fbmc-chronos2 / src /forecasting /dynamic_forecast.py
Evgueni Poloukarov
fix: reduce context window to 1125 hours (1.5 months) for A100-80GB
d080539
#!/usr/bin/env python3
"""
Dynamic Forecast Module v1.8.0 - Context Window (47 Days / 1.5 Months)
Time-aware data extraction for forecasting with run-date awareness.
Purpose: Prevent data leakage by extracting data AS IT WAS KNOWN at run time.
Key Concepts:
- run_date: When the forecast is made (e.g., "2025-09-30 23:00")
- forecast_horizon: Always 14 days (D+1 to D+14, fixed at 336 hours)
- context_window: Historical data before run_date (1,125 hours = 47 days / 1.5 months, fits A100-80GB)
- future_covariates: ALL 2,514 features (leveraging Chronos-2 past-only masking)
* 603 full-horizon (known future)
* 12 partial D+1 (masked D+2-D+14)
* 1,899 historical (masked as past-only covariates)
Chronos-2 Past-Only Covariate Masking:
- Historical features have NaN future values → Chronos-2 sets mask=0
- Model learns cross-feature correlations from historical context
- Attention mechanism uses dimensional structure even when values masked
- Enables learning of CNEC/volatility patterns without future knowledge
"""
from typing import Dict, Tuple, Optional
import pandas as pd
import polars as pl
import numpy as np
from datetime import datetime, timedelta
from src.forecasting.feature_availability import FeatureAvailability
class DynamicForecast:
"""
Handles time-aware data extraction for forecasting.
Ensures no data leakage by only using data available at run_date.
"""
def __init__(
self,
dataset: pl.DataFrame,
context_hours: int = 1125, # 1,125 hours = 46.9 days (1.5 months, fits A100-80GB)
forecast_hours: int = 336 # Fixed at 14 days
):
"""
Initialize dynamic forecast handler.
Args:
dataset: Polars DataFrame with all features
context_hours: Hours of historical context (default 1440 = 60 days)
forecast_hours: Forecast horizon in hours (default 336 = 14 days)
"""
self.dataset = dataset
self.context_hours = context_hours
self.forecast_hours = forecast_hours
# Categorize features on initialization
self.categories = FeatureAvailability.categorize_features(dataset.columns)
# Validate categorization
is_valid, warnings = FeatureAvailability.validate_categorization(
self.categories, verbose=False
)
if not is_valid:
print("[!] WARNING: Feature categorization issues detected")
for w in warnings:
print(f" - {w}")
def prepare_forecast_data(
self,
run_date: datetime,
border: str
) -> Tuple[pd.DataFrame, pd.DataFrame]:
"""
Prepare context and future data for a single border forecast.
Args:
run_date: When the forecast is made (all data before this is historical)
border: Border to forecast (e.g., "AT_CZ")
Returns:
Tuple of (context_data, future_data):
- context_data: Historical features + target (pandas DataFrame)
- future_data: Future covariates only (pandas DataFrame)
"""
# Step 1: Extract historical context
context_data = self._extract_context(run_date, border)
# Step 2: Extract future covariates
future_data = self._extract_future_covariates(run_date, border)
# Step 3: Apply availability masking
future_data = self._apply_masking(future_data, run_date)
# Step 4: Align dtypes between context and future
# Chronos-2 requires matching dtypes for columns that appear in both DataFrames
# After masking, int columns may become float due to NaN values
# Solution: Convert ALL numeric columns to float64 in both DataFrames
import pandas as pd
common_cols = set(context_data.columns) & set(future_data.columns)
for col in common_cols:
if col in ['timestamp', 'border']:
continue # Skip non-numeric columns
# Convert both context and future to float64 for consistency
# This ensures Chronos-2's validation passes (requires matching dtypes)
# Use pd.to_numeric() which handles NaN gracefully (unlike .astype())
context_data[col] = pd.to_numeric(context_data[col], errors='coerce').astype('float64')
future_data[col] = pd.to_numeric(future_data[col], errors='coerce').astype('float64')
return context_data, future_data
def _extract_context(
self,
run_date: datetime,
border: str
) -> pd.DataFrame:
"""
Extract historical context data.
Context includes:
- All features (full+partial+historical) up to run_date
- Target values up to run_date
Args:
run_date: Cutoff timestamp
border: Border identifier
Returns:
Pandas DataFrame with columns: timestamp, border, target, all_features
"""
# Calculate context window
context_start = run_date - timedelta(hours=self.context_hours)
# Filter data
context_df = self.dataset.filter(
(pl.col('timestamp') >= context_start) &
(pl.col('timestamp') < run_date)
)
# Select target column for this border
target_col = f'target_border_{border}'
# All features (we'll use all for context, Chronos-2 handles it)
all_features = (
self.categories['full_horizon_d14'] +
self.categories['partial_d1'] +
self.categories['historical']
)
# Build context DataFrame
context_cols = ['timestamp', target_col] + all_features
context_data = context_df.select(context_cols).to_pandas()
# Add border identifier and rename target
context_data['border'] = border
context_data = context_data.rename(columns={target_col: 'target'})
# Reorder: timestamp, border, target, features
context_data = context_data[['timestamp', 'border', 'target'] + all_features]
return context_data
def _extract_future_covariates(
self,
run_date: datetime,
border: str
) -> pd.DataFrame:
"""
Extract future covariate data for D+1 to D+14.
Future covariates include ALL 2,514 features using Chronos-2's past-only masking:
- Full-horizon D+14: 603 features (known future values)
- Partial D+1: 12 features (load forecasts, masked D+2-D+14)
- Historical: 1,899 features (MASKED as past-only covariates)
Past-only covariates leverage Chronos-2's mask-based attention:
- Future values are NaN (unknown)
- Chronos-2 sets mask=0 for these dimensions
- Model learns cross-feature correlations from historical context
- Attention mechanism uses structure even when future values masked
Args:
run_date: Forecast run timestamp
border: Border identifier
Returns:
Pandas DataFrame with columns: timestamp, border, future_features
"""
# Calculate future window
# IMPORTANT: Chronos-2 predict_df() expects future_df to start at the LAST context timestamp,
# not the first forecast timestamp. See dataset.py:549 assertion.
forecast_start = run_date # Start at last context timestamp
forecast_end = forecast_start + timedelta(hours=self.forecast_hours - 1)
# Filter data
future_df = self.dataset.filter(
(pl.col('timestamp') >= forecast_start) &
(pl.col('timestamp') <= forecast_end)
)
# Include ALL features (3,043 total) to leverage past-only covariate masking
# Historical features will be NaN in future → Chronos-2 masks them automatically
future_features = (
self.categories['full_horizon_d14'] + # 603 known-future
self.categories['partial_d1'] + # 12 partial
self.categories['historical'] # ~2,428 past-only (MASKED!)
)
# Build future DataFrame
future_cols = ['timestamp'] + future_features
future_data = future_df.select(future_cols).to_pandas()
# Add border identifier
future_data['border'] = border
# Reorder: timestamp, border, features
future_data = future_data[['timestamp', 'border'] + future_features]
return future_data
def _apply_masking(
self,
future_data: pd.DataFrame,
run_date: datetime
) -> pd.DataFrame:
"""
Apply availability masking for partial features.
Masking:
- Load forecasts (12 features): Available D+1 only, masked D+2-D+14
- LTA (40 features): Forward-fill from last known value
Args:
future_data: DataFrame with future covariates
run_date: Forecast run timestamp
Returns:
DataFrame with masking applied
"""
# Calculate D+1 cutoff (24 hours after run_date)
d1_cutoff = run_date + timedelta(hours=24)
# Mask load forecasts for D+2 onwards
for col in self.categories['partial_d1']:
# Set to NaN (or 0) for hours beyond D+1
mask = future_data['timestamp'] > d1_cutoff
future_data.loc[mask, col] = np.nan # Chronos-2 handles NaN
# Forward-fill LTA values
# Note: LTA values in dataset should already be forward-filled during
# feature engineering, but we ensure consistency here
lta_cols = [c for c in self.categories['full_horizon_d14']
if c.startswith('lta_')]
# LTA is constant across forecast horizon (use first value)
if len(lta_cols) > 0 and len(future_data) > 0:
first_values = future_data[lta_cols].iloc[0]
for col in lta_cols:
future_data[col] = first_values[col]
return future_data
def validate_no_leakage(
self,
context_data: pd.DataFrame,
future_data: pd.DataFrame,
run_date: datetime
) -> Tuple[bool, list]:
"""
Validate that no data leakage exists.
Checks:
1. All context timestamps < run_date
2. All future timestamps >= run_date + 1 hour
3. No overlap between context and future
4. Future data only contains future covariates
Args:
context_data: Historical context
future_data: Future covariates
run_date: Forecast run timestamp
Returns:
Tuple of (is_valid, errors)
"""
errors = []
# Check 1: Context timestamps
if context_data['timestamp'].max() >= run_date:
errors.append(
f"Context data leaks into future: max timestamp "
f"{context_data['timestamp'].max()} >= run_date {run_date}"
)
# Check 2: Future timestamps
forecast_start = run_date + timedelta(hours=1)
if future_data['timestamp'].min() < forecast_start:
errors.append(
f"Future data includes historical: min timestamp "
f"{future_data['timestamp'].min()} < forecast_start {forecast_start}"
)
# Check 3: No overlap
if (context_data['timestamp'].max() >= future_data['timestamp'].min()):
errors.append("Overlap detected between context and future data")
# Check 4: Future columns
future_features = set(
self.categories['full_horizon_d14'] +
self.categories['partial_d1']
)
future_cols = set(future_data.columns) - {'timestamp', 'border'}
if not future_cols.issubset(future_features):
extra_cols = future_cols - future_features
errors.append(
f"Future data contains non-future features: {extra_cols}"
)
is_valid = len(errors) == 0
return is_valid, errors
def get_feature_summary(self) -> Dict[str, int]:
"""
Get summary of feature categorization.
Returns:
Dictionary with feature counts by category
"""
return {
'full_horizon_d14': len(self.categories['full_horizon_d14']),
'partial_d1': len(self.categories['partial_d1']),
'historical': len(self.categories['historical']),
'total': sum(len(v) for v in self.categories.values())
}