File size: 14,099 Bytes
8ef403e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import sys
import logging
import yaml
from pathlib import Path
import argparse

# Add src to path for imports
sys.path.append(str(Path(__file__).parent / "src"))

from structure_prep import prepare_structure, load_existing_structure_files
from md_simulation import run_md_simulation, load_existing_simulation_results
from compute_descriptors import compute_descriptors, load_existing_descriptors
from model_inference import run_model_inference, load_existing_predictions
from cleanup_temp_files import cleanup_temp_directory
from timing import get_timing_report, reset_timing_report, time_step

def main():
    # Parse command line arguments
    parser = argparse.ArgumentParser(description='AbMelt Inference Pipeline')
    
    # Input options - either sequences or PDB file
    input_group = parser.add_mutually_exclusive_group(required=True)
    input_group.add_argument('--h', '--heavy', type=str, 
                           help='Heavy chain amino acid sequence (use with --l)')
    input_group.add_argument('--pdb', type=str,
                           help='Input PDB file path')
    
    parser.add_argument('--l', '--light', type=str,
                       help='Light chain amino acid sequence (use with --h)')
    parser.add_argument('--name', type=str, default='antibody',
                       help='Antibody name/identifier')
    parser.add_argument('--config', type=str,
                       help='Configuration file path')
    parser.add_argument('--output', type=str, default='results',
                       help='Output directory')
    
    # Skip step flags
    parser.add_argument('--skip-structure', action='store_true',
                       help='Skip structure preparation step (load existing files)')
    parser.add_argument('--skip-md', action='store_true',
                       help='Skip MD simulation step (load existing trajectory files)')
    parser.add_argument('--skip-descriptors', action='store_true',
                       help='Skip descriptor computation step (load existing descriptors)')
    parser.add_argument('--skip-inference', action='store_true',
                       help='Skip model inference step (load existing predictions)')
    
    # Timing options
    parser.add_argument('--timing-report', type=str, metavar='PATH',
                       help='Save timing report to JSON file (also prints summary to console)')
    
    args = parser.parse_args()
    
    # Validate arguments
    if args.h and not args.l:
        parser.error("--l/--light is required when using --h/--heavy")
    if args.l and not args.h:
        parser.error("--h/--heavy is required when using --l/--light")
    
    # 1. Load configuration
    config = load_config(args.config)
    
    # 2. Setup logging and directories
    setup_logging(config)
    create_directories(config)

    # Initialize timing report
    reset_timing_report()
    timing_report = get_timing_report()
    timing_report.start()

    # 3. Create antibody input based on input type
    if args.pdb:
        # Input from PDB file
        antibody = {
            "name": args.name,
            "pdb_file": args.pdb,
            "type": "pdb"
        }
    else:
        # Input from sequences
        antibody = {
            "name": args.name,
            "heavy_chain": args.h,
            "light_chain": args.l,
            "type": "sequences"
        }
    
    # 4. Run inference pipeline
    try:
        result = run_inference_pipeline(
            antibody, 
            config,
            skip_structure=args.skip_structure,
            skip_md=args.skip_md,
            skip_descriptors=args.skip_descriptors,
            skip_inference=args.skip_inference
        )
        
        print(f"Inference pipeline for {args.name}:")
        print(f"  Status: {result['status']}")
        print(f"  Message: {result['message']}")
        print(f"  PDB file: {result['structure_files']['pdb_file']}")
        print(f"  Work directory: {result['structure_files']['work_dir']}")
        
        if 'chains' in result['structure_files']:
            print(f"  Chains found: {list(result['structure_files']['chains'].keys())}")
        
        if 'simulation_result' in result:
            print(f"  MD simulations completed at temperatures: {list(result['simulation_result']['trajectory_files'].keys())}")
            for temp, files in result['simulation_result']['trajectory_files'].items():
                print(f"    {temp}K: {files['final_xtc']}")
        
        if 'descriptor_result' in result:
            print(f"  Descriptors computed: {result['descriptor_result']['descriptors_df'].shape[1]} features")
            print(f"  XVG files generated: {len(result['descriptor_result']['xvg_files'])}")
        
        if 'inference_result' in result:
            print(f"\n=== PREDICTIONS ===")
            predictions = result['inference_result']['predictions']
            for model_name, pred in predictions.items():
                if pred is not None:
                    print(f"  {model_name.upper()}: {pred[0]:.3f}")
                else:
                    print(f"  {model_name.upper()}: FAILED")
        
        # Add timing data to result
        result['timing'] = timing_report.to_dict()
        
    finally:
        # Stop timing - always runs even on exception
        timing_report.stop()
        
        # Print timing report - always runs even on exception
        print(timing_report.format_summary())
        
        # Save timing report if requested - always runs even on exception
        if args.timing_report:
            timing_report.save_json(args.timing_report)
            print(f"\nTiming report saved to: {args.timing_report}")
    
    return result
    


def load_config(config_path: str) -> dict:
    """Load configuration from YAML file."""
    try:
        with open(config_path, 'r') as f:
            config = yaml.safe_load(f)
        return config
    except Exception as e:
        raise Exception(f"Failed to load config: {e}")

def setup_logging(config: dict):
    """Setup logging configuration."""
    log_level = getattr(logging, config["logging"]["level"].upper())
    log_file = config["logging"]["file"]
    
    # Create log directory if it doesn't exist
    Path(log_file).parent.mkdir(parents=True, exist_ok=True)
    
    logging.basicConfig(
        level=log_level,
        format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
        handlers=[
            logging.FileHandler(log_file),
            logging.StreamHandler(sys.stdout)
        ]
    )


def create_directories(config: dict):
    """Create necessary directories."""
    script_directory = Path(__file__).parent.resolve()
    config['paths']['output_dir'] = script_directory / config["paths"]["run_dir"] / config['paths']['output_dir']
    config['paths']['temp_dir'] = script_directory / config["paths"]["run_dir"] / config['paths']['temp_dir']
    config['paths']['log_dir'] = script_directory / config["paths"]["run_dir"] / config['paths']['log_dir']

    directories = [
        config["paths"]["output_dir"],
        config["paths"]["temp_dir"],
        config["paths"]["log_dir"]
    ]
    
    for directory in directories:
        Path(directory).mkdir(parents=True, exist_ok=True)


def run_inference_pipeline(antibody, config, skip_structure=False, skip_md=False, skip_descriptors=False, skip_inference=False):
    """

    Run the complete inference pipeline.

    

    Args:

        antibody: Dictionary containing antibody information

        config: Configuration dictionary

        skip_structure: If True, load existing structure files instead of preparing

        skip_md: If True, load existing MD simulation results instead of running

        skip_descriptors: If True, load existing descriptors instead of computing

        skip_inference: If True, load existing predictions instead of computing

        

    Returns:

        Dictionary containing pipeline results

    """
    logging.info(f"Starting inference pipeline for antibody: {antibody['name']}")
    
    if skip_structure:
        logging.info("Skipping structure preparation (using --skip-structure flag)")
    if skip_md:
        logging.info("Skipping MD simulation (using --skip-md flag)")
    if skip_descriptors:
        logging.info("Skipping descriptor computation (using --skip-descriptors flag)")
    if skip_inference:
        logging.info("Skipping model inference (using --skip-inference flag)")
    
    try:
        # Step 1: Structure preparation
        with time_step("Structure Preparation"):
            if skip_structure:
                logging.info("Step 1: Loading existing structure files...")
                structure_files = load_existing_structure_files(antibody, config)
                logging.info("Structure files loaded successfully")
            else:
                logging.info("Step 1: Preparing structure...")
                structure_files = prepare_structure(antibody, config)
                logging.info("Structure preparation completed")
        
        # Log structure files
        logging.info(f"Structure files:")
        for key, path in structure_files.items():
            if key != "chains":
                logging.info(f"  {key}: {path}")
        
        if "chains" in structure_files:
            logging.info(f"  chains: {list(structure_files['chains'].keys())}")
        
        # Step 2: MD simulation
        with time_step("MD Simulation"):
            if skip_md:
                logging.info("Step 2: Loading existing MD simulation results...")
                simulation_result = load_existing_simulation_results(structure_files, config)
                logging.info("MD simulation results loaded successfully")
            else:
                logging.info("Step 2: Running MD simulations...")
                simulation_result = run_md_simulation(structure_files, config)
                logging.info("MD simulations completed")
        
        # Log trajectory files
        logging.info(f"Trajectory files:")
        for temp, files in simulation_result["trajectory_files"].items():
            logging.info(f"  {temp}K: {files['final_xtc']}")
        
        # Step 3: Descriptor computation
        with time_step("Descriptor Computation"):
            if skip_descriptors:
                logging.info("Step 3: Loading existing descriptor computation results...")
                descriptor_result = load_existing_descriptors(simulation_result, config)
                logging.info("Descriptor computation results loaded successfully")
            else:
                logging.info("Step 3: Computing descriptors...")
                descriptor_result = compute_descriptors(simulation_result, config)
                logging.info("Descriptor computation completed")
        
        # Log descriptor computation results
        logging.info(f"Descriptors:")
        logging.info(f"  DataFrame shape: {descriptor_result['descriptors_df'].shape}")
        logging.info(f"  Number of features: {len(descriptor_result['descriptors_df'].columns)}")
        logging.info(f"  XVG files: {len(descriptor_result['xvg_files'])}")
        
        # Step 4: Model inference
        with time_step("Model Inference"):
            if skip_inference:
                logging.info("Step 4: Loading existing model predictions...")
                work_dir = Path(descriptor_result['work_dir'])
                inference_result = load_existing_predictions(work_dir, antibody['name'])
                logging.info("Model predictions loaded successfully")
            else:
                logging.info("Step 4: Running model inference...")
                inference_result = run_model_inference(descriptor_result, config)
                logging.info("Model inference completed")
        
        # Log prediction results
        logging.info(f"Predictions:")
        for model_name, pred in inference_result['predictions'].items():
            if pred is not None:
                logging.info(f"  {model_name}: {pred[0]:.3f}")
            else:
                logging.info(f"  {model_name}: FAILED")
        
        # Cleanup intermediate files if configured
        cleanup_config = config.get("performance", {})
        if cleanup_config.get("cleanup_temp", False):
            cleanup_after = cleanup_config.get("cleanup_after", "inference")
            if cleanup_after == "inference":
                logging.info("Cleaning up intermediate files...")
                try:
                    temperatures = [str(t) for t in config["simulation"]["temperatures"]]
                    cleanup_stats = cleanup_temp_directory(
                        work_dir=Path(descriptor_result['work_dir']),
                        antibody_name=antibody['name'],
                        temperatures=temperatures,
                        dry_run=False,
                        keep_order_params=not cleanup_config.get("delete_order_params", False)
                    )
                    logging.info(f"Cleanup completed: deleted {cleanup_stats.get('deleted', 0)} files")
                except Exception as e:
                    logging.warning(f"Cleanup failed (non-fatal): {e}")
        
        result = {
            "status": "success",
            "structure_files": structure_files,
            "simulation_result": simulation_result,
            "descriptor_result": descriptor_result,
            "inference_result": inference_result,
            "message": "Complete inference pipeline finished successfully."
        }
        
        logging.info("Inference pipeline completed successfully")
        return result
        
    except Exception as e:
        logging.error(f"Inference pipeline failed: {e}")
        raise


if __name__ == "__main__":
    main()