1
epoch = self.epoch
rng = random.Random()
if self.seed < 0:
# If seed is negative, we use the worker's seed, this will be different across all nodes/workers
seed = pytorch_worker_seed(epoch)
else:
# This seed to be deterministic AND the same across all nodes/workers in each epoch
seed = self.seed + epoch
rng.seed(seed)
return _shuffle(src, self.bufsize, self.initial, rng)
class ResampledShards2(IterableDataset):
"""An iterable dataset yielding a list of urls."""
def __init__(
self,
urls,
nshards=sys.maxsize,
worker_seed=None,
deterministic=False,
epoch=-1,
):
"""Sample shards from the shard list with replacement.
:param urls: a list of URLs as a Python list or brace notation string
"""
super().__init__()
urls = wds.shardlists.expand_urls(urls)
self.urls = urls
assert isinstance(self.urls[0], str)
self.nshards = nshards
self.rng = random.Random()
self.worker_seed = worker_seed
self.deterministic = deterministic
self.epoch = epoch
def __iter__(self):
"""Return an iterator over the shards."""
if isinstance(self.epoch, SharedEpoch):
epoch = self.epoch.get_value()
else:
# NOTE: this is epoch tracking is problematic in a multiprocess (dataloader workers or train)
# situation as different workers may wrap at different times (or not at all).
self.epoch += 1
epoch = self.epoch
if self.deterministic:
# reset seed w/ epoch if deterministic
if self.worker_seed is None:
# pytorch worker seed should be deterministic due to being init by arg.seed + rank + worker id
seed = pytorch_worker_seed(epoch)
else:
seed = self.worker_seed() + epoch
self.rng.seed(seed)
for _ in range(self.nshards):
yield dict(url=self.rng.choice(self.urls))