File size: 5,657 Bytes
bbc2086
 
 
 
 
 
58943c0
 
bbc2086
58943c0
 
 
 
 
 
 
 
 
 
 
 
bbc2086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333f6d1
bbc2086
 
 
 
 
 
 
 
58943c0
bbc2086
 
 
 
 
 
 
 
 
 
 
 
 
58943c0
 
bbc2086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import gradio as gr
import json
import os
import tempfile
from pathlib import Path

# NOTE: You must ensure that 'working_yolo_pipeline.py' exists 
# and defines the following items correctly:
from working_yolo_pipeline import run_document_pipeline, DEFAULT_LAYOUTLMV3_MODEL_PATH, WEIGHTS_PATH
# Since I don't have this file, I am assuming the imports are correct.

# Define placeholders for assumed constants if the pipeline file isn't present
# You should replace these with your actual definitions if they are missing
try:
    from working_yolo_pipeline import run_document_pipeline, DEFAULT_LAYOUTLMV3_MODEL_PATH, WEIGHTS_PATH
except ImportError:
    print("Warning: 'working_yolo_pipeline.py' not found. Using dummy paths.")
    def run_document_pipeline(*args):
        return {"error": "Placeholder pipeline function called."}
    DEFAULT_LAYOUTLMV3_MODEL_PATH = "./models/layoutlmv3_model"
    WEIGHTS_PATH = "./weights/yolo_weights.pt"


def process_pdf(pdf_file, layoutlmv3_model_path=None):
    """
    Wrapper function for Gradio interface.

    Args:
        pdf_file: Gradio UploadButton file object
        layoutlmv3_model_path: Optional custom model path

    Returns:
        Tuple of (JSON string, download file path)
    """
    if pdf_file is None:
        return "❌ Error: No PDF file uploaded.", None

    # Use default model path if not provided
    if not layoutlmv3_model_path:
        layoutlmv3_model_path = DEFAULT_LAYOUTLMV3_MODEL_PATH

    # Verify model and weights exist
    if not os.path.exists(layoutlmv3_model_path):
        return f"❌ Error: LayoutLMv3 model not found at {layoutlmv3_model_path}", None

    if not os.path.exists(WEIGHTS_PATH):
        return f"❌ Error: YOLO weights not found at {WEIGHTS_PATH}", None

    try:
        # Get the uploaded PDF path
        pdf_path = pdf_file.name

        # Run the pipeline
        result = run_document_pipeline(pdf_path, layoutlmv3_model_path, 'label_studio_import.json')

        if result is None:
            return "❌ Error: Pipeline failed to process the PDF. Check console for details.", None

        # Create a temporary file for download
        output_filename = f"{Path(pdf_path).stem}_analysis.json"
        temp_output = tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.json', prefix='analysis_')

        # Dump results to the temporary file
        with open(temp_output.name, 'w', encoding='utf-8') as f:
            json.dump(result, f, indent=2, ensure_ascii=False)

        # Format JSON for display
        json_display = json.dumps(result, indent=2, ensure_ascii=False)

        return json_display, temp_output.name

    except Exception as e:
        return f"❌ Error during processing: {str(e)}", None


# Create Gradio interface
# FIX APPLIED: Removed 'theme=gr.themes.Soft()' which caused the TypeError
with gr.Blocks(title="Document Analysis Pipeline") as demo:
    gr.Markdown("""
    # 📄 Document Analysis Pipeline

    Upload a PDF document to extract structured data including questions, options, answers, passages, and embedded images.

    **Pipeline Steps:**
    1. 🔍 YOLO/OCR Preprocessing (word extraction + figure/equation detection)
    2. 🤖 LayoutLMv3 Inference (BIO tagging)
    3. 📊 Structured JSON Decoding
    4. 🖼️ Base64 Image Embedding
    """)

    with gr.Row():
        with gr.Column(scale=1):
            pdf_input = gr.File(
                label="Upload PDF Document",
                file_types=[".pdf"],
                type="filepath"
            )

            model_path_input = gr.Textbox(
                label="LayoutLMv3 Model Path (optional)",
                placeholder=DEFAULT_LAYOUTLMV3_MODEL_PATH,
                value=DEFAULT_LAYOUTLMV3_MODEL_PATH,
                interactive=True
            )

            process_btn = gr.Button("🚀 Process Document", variant="primary", size="lg")

            gr.Markdown("""
            ### ℹ️ Notes:
            - Processing may take several minutes depending on PDF size
            - Figures and equations will be extracted and embedded as Base64
            - The output JSON includes structured questions, options, and answers
            """)

        with gr.Column(scale=2):
            json_output = gr.Code(
                label="Structured JSON Output",
                language="json",
                lines=25
            )

            download_output = gr.File(
                label="Download Full JSON",
                interactive=False
            )

    # Status/Examples section
    with gr.Row():
        gr.Markdown("""
        ### 📋 Output Format
        The pipeline generates JSON with the following structure:
        - **Questions**: Extracted question text
        - **Options**: Multiple choice options (A, B, C, D, etc.)
        - **Answers**: Correct answer(s)
        - **Passages**: Associated reading passages
        - **Images**: Base64-encoded figures and equations (embedded with keys like `figure1`, `equation2`)
        """)

    # Connect the button to the processing function
    process_btn.click(
        fn=process_pdf,
        inputs=[pdf_input, model_path_input],
        outputs=[json_output, download_output],
        api_name="process_document"
    )

    # Example section (optional - add example PDFs if available)
    # gr.Examples(
    #     examples=[
    #         ["examples/sample1.pdf"],
    #         ["examples/sample2.pdf"],
    #     ],
    #     inputs=pdf_input,
    # )

# Launch the app
if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True
    )