Spaces:
Build error
Build error
File size: 14,099 Bytes
8ef403e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import sys
import logging
import yaml
from pathlib import Path
import argparse
# Add src to path for imports
sys.path.append(str(Path(__file__).parent / "src"))
from structure_prep import prepare_structure, load_existing_structure_files
from md_simulation import run_md_simulation, load_existing_simulation_results
from compute_descriptors import compute_descriptors, load_existing_descriptors
from model_inference import run_model_inference, load_existing_predictions
from cleanup_temp_files import cleanup_temp_directory
from timing import get_timing_report, reset_timing_report, time_step
def main():
# Parse command line arguments
parser = argparse.ArgumentParser(description='AbMelt Inference Pipeline')
# Input options - either sequences or PDB file
input_group = parser.add_mutually_exclusive_group(required=True)
input_group.add_argument('--h', '--heavy', type=str,
help='Heavy chain amino acid sequence (use with --l)')
input_group.add_argument('--pdb', type=str,
help='Input PDB file path')
parser.add_argument('--l', '--light', type=str,
help='Light chain amino acid sequence (use with --h)')
parser.add_argument('--name', type=str, default='antibody',
help='Antibody name/identifier')
parser.add_argument('--config', type=str,
help='Configuration file path')
parser.add_argument('--output', type=str, default='results',
help='Output directory')
# Skip step flags
parser.add_argument('--skip-structure', action='store_true',
help='Skip structure preparation step (load existing files)')
parser.add_argument('--skip-md', action='store_true',
help='Skip MD simulation step (load existing trajectory files)')
parser.add_argument('--skip-descriptors', action='store_true',
help='Skip descriptor computation step (load existing descriptors)')
parser.add_argument('--skip-inference', action='store_true',
help='Skip model inference step (load existing predictions)')
# Timing options
parser.add_argument('--timing-report', type=str, metavar='PATH',
help='Save timing report to JSON file (also prints summary to console)')
args = parser.parse_args()
# Validate arguments
if args.h and not args.l:
parser.error("--l/--light is required when using --h/--heavy")
if args.l and not args.h:
parser.error("--h/--heavy is required when using --l/--light")
# 1. Load configuration
config = load_config(args.config)
# 2. Setup logging and directories
setup_logging(config)
create_directories(config)
# Initialize timing report
reset_timing_report()
timing_report = get_timing_report()
timing_report.start()
# 3. Create antibody input based on input type
if args.pdb:
# Input from PDB file
antibody = {
"name": args.name,
"pdb_file": args.pdb,
"type": "pdb"
}
else:
# Input from sequences
antibody = {
"name": args.name,
"heavy_chain": args.h,
"light_chain": args.l,
"type": "sequences"
}
# 4. Run inference pipeline
try:
result = run_inference_pipeline(
antibody,
config,
skip_structure=args.skip_structure,
skip_md=args.skip_md,
skip_descriptors=args.skip_descriptors,
skip_inference=args.skip_inference
)
print(f"Inference pipeline for {args.name}:")
print(f" Status: {result['status']}")
print(f" Message: {result['message']}")
print(f" PDB file: {result['structure_files']['pdb_file']}")
print(f" Work directory: {result['structure_files']['work_dir']}")
if 'chains' in result['structure_files']:
print(f" Chains found: {list(result['structure_files']['chains'].keys())}")
if 'simulation_result' in result:
print(f" MD simulations completed at temperatures: {list(result['simulation_result']['trajectory_files'].keys())}")
for temp, files in result['simulation_result']['trajectory_files'].items():
print(f" {temp}K: {files['final_xtc']}")
if 'descriptor_result' in result:
print(f" Descriptors computed: {result['descriptor_result']['descriptors_df'].shape[1]} features")
print(f" XVG files generated: {len(result['descriptor_result']['xvg_files'])}")
if 'inference_result' in result:
print(f"\n=== PREDICTIONS ===")
predictions = result['inference_result']['predictions']
for model_name, pred in predictions.items():
if pred is not None:
print(f" {model_name.upper()}: {pred[0]:.3f}")
else:
print(f" {model_name.upper()}: FAILED")
# Add timing data to result
result['timing'] = timing_report.to_dict()
finally:
# Stop timing - always runs even on exception
timing_report.stop()
# Print timing report - always runs even on exception
print(timing_report.format_summary())
# Save timing report if requested - always runs even on exception
if args.timing_report:
timing_report.save_json(args.timing_report)
print(f"\nTiming report saved to: {args.timing_report}")
return result
def load_config(config_path: str) -> dict:
"""Load configuration from YAML file."""
try:
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
return config
except Exception as e:
raise Exception(f"Failed to load config: {e}")
def setup_logging(config: dict):
"""Setup logging configuration."""
log_level = getattr(logging, config["logging"]["level"].upper())
log_file = config["logging"]["file"]
# Create log directory if it doesn't exist
Path(log_file).parent.mkdir(parents=True, exist_ok=True)
logging.basicConfig(
level=log_level,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(log_file),
logging.StreamHandler(sys.stdout)
]
)
def create_directories(config: dict):
"""Create necessary directories."""
script_directory = Path(__file__).parent.resolve()
config['paths']['output_dir'] = script_directory / config["paths"]["run_dir"] / config['paths']['output_dir']
config['paths']['temp_dir'] = script_directory / config["paths"]["run_dir"] / config['paths']['temp_dir']
config['paths']['log_dir'] = script_directory / config["paths"]["run_dir"] / config['paths']['log_dir']
directories = [
config["paths"]["output_dir"],
config["paths"]["temp_dir"],
config["paths"]["log_dir"]
]
for directory in directories:
Path(directory).mkdir(parents=True, exist_ok=True)
def run_inference_pipeline(antibody, config, skip_structure=False, skip_md=False, skip_descriptors=False, skip_inference=False):
"""
Run the complete inference pipeline.
Args:
antibody: Dictionary containing antibody information
config: Configuration dictionary
skip_structure: If True, load existing structure files instead of preparing
skip_md: If True, load existing MD simulation results instead of running
skip_descriptors: If True, load existing descriptors instead of computing
skip_inference: If True, load existing predictions instead of computing
Returns:
Dictionary containing pipeline results
"""
logging.info(f"Starting inference pipeline for antibody: {antibody['name']}")
if skip_structure:
logging.info("Skipping structure preparation (using --skip-structure flag)")
if skip_md:
logging.info("Skipping MD simulation (using --skip-md flag)")
if skip_descriptors:
logging.info("Skipping descriptor computation (using --skip-descriptors flag)")
if skip_inference:
logging.info("Skipping model inference (using --skip-inference flag)")
try:
# Step 1: Structure preparation
with time_step("Structure Preparation"):
if skip_structure:
logging.info("Step 1: Loading existing structure files...")
structure_files = load_existing_structure_files(antibody, config)
logging.info("Structure files loaded successfully")
else:
logging.info("Step 1: Preparing structure...")
structure_files = prepare_structure(antibody, config)
logging.info("Structure preparation completed")
# Log structure files
logging.info(f"Structure files:")
for key, path in structure_files.items():
if key != "chains":
logging.info(f" {key}: {path}")
if "chains" in structure_files:
logging.info(f" chains: {list(structure_files['chains'].keys())}")
# Step 2: MD simulation
with time_step("MD Simulation"):
if skip_md:
logging.info("Step 2: Loading existing MD simulation results...")
simulation_result = load_existing_simulation_results(structure_files, config)
logging.info("MD simulation results loaded successfully")
else:
logging.info("Step 2: Running MD simulations...")
simulation_result = run_md_simulation(structure_files, config)
logging.info("MD simulations completed")
# Log trajectory files
logging.info(f"Trajectory files:")
for temp, files in simulation_result["trajectory_files"].items():
logging.info(f" {temp}K: {files['final_xtc']}")
# Step 3: Descriptor computation
with time_step("Descriptor Computation"):
if skip_descriptors:
logging.info("Step 3: Loading existing descriptor computation results...")
descriptor_result = load_existing_descriptors(simulation_result, config)
logging.info("Descriptor computation results loaded successfully")
else:
logging.info("Step 3: Computing descriptors...")
descriptor_result = compute_descriptors(simulation_result, config)
logging.info("Descriptor computation completed")
# Log descriptor computation results
logging.info(f"Descriptors:")
logging.info(f" DataFrame shape: {descriptor_result['descriptors_df'].shape}")
logging.info(f" Number of features: {len(descriptor_result['descriptors_df'].columns)}")
logging.info(f" XVG files: {len(descriptor_result['xvg_files'])}")
# Step 4: Model inference
with time_step("Model Inference"):
if skip_inference:
logging.info("Step 4: Loading existing model predictions...")
work_dir = Path(descriptor_result['work_dir'])
inference_result = load_existing_predictions(work_dir, antibody['name'])
logging.info("Model predictions loaded successfully")
else:
logging.info("Step 4: Running model inference...")
inference_result = run_model_inference(descriptor_result, config)
logging.info("Model inference completed")
# Log prediction results
logging.info(f"Predictions:")
for model_name, pred in inference_result['predictions'].items():
if pred is not None:
logging.info(f" {model_name}: {pred[0]:.3f}")
else:
logging.info(f" {model_name}: FAILED")
# Cleanup intermediate files if configured
cleanup_config = config.get("performance", {})
if cleanup_config.get("cleanup_temp", False):
cleanup_after = cleanup_config.get("cleanup_after", "inference")
if cleanup_after == "inference":
logging.info("Cleaning up intermediate files...")
try:
temperatures = [str(t) for t in config["simulation"]["temperatures"]]
cleanup_stats = cleanup_temp_directory(
work_dir=Path(descriptor_result['work_dir']),
antibody_name=antibody['name'],
temperatures=temperatures,
dry_run=False,
keep_order_params=not cleanup_config.get("delete_order_params", False)
)
logging.info(f"Cleanup completed: deleted {cleanup_stats.get('deleted', 0)} files")
except Exception as e:
logging.warning(f"Cleanup failed (non-fatal): {e}")
result = {
"status": "success",
"structure_files": structure_files,
"simulation_result": simulation_result,
"descriptor_result": descriptor_result,
"inference_result": inference_result,
"message": "Complete inference pipeline finished successfully."
}
logging.info("Inference pipeline completed successfully")
return result
except Exception as e:
logging.error(f"Inference pipeline failed: {e}")
raise
if __name__ == "__main__":
main() |