File size: 13,309 Bytes
8ef403e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
#!/usr/bin/env python3

"""

Cleanup utility for AbMelt inference pipeline temp directory.

Removes intermediate GROMACS files while preserving files needed for:

- Re-running descriptor computation (--skip-md)

- Re-running inference (--skip-descriptors)

- Debugging and validation

"""

import os
import logging
from pathlib import Path
from typing import List, Set, Dict
import glob

logger = logging.getLogger(__name__)


# Files that MUST be kept for pipeline to work
REQUIRED_FILES = {
    # Structure files
    "structure": [
        "{antibody_name}.pdb",  # Input structure
        "processed.pdb",  # Processed structure (needed for re-indexing)
        "processed.gro",  # Processed GRO (needed for re-indexing)
        "topol.top",  # Topology file
        "index.ndx",  # Index file for CDR regions
    ],
    
    # MD simulation final outputs (needed for descriptor computation)
    "md_final": [
        "md_final_{temp}.xtc",  # Final processed trajectory per temperature
        "md_final_{temp}.gro",  # Final reference structure per temperature
        "md_{temp}.tpr",  # Topology file per temperature
    ],
    
    # Descriptor computation outputs
    "descriptors": [
        "descriptors.csv",  # Aggregated descriptors (CSV)
        "descriptors.pkl",  # Aggregated descriptors (pickle)
        "*.xvg",  # All GROMACS descriptor files (needed for re-aggregation)
        "res_sasa_{temp}.np",  # SASA data per temperature
        "sconf_{temp}.log",  # Conformational entropy log per temperature
    ],
    
    # Order parameter files (optional - can be regenerated but useful for debugging)
    "order_params": [
        "order_s2_{temp}K_{block}_{start}.csv",  # Order parameter CSVs
        "order_lambda_{block}_{start}.csv",  # Lambda CSV
    ],
    
    # Model inference outputs
    "predictions": [
        "{antibody_name}_predictions.csv",  # Prediction results
    ],
}


# File patterns that can be safely deleted (intermediate files)
INTERMEDIATE_PATTERNS = [
    # GROMACS backup files (created when overwriting existing files)
    "#*#",  # Matches #filename.number# backup files
    
    # Intermediate trajectory processing files
    "md_whole_*.xtc",
    "md_nopbcjump_*.xtc",
    "md_{temp}.xtc",  # Raw trajectory before processing
    "md_{temp}.gro",  # Raw structure before processing
    
    # Equilibration files
    "nvt_*.gro",
    "nvt_*.xtc",
    "nvt_*.tpr",
    "nvt_*.cpt",
    "nvt_*.edr",
    "nvt_*.log",
    "npt_*.gro",
    "npt_*.xtc",
    "npt_*.tpr",
    "npt_*.cpt",
    "npt_*.edr",
    "npt_*.log",
    
    # System setup intermediates
    "box.gro",
    "solv.gro",
    "solv_ions.gro",
    "em.gro",
    "em.tpr",
    "em.edr",
    "em.log",
    "ions.tpr",
    
    # Covariance analysis intermediates
    "md_final_covar_*.xtc",
    "covar_*.trr",
    "covar_*.xvg",
    "covar.log",
    "avg_covar*.pdb",
    "covar_matrix_*.dat",
    
    # Custom simulation time files (when simulation_time != 100)
    "md_{temp}_*.gro",  # e.g., md_300_2.gro
    "md_{temp}_*.xtc",  # e.g., md_300_2.xtc
    "md_{temp}_*.tpr",  # e.g., md_300_2.tpr
    
    # Other intermediate files
    "em.trr",  # Energy minimization trajectory
    "hbond.ndx",  # Temporary index file for hydrogen bonds
    
    # PropKa output
    "*.pka",
    
    # MD run logs (except sconf logs which are kept)
    "md_*.log",
    "md_*.edr",
    
    # Checkpoint files (can be regenerated)
    "*.cpt",
    
    # Temporary MDP files created in work dir
    "nvt_*.mdp",
    "npt_*.mdp",
    "md_*.mdp",
    "mdout.mdp",  # GROMACS output MDP file
    "ions.mdp",
    "em.mdp",
    
    # Topology include files (generated during pdb2gmx)
    "posre_*.itp",  # Position restraint files
    "topol_*.itp",  # Topology include files for chains
]


def get_required_files(work_dir: Path, antibody_name: str, temperatures: List[str]) -> Set[str]:
    """

    Generate set of required file patterns based on antibody name and temperatures.

    

    Args:

        work_dir: Working directory path

        antibody_name: Name of antibody

        temperatures: List of temperature strings (e.g., ['300', '350', '400'])

        

    Returns:

        Set of required file paths (absolute)

    """
    required = set()
    
    # Structure files
    for pattern in REQUIRED_FILES["structure"]:
        file_path = work_dir / pattern.format(antibody_name=antibody_name)
        required.add(str(file_path))
    
    # MD final outputs (per temperature)
    for temp in temperatures:
        for pattern in REQUIRED_FILES["md_final"]:
            file_path = work_dir / pattern.format(temp=temp)
            required.add(str(file_path))
    
    # Descriptor outputs (per temperature)
    for temp in temperatures:
        for pattern in REQUIRED_FILES["descriptors"]:
            if "{temp}" in pattern:
                file_path = work_dir / pattern.format(temp=temp)
                required.add(str(file_path))
            elif pattern == "*.xvg":
                # Add all XVG files
                xvg_files = list(work_dir.glob("*.xvg"))
                required.update(str(f) for f in xvg_files)
            elif pattern == "res_sasa_{temp}.np":
                file_path = work_dir / pattern.format(temp=temp)
                required.add(str(file_path))
            elif pattern == "sconf_{temp}.log":
                file_path = work_dir / pattern.format(temp=temp)
                required.add(str(file_path))
    
    # Descriptor files (not temperature-specific)
    for pattern in ["descriptors.csv", "descriptors.pkl"]:
        file_path = work_dir / pattern
        required.add(str(file_path))
    
    # Order parameter files (optional - match any)
    order_s2_files = list(work_dir.glob("order_s2_*.csv"))
    order_lambda_files = list(work_dir.glob("order_lambda_*.csv"))
    required.update(str(f) for f in order_s2_files)
    required.update(str(f) for f in order_lambda_files)
    
    # Prediction files
    for pattern in REQUIRED_FILES["predictions"]:
        file_path = work_dir / pattern.format(antibody_name=antibody_name)
        required.add(str(file_path))
    
    return required


def get_intermediate_files(work_dir: Path, temperatures: List[str]) -> Set[str]:
    """

    Find all intermediate files that can be deleted.

    

    Args:

        work_dir: Working directory path

        temperatures: List of temperature strings

        

    Returns:

        Set of intermediate file paths (absolute)

    """
    intermediate = set()
    
    # Convert patterns to actual file matches
    for pattern in INTERMEDIATE_PATTERNS:
        # Handle temperature-specific patterns
        if "{temp}" in pattern:
            for temp in temperatures:
                actual_pattern = pattern.format(temp=temp)
                matches = list(work_dir.glob(actual_pattern))
                intermediate.update(str(f) for f in matches)
        else:
            # Special handling for GROMACS backup files (#*# pattern)
            if pattern == "#*#":
                # Match files that start with # and end with #
                # This is a glob pattern that matches GROMACS backup files
                matches = []
                for f in work_dir.rglob("*"):
                    if f.is_file() and f.name.startswith("#") and f.name.endswith("#"):
                        matches.append(f)
                intermediate.update(str(f) for f in matches)
            else:
                matches = list(work_dir.glob(pattern))
                intermediate.update(str(f) for f in matches)
    
    return intermediate


def cleanup_temp_directory(

    work_dir: Path,

    antibody_name: str,

    temperatures: List[str],

    dry_run: bool = True,

    keep_order_params: bool = True

) -> Dict[str, int]:
    """

    Clean up temporary directory, removing intermediate files.

    

    Args:

        work_dir: Working directory to clean

        antibody_name: Name of antibody

        temperatures: List of temperature strings

        dry_run: If True, only report what would be deleted without deleting

        keep_order_params: If True, keep order parameter CSV files

        

    Returns:

        Dictionary with cleanup statistics

    """
    work_dir = Path(work_dir).resolve()
    
    if not work_dir.exists():
        raise ValueError(f"Work directory does not exist: {work_dir}")
    
    # Get required files
    required = get_required_files(work_dir, antibody_name, temperatures)
    
    # Get intermediate files
    intermediate = get_intermediate_files(work_dir, temperatures)
    
    # Remove order param files from intermediate if keeping them
    if keep_order_params:
        order_param_files = set(str(f) for f in work_dir.glob("order_*.csv"))
        intermediate -= order_param_files
    
    # Find all files in directory
    all_files = set(str(f) for f in work_dir.rglob("*") if f.is_file())
    
    # Files to delete = intermediate files that are not required
    to_delete = intermediate - required
    
    # Also check for any other files not in required set (safety check)
    # But exclude hidden files and common non-GROMACS files
    other_files = all_files - required - intermediate
    suspicious = set()
    for f in other_files:
        f_path = Path(f)
        # Keep common non-GROMACS files
        if f_path.suffix in ['.py', '.yaml', '.yml', '.txt', '.md', '.json']:
            continue
        # Keep hidden files
        if f_path.name.startswith('.'):
            continue
        # Keep prediction CSV files (may have different naming conventions)
        if 'prediction' in f_path.name.lower() and f_path.suffix == '.csv':
            continue
        suspicious.add(f)
    
    stats = {
        "total_files": len(all_files),
        "required_files": len(required),
        "intermediate_files": len(intermediate),
        "files_to_delete": len(to_delete),
        "suspicious_files": len(suspicious),
    }
    
    if dry_run:
        logger.info("DRY RUN - No files will be deleted")
        logger.info(f"Total files: {stats['total_files']}")
        logger.info(f"Required files: {stats['required_files']}")
        logger.info(f"Files to delete: {stats['files_to_delete']}")
        if suspicious:
            logger.warning(f"Suspicious files (not in required or intermediate): {len(suspicious)}")
            logger.warning("These files will NOT be deleted. Review manually:")
            for f in sorted(suspicious)[:10]:  # Show first 10
                logger.warning(f"  {Path(f).name}")
    else:
        # Actually delete files
        deleted_count = 0
        failed_count = 0
        
        for file_path in sorted(to_delete):
            try:
                Path(file_path).unlink()
                deleted_count += 1
            except Exception as e:
                logger.error(f"Failed to delete {file_path}: {e}")
                failed_count += 1
        
        stats["deleted"] = deleted_count
        stats["failed"] = failed_count
        
        logger.info(f"Cleanup completed:")
        logger.info(f"  Deleted: {deleted_count} files")
        logger.info(f"  Failed: {failed_count} files")
        logger.info(f"  Remaining: {stats['total_files'] - deleted_count} files")
    
    return stats


def main():
    """CLI entry point for cleanup utility."""
    import argparse
    
    parser = argparse.ArgumentParser(
        description="Clean up AbMelt temp directory, removing intermediate GROMACS files"
    )
    parser.add_argument(
        "work_dir",
        type=str,
        help="Path to working directory (temp directory)"
    )
    parser.add_argument(
        "--antibody-name",
        type=str,
        required=True,
        help="Antibody name (for finding prediction files)"
    )
    parser.add_argument(
        "--temperatures",
        type=str,
        nargs="+",
        default=["300", "350", "400"],
        help="List of temperatures used in simulation"
    )
    parser.add_argument(
        "--dry-run",
        action="store_true",
        help="Show what would be deleted without actually deleting"
    )
    parser.add_argument(
        "--delete-order-params",
        action="store_true",
        help="Also delete order parameter CSV files (default: keep them)"
    )
    
    args = parser.parse_args()
    
    # Setup logging
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s - %(levelname)s - %(message)s'
    )
    
    # Run cleanup
    stats = cleanup_temp_directory(
        work_dir=Path(args.work_dir),
        antibody_name=args.antibody_name,
        temperatures=args.temperatures,
        dry_run=args.dry_run,
        keep_order_params=not args.delete_order_params
    )
    
    print("\n" + "="*60)
    print("Cleanup Summary")
    print("="*60)
    for key, value in stats.items():
        print(f"  {key}: {value}")
    print("="*60)


if __name__ == "__main__":
    main()