File size: 37,923 Bytes
8ef403e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
#!/usr/bin/env python3

"""

Descriptor computation module for AbMelt inference pipeline.

Handles extraction of MD descriptors from trajectories and aggregation into ML-ready format.

"""

import os
import sys
import logging
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import numpy as np
import pandas as pd
import glob

try:
    import gromacs
    from order_param import order_s2, avg_s2_blocks, get_lambda, order_lambda
    from res_sasa import core_surface, get_core_surface, get_slope
    from timing import time_step
except ImportError as e:
    logging.error(f"Failed to import required modules: {e}")
    raise

logger = logging.getLogger(__name__)


def compute_descriptors(simulation_result: Dict, config: Dict) -> Dict:
    """

    Main entry point for descriptor computation.

    

    Args:

        simulation_result: Dictionary containing trajectory files and work directory

        config: Configuration dictionary

        

    Returns:

        Dictionary containing descriptors DataFrame and metadata

    """
    logger.info("Starting descriptor computation...")
    
    work_dir = Path(simulation_result["work_dir"])
    trajectory_files = simulation_result["trajectory_files"]
    antibody_name = work_dir.name
    
    # Get descriptor computation parameters
    desc_config = config["descriptors"]
    eq_time = desc_config["equilibration_time"]
    block_lengths = desc_config["block_length"]  # Now expects a list [2.5, 25]
    if not isinstance(block_lengths, list):
        block_lengths = [block_lengths]  # Backwards compatibility
    core_surface_k = desc_config["core_surface_k"]
    compute_lambda = desc_config["compute_lambda"]
    use_dummy_s2 = desc_config.get("use_dummy_s2", False)  # Default to False if not specified
    
    # Extract temperatures from trajectory files
    temps = [str(temp) for temp in trajectory_files.keys()]
    
    # Store original working directory
    original_cwd = os.getcwd()
    
    try:
        # Change to work directory
        os.chdir(work_dir)
        logger.info(f"Changed to work directory: {work_dir}")
        
        # Step 1: Compute GROMACS-based descriptors
        with time_step("GROMACS Descriptors", parent="Descriptor Computation"):
            logger.info("Step 1: Computing GROMACS descriptors...")
            xvg_files = _compute_gromacs_descriptors(work_dir, temps, eq_time)
            logger.info(f"Generated {len(xvg_files)} GROMACS descriptor files")
        
        # Step 2: Compute order parameters
        with time_step("Order Parameters", parent="Descriptor Computation"):
            logger.info("Step 2: Computing order parameters...")
            master_s2_dicts = _compute_order_parameters(work_dir, temps, eq_time, block_lengths, antibody_name, use_dummy_s2)
        
        # Step 3: Compute core/surface SASA
        with time_step("Core/Surface SASA", parent="Descriptor Computation"):
            logger.info("Step 3: Computing core/surface SASA...")
            sasa_dict = _compute_core_surface_sasa(work_dir, temps, eq_time, core_surface_k)
        
        # Step 4: Compute multi-temperature features (lambda)
        with time_step("Lambda Features", parent="Descriptor Computation"):
            if len(temps) >= 2 and compute_lambda:
                logger.info("Step 4: Computing multi-temperature lambda...")
                all_lambda_features = _compute_lambda_features(master_s2_dicts, temps, eq_time, antibody_name)
            else:
                logger.warning(f"Skipping lambda computation: need >=2 temperatures, got {len(temps)}")
                all_lambda_features = None
        
        # Step 5: Aggregate all descriptors into DataFrame
        with time_step("Aggregate to DataFrame", parent="Descriptor Computation"):
            logger.info("Step 5: Aggregating descriptors to DataFrame...")
            descriptors_df = _aggregate_descriptors_to_dataframe(
                work_dir, temps, antibody_name, eq_time, master_s2_dicts, 
                all_lambda_features, sasa_dict, core_surface_k
            )
        
        logger.info(f"Descriptor computation completed. DataFrame shape: {descriptors_df.shape}")
        logger.info(f"Features: {list(descriptors_df.columns)}")
        
        # Save descriptors to file for future use
        try:
            descriptors_csv = work_dir / "descriptors.csv"
            descriptors_pkl = work_dir / "descriptors.pkl"
            
            descriptors_df.to_csv(descriptors_csv, index=False)
            logger.info(f"Saved descriptors to {descriptors_csv}")
            
            import pickle
            with open(descriptors_pkl, 'wb') as f:
                pickle.dump(descriptors_df, f)
            logger.info(f"Saved descriptors to {descriptors_pkl}")
        except Exception as e:
            logger.warning(f"Failed to save descriptors to file: {e}")
            logger.warning("Continuing without saving descriptors")
        
        result = {
            "status": "success",
            "descriptors_df": descriptors_df,
            "xvg_files": xvg_files,
            "work_dir": str(work_dir),
            "message": "Descriptor computation completed successfully"
        }
        
        return result
        
    except Exception as e:
        logger.error(f"Descriptor computation failed: {e}")
        raise
    finally:
        # Restore original working directory
        os.chdir(original_cwd)


def _compute_gromacs_descriptors(work_dir: Path, temps: List[str], eq_time: int) -> List[str]:
    """

    Compute GROMACS-based descriptors from trajectories.

    

    Args:

        work_dir: Working directory containing trajectories

        temps: List of temperature strings

        eq_time: Equilibration time in ns

        

    Returns:

        List of generated .xvg file paths

    """
    xvg_files = []
    
    for temp in temps:
        logger.info(f"Computing GROMACS descriptors for {temp}K...")
        
        # Check if required files exist
        final_xtc = f'md_final_{temp}.xtc'
        final_gro = f'md_final_{temp}.gro'
        tpr_file = f'md_{temp}.tpr'
        index_file = 'index.ndx'
        
        if not os.path.exists(final_xtc):
            raise ValueError(f'Trajectory file not found: {final_xtc}')
        if not os.path.exists(final_gro):
            raise ValueError(f'Structure file not found: {final_gro}')
        if not os.path.exists(tpr_file):
            raise ValueError(f'TPR file not found: {tpr_file}')
        if not os.path.exists(index_file):
            logger.warning(f'Index file not found: {index_file}. CDR-specific features may fail.')
            # Try to create index file if it doesn't exist
            # This should have been created during MD simulation, but handle gracefully
            logger.warning('Attempting to create index file...')
            try:
                from preprocess import canonical_index
                annotation = canonical_index(pdb='processed.pdb')
                gromacs.make_ndx(f='processed.gro', o='index.ndx', input=annotation)
                logger.info('Index file created successfully')
            except Exception as e:
                logger.error(f'Failed to create index file: {e}')
                logger.error('CDR-specific features will be skipped')
        
        try:
            # Global features
            logger.debug(f"  Computing global SASA...")
            gromacs.sasa(f=final_xtc, s=final_gro, o=f'sasa_{temp}.xvg', input=['1'])
            xvg_files.append(f'sasa_{temp}.xvg')
            
            logger.debug(f"  Computing hydrogen bonds and contacts...")
            # Use legacy hbond to get both hydrogen bonds AND contacts in one file
            gromacs.hbond_legacy(f=final_xtc, s=tpr_file, num=f'bonds_{temp}.xvg', input=['1', '1'])
            xvg_files.append(f'bonds_{temp}.xvg')
            
            logger.debug(f"  Computing RMSD...")
            gromacs.rms(f=final_xtc, s=final_gro, o=f'rmsd_{temp}.xvg', input=['3', '3'])
            xvg_files.append(f'rmsd_{temp}.xvg')
            
            logger.debug(f"  Computing gyration radius...")
            gromacs.gyrate(f=final_xtc, s=final_gro, o=f'gyr_{temp}.xvg', n=index_file, input=['1'])
            xvg_files.append(f'gyr_{temp}.xvg')
            
            # CDR-specific features
            cdr_regions = {
                'cdrl1': '12',
                'cdrl2': '13',
                'cdrl3': '14',
                'cdrh1': '15',
                'cdrh2': '16',
                'cdrh3': '17',
                'cdrs': '18'
            }
            
            # SASA for each CDR
            logger.debug(f"  Computing CDR SASA...")
            for cdr_name, index_group in cdr_regions.items():
                gromacs.sasa(f=final_xtc, s=final_gro, o=f'sasa_{cdr_name}_{temp}.xvg', 
                           n=index_file, input=[index_group])
                xvg_files.append(f'sasa_{cdr_name}_{temp}.xvg')
            
            # H-bonds between light and heavy chains
            logger.debug(f"  Computing light-heavy bonds...")
            gromacs.hbond(f=final_xtc, s=tpr_file, num=f'bonds_lh_{temp}.xvg', 
                         n=index_file, input=['10', '11'])
            xvg_files.append(f'bonds_lh_{temp}.xvg')
            
            # RMSF for each CDR
            logger.debug(f"  Computing CDR RMSF...")
            eq_time_ps = str(eq_time * 1000)
            for cdr_name, index_group in cdr_regions.items():
                gromacs.rmsf(f=final_xtc, s=final_gro, o=f'rmsf_{cdr_name}_{temp}.xvg',
                           n=index_file, b=eq_time_ps, input=[index_group, index_group])
                xvg_files.append(f'rmsf_{cdr_name}_{temp}.xvg')
            
            # Gyration radius for each CDR
            logger.debug(f"  Computing CDR gyration...")
            for cdr_name, index_group in cdr_regions.items():
                gromacs.gyrate(f=final_xtc, s=final_gro, o=f'gyr_{cdr_name}_{temp}.xvg',
                             n=index_file, input=[index_group])
                xvg_files.append(f'gyr_{cdr_name}_{temp}.xvg')
            
            # Conformational entropy (S_conf)
            logger.debug(f"  Computing conformational entropy...")
            try:
                gromacs.trjconv(f=final_xtc, s=tpr_file, dt='0', fit='rot+trans', 
                             n=index_file, o=f'md_final_covar_{temp}.xtc', input=['1','1'])
                gromacs.covar(f=f'md_final_covar_{temp}.xtc', s=tpr_file, n=index_file,
                            o=f'covar_{temp}.xvg', av=f'avg_covar{temp}.pdb',
                            ascii=f'covar_matrix_{temp}.dat', v=f'covar_{temp}.trr',
                            input=['4', '4'])
                # Note: anaeig output goes to log file via shell redirection
                # The original implementation uses shell redirection in input parameter
                gromacs.anaeig(f=f'md_final_covar_{temp}.xtc', v=f'covar_{temp}.trr',
                             entropy=True, temp=temp, s=tpr_file, nevskip='6',
                             n=index_file, b=eq_time_ps, input=[f'> sconf_{temp}.log'])
            except Exception as e:
                logger.warning(f"Conformational entropy computation failed for {temp}K: {e}")
            
            # Electrostatic potential for each CDR
            logger.debug(f"  Computing CDR electrostatic potential...")
            for cdr_name, index_group in cdr_regions.items():
                try:
                    gromacs.potential(f=final_xtc, s=tpr_file, spherical=True, sl='10',
                                   o=f'potential_{cdr_name}_{temp}.xvg',
                                   oc=f'charge_{cdr_name}_{temp}.xvg',
                                   of=f'field_{cdr_name}_{temp}.xvg',
                                   n=index_file, input=[index_group])
                    xvg_files.append(f'potential_{cdr_name}_{temp}.xvg')
                except Exception as e:
                    logger.warning(f"Potential computation failed for {cdr_name} at {temp}K: {e}")
            
            # Dipole moment
            logger.debug(f"  Computing dipole moment...")
            gromacs.dipoles(f=final_xtc, s=tpr_file, o=f'dipole_{temp}.xvg',
                          n=index_file, input=['1'])
            xvg_files.append(f'dipole_{temp}.xvg')
            
        except Exception as e:
            logger.error(f"Failed to compute GROMACS descriptors for {temp}K: {e}")
            raise
    
    return xvg_files


def _compute_order_parameters(work_dir: Path, temps: List[str], eq_time: int, 

                             block_lengths: List[float], antibody_name: str, use_dummy_s2: bool = False) -> Dict[float, Dict[int, Dict]]:
    """

    Compute N-H bond order parameters (S²) for each temperature and block length.

    

    Args:

        work_dir: Working directory

        temps: List of temperature strings

        eq_time: Equilibration time in ns

        block_lengths: List of block lengths for order parameter calculation in ns

        antibody_name: Name of antibody

        use_dummy_s2: If True, generate dummy S2 values instead of computing from trajectory

        

    Returns:

        Dictionary mapping block_length (float) to dictionary mapping temperature (int) to S² values per residue

    """
    all_master_s2_dicts = {}
    
    if use_dummy_s2:
        logger.info("Using dummy S2 values for testing (use_dummy_s2=True)")
    
    for block_length in block_lengths:
        logger.info(f"Computing order parameters for block_length={block_length}ns...")
        master_s2_dict = {int(temp): {} for temp in temps}
        
        for temp in temps:
            logger.info(f"  Computing S² for {temp}K, block={block_length}ns...")
            
            final_xtc = f'md_final_{temp}.xtc'
            final_gro = f'md_final_{temp}.gro'
            
            if not os.path.exists(final_xtc) or not os.path.exists(final_gro):
                logger.warning(f"Trajectory files not found for {temp}K, skipping")
                continue
            
            try:
                s2_blocks_dict = order_s2(mab=antibody_name, temp=temp, 
                                        block_length=block_length, start=eq_time, use_dummy=use_dummy_s2)
                master_s2_dict[int(temp)] = avg_s2_blocks(s2_blocks_dict)
                logger.info(f"  Order parameters computed for {temp}K")
            except Exception as e:
                logger.warning(f"Order parameter computation failed for {temp}K: {e}")
                logger.warning("This is common with short trajectories. Continuing...")
        
        all_master_s2_dicts[block_length] = master_s2_dict
    
    return all_master_s2_dicts


def _compute_core_surface_sasa(work_dir: Path, temps: List[str], eq_time: int, k: int) -> Dict:
    """

    Compute core/surface SASA using mdtraj.

    

    Args:

        work_dir: Working directory

        temps: List of temperature strings

        eq_time: Equilibration time in ns

        k: Number of residues for core/surface classification

        

    Returns:

        Dictionary with SASA statistics per temperature

    """
    sasa_dict = {}
    
    for temp in temps:
        logger.info(f"Computing core/surface SASA for {temp}K...")
        
        final_xtc = f'md_final_{temp}.xtc'
        final_gro = f'md_final_{temp}.gro'
        
        if not os.path.exists(final_xtc) or not os.path.exists(final_gro):
            logger.warning(f"Trajectory files not found for {temp}K, skipping SASA")
            continue
        
        try:
            # Compute residue-level SASA
            core_surface(temp)
            
            # Aggregate statistics
            sasa_dict[temp] = {}
            sasa_dict = get_core_surface(sasa_dict, temp, k=k, start=eq_time)
            logger.info(f"Core/surface SASA computed for {temp}K")
        except Exception as e:
            logger.warning(f"Core/surface SASA computation failed for {temp}K: {e}")
    
    return sasa_dict


def _compute_lambda_features(master_s2_dicts: Dict[float, Dict[int, Dict]], temps: List[str],

                            eq_time: int, antibody_name: str) -> Dict[float, Tuple[Dict, Dict]]:
    """

    Compute multi-temperature lambda (order parameter slope) for each block length.

    

    Args:

        master_s2_dicts: Dictionary mapping block_length to dictionary of S² values per temperature

        temps: List of temperature strings

        eq_time: Equilibration time

        antibody_name: Name of antibody

        

    Returns:

        Dictionary mapping block_length to tuple of (lambda_dict, r_dict) - lambda values and correlation coefficients per residue

    """
    temp_ints = [int(t) for t in temps]
    all_lambda_features = {}

    for block_length, master_s2_dict in master_s2_dicts.items():
        logger.info(f"Computing lambda features for block_length={block_length}ns...")
        
        # Filter out temperatures that don't have S² data
        available_temps = [t for t in temp_ints if t in master_s2_dict and len(master_s2_dict[t]) > 0]
        
        if len(available_temps) < 2:
            logger.warning(f"Need at least 2 temperatures with S² data for lambda, got {len(available_temps)}")
            all_lambda_features[block_length] = (None, None)
            continue
        
        try:
            # Use order_lambda function from order_param module (saves CSV)
            # Note: start parameter expects picoseconds
            order_lambda(master_dict=master_s2_dict, mab=antibody_name, 
                        temps=available_temps, block_length=str(block_length), 
                        start=str(eq_time * 1000))
            
            # Compute lambda and r for each residue directly
            lambda_dict, r_dict = get_lambda(master_s2_dict, temps=available_temps)
            
            logger.info(f"Lambda computed for {len(lambda_dict)} residues at block={block_length}ns")
            all_lambda_features[block_length] = (lambda_dict, r_dict)
            
        except Exception as e:
            logger.warning(f"Lambda computation failed for block={block_length}ns: {e}")
            all_lambda_features[block_length] = (None, None)

    return all_lambda_features


def _aggregate_descriptors_to_dataframe(work_dir: Path, temps: List[str], 

                                       antibody_name: str, eq_time: int,

                                       master_s2_dicts: Dict[float, Dict[int, Dict]], 

                                       all_lambda_features: Dict[float, Tuple[Dict, Dict]],

                                       sasa_dict: Dict, core_surface_k: int) -> pd.DataFrame:
    """

    Aggregate all computed descriptors into a single-row DataFrame.

    

    Args:

        work_dir: Working directory

        temps: List of temperature strings

        antibody_name: Name of antibody

        eq_time: Equilibration time in ns

        master_s2_dicts: Dictionary mapping block_length to order parameter dictionary per temperature

        all_lambda_features: Dictionary mapping block_length to tuple of (lambda_dict, r_dict)

        sasa_dict: Core/surface SASA dictionary

        core_surface_k: Number of residues for core/surface classification

        

    Returns:

        Single-row DataFrame with all descriptors

    """
    descriptor_dict = {}
    
    # Parse all .xvg files
    xvg_files = glob.glob('*.xvg')
    
    for xvg_file in xvg_files:
        try:
            metric_name = Path(xvg_file).stem
            
            # Extract temperature from filename
            temp = None
            for t in temps:
                if t in metric_name:
                    temp = t
                    break
            
            if temp is None:
                continue
            
            # Parse the xvg file
            data = _parse_xvg_file(xvg_file)
            
            if data is None or len(data) == 0:
                continue
            
            # Compute equilibrated statistics
            # Note: RMSF files contain per-residue data (not time-series), 
            # and equilibration is already handled by the -b flag in GROMACS
            if 'rmsf' in metric_name:
                # RMSF: per-residue data, no time-based equilibration needed
                equilibrated_data = data
            else:
                # Time-series data: apply equilibration slicing
                eq_time_ps = eq_time * 1000  # Convert to ps
                eq_start_idx = int(eq_time_ps / 10)  # Assuming 10 ps per frame (adjust if needed)
                if len(data) <= eq_start_idx:
                    continue
                equilibrated_data = data[eq_start_idx:]
            
            if len(equilibrated_data) > 0:
                
                # Handle different data shapes
                if equilibrated_data.ndim == 1:
                    # Single column data
                    mu = np.mean(equilibrated_data)
                    std = np.std(equilibrated_data)
                    
                    # Create feature names based on metric type
                    # Match exact naming conventions from training data
                    if 'bonds' in metric_name:
                        if 'lh' in metric_name:
                            descriptor_dict[f'bonds_lh_mu_{temp}'] = mu
                            descriptor_dict[f'bonds_lh_std_{temp}'] = std
                        else:
                            # bonds file has hbonds and contacts - handled in 2D case
                            descriptor_dict[f'bonds_hbonds_mu_{temp}'] = mu
                            descriptor_dict[f'bonds_hbonds_std_{temp}'] = std
                    elif 'sasa' in metric_name:
                        region = metric_name.replace('sasa_', '').replace(f'_{temp}', '')
                        descriptor_dict[f'sasa_{region}_mu_{temp}'] = mu
                        descriptor_dict[f'sasa_{region}_std_{temp}'] = std
                    elif 'rmsd' in metric_name:
                        descriptor_dict[f'rmsd_mu_{temp}'] = mu
                        descriptor_dict[f'rmsd_std_{temp}'] = std
                    elif 'rmsf' in metric_name:
                        region = metric_name.replace('rmsf_', '').replace(f'_{temp}', '')
                        # Some models use mu, some use std - include both
                        descriptor_dict[f'rmsf_{region}_mu_{temp}'] = mu
                        descriptor_dict[f'rmsf_{region}_std_{temp}'] = std
                    elif 'gyr' in metric_name:
                        region = metric_name.replace('gyr_', '').replace(f'_{temp}', '')
                        # Training data shows: gyr_cdrs_Rg_std_350, gyr_cdrs_Rg_std_400
                        descriptor_dict[f'gyr_{region}_Rg_mu_{temp}'] = mu
                        descriptor_dict[f'gyr_{region}_Rg_std_{temp}'] = std
                    elif 'potential' in metric_name:
                        # Potential features should NOT use time-series mean
                        # They need specific radius index extraction (handled in 2D case below)
                        # This 1D case should not happen for potential files
                        pass
                    elif 'dipole' in metric_name:
                        # Dipole files should have 4 columns, handled in 2D case
                        # This 1D case should not happen for dipole files
                        # But if it does, use the mean
                        descriptor_dict[f'dipole_mu_{temp}'] = mu
                        descriptor_dict[f'dipole_std_{temp}'] = std
                
                elif equilibrated_data.ndim == 2:
                    # Multi-column data (e.g., gyration with Rg, Rx, Ry, Rz, potential with multiple radii)
                    
                    # Handle potential files (multiple radii/slices)
                    if 'potential' in metric_name:
                        region = metric_name.replace('potential_', '').replace(f'_{temp}', '')
                        # Potential is measured at specific radius indices
                        # Original code uses radius index based on region type
                        if region in ['cdrl1', 'cdrl2', 'cdrl3', 'cdrh1', 'cdrh2', 'cdrh3']:
                            # Individual CDRs use radius index 2
                            radius_idx = 2
                        elif region == 'cdrs':
                            # Combined CDRs use radius index 5
                            radius_idx = 5
                        else:
                            # Default to radius index 2
                            radius_idx = 2
                        
                        # Extract value at specific radius (column 1 is potential value, column 0 is radius)
                        if equilibrated_data.shape[0] > radius_idx:
                            # Potential files have 2 columns: [radius, potential]
                            # We need the potential value (column 1) at the specific radius index (row)
                            descriptor_dict[f'potential_{region}_mu_{temp}'] = equilibrated_data[radius_idx, 1]
                            # Original code sets std to 0 for potential
                            descriptor_dict[f'potential_{region}_std_{temp}'] = 0
                        else:
                            logger.warning(f"Not enough radii in potential file for {region} (need idx {radius_idx}, have {equilibrated_data.shape[0]} rows)")
                    
                    elif equilibrated_data.shape[1] >= 4:
                        # Gyration radius components
                        if 'gyr' in metric_name:
                            region = metric_name.replace('gyr_', '').replace(f'_{temp}', '')
                            r_values = equilibrated_data[:, 0]  # Rg
                            x_values = equilibrated_data[:, 1]  # Rx
                            y_values = equilibrated_data[:, 2]  # Ry
                            z_values = equilibrated_data[:, 3]  # Rz
                            
                            # Match training data format: gyr_cdrs_Rg_std_350
                            descriptor_dict[f'gyr_{region}_Rg_mu_{temp}'] = np.mean(r_values)
                            descriptor_dict[f'gyr_{region}_Rg_std_{temp}'] = np.std(r_values)
                            descriptor_dict[f'gyr_{region}_Rx_mu_{temp}'] = np.mean(x_values)
                            descriptor_dict[f'gyr_{region}_Rx_std_{temp}'] = np.std(x_values)
                            descriptor_dict[f'gyr_{region}_Ry_mu_{temp}'] = np.mean(y_values)
                            descriptor_dict[f'gyr_{region}_Ry_std_{temp}'] = np.std(y_values)
                            descriptor_dict[f'gyr_{region}_Rz_mu_{temp}'] = np.mean(z_values)
                            descriptor_dict[f'gyr_{region}_Rz_std_{temp}'] = np.std(z_values)
                    
                    elif equilibrated_data.shape[1] == 2:
                        # Two-column data (e.g., bonds with hbonds and contacts)
                        if 'bonds' in metric_name:
                            hbonds = equilibrated_data[:, 0]
                            contacts = equilibrated_data[:, 1]
                            
                            # Match training data format: bonds_contacts_std_350
                            descriptor_dict[f'bonds_hbonds_mu_{temp}'] = np.mean(hbonds)
                            descriptor_dict[f'bonds_hbonds_std_{temp}'] = np.std(hbonds)
                            descriptor_dict[f'bonds_contacts_mu_{temp}'] = np.mean(contacts)
                            descriptor_dict[f'bonds_contacts_std_{temp}'] = np.std(contacts)
                    
                    elif equilibrated_data.shape[1] == 3:
                        # Three-column data (e.g., dipole with Mx, My, Mz)
                        if 'dipole' in metric_name:
                            # Dipole files have columns: Mx, My, Mz(magnitude), [|Mtot|]
                            # Original code uses Z (Mz, the magnitude) = column index 2
                            dipole_z = equilibrated_data[:, 2]  # Mz column
                            descriptor_dict[f'dipole_mu_{temp}'] = np.mean(dipole_z)
                            descriptor_dict[f'dipole_std_{temp}'] = np.std(dipole_z)
                    
                    elif equilibrated_data.shape[1] == 4:
                        # Four-column data (e.g., dipole with Mx, My, Mz, |Mtot|)
                        if 'dipole' in metric_name:
                            # Dipole files have 4 columns: Mx, My, Mz(magnitude), |Mtot|
                            # Original code uses Z (Mz) = column index 2
                            dipole_z = equilibrated_data[:, 2]  # Mz column
                            descriptor_dict[f'dipole_mu_{temp}'] = np.mean(dipole_z)
                            descriptor_dict[f'dipole_std_{temp}'] = np.std(dipole_z)
        
        except Exception as e:
            logger.warning(f"Failed to parse {xvg_file}: {e}")
            continue
    
    # Add order parameter features for each block length
    for block_length, master_s2_dict in master_s2_dicts.items():
        for temp_int, s2_values in master_s2_dict.items():
            if s2_values and len(s2_values) > 0:
                temp_str = str(temp_int)
                s2_mean = np.mean(list(s2_values.values()))
                s2_std = np.std(list(s2_values.values()))
                # Include block length in feature name for clarity (optional)
                descriptor_dict[f'order_s2_{temp_str}_b={block_length}_mu'] = s2_mean
                descriptor_dict[f'order_s2_{temp_str}_b={block_length}_std'] = s2_std
    
    # Add lambda features for each block length
    if all_lambda_features:
        for block_length, (lambda_dict, r_dict) in all_lambda_features.items():
            if lambda_dict and r_dict:
                lambda_mean = np.mean(list(lambda_dict.values()))
                r_mean = np.mean(list(r_dict.values()))
                
                # Generate features with correct values
                descriptor_dict[f'all-temp_lamda_b={block_length}_eq={eq_time}'] = lambda_mean
                descriptor_dict[f'r-lamda_b={block_length}_eq={eq_time}'] = r_mean  # FIX: was lambda_mean
                descriptor_dict[f'all-temp_lamda_r_b={block_length}_eq={eq_time}'] = r_mean
    
    # Add core/surface SASA features
    if sasa_dict:
        # Per-temperature SASA features
        for temp, sasa_data in sasa_dict.items():
            if isinstance(sasa_data, dict):
                for key, value in sasa_data.items():
                    descriptor_dict[f'sasa_{key}_{temp}'] = value
        
        # Cross-temperature SASA slopes
        if len(temps) >= 2:
            temp_ints = sorted([int(t) for t in temps])
            sasa_slopes = {}
            
            for key in ['total_mean', 'core_mean', 'surface_mean', 'total_std', 'core_std', 'surface_std']:
                data_points = [(int(t), sasa_dict[t][key]) for t in temps if t in sasa_dict and key in sasa_dict[t]]
                if len(data_points) >= 2:
                    slope = get_slope(data_points)
                    sasa_slopes[key] = slope
            
            for key, slope in sasa_slopes.items():
                descriptor_dict[f'all-temp-sasa_{key}_k={core_surface_k}_eq={eq_time}'] = slope
    
    # Parse conformational entropy from log files
    for temp in temps:
        log_file = f'sconf_{temp}.log'
        if os.path.exists(log_file):
            try:
                with open(log_file, 'r') as f:
                    for line in f:
                        if 'Entropy' in line and 'J/mol K' in line:
                            if 'Schlitter' in line:
                                parts = line.split()
                                if len(parts) > 8:
                                    entropy = float(parts[8])
                                    descriptor_dict[f'sconf_schlitter_{temp}'] = entropy
                            elif 'Quasiharmonic' in line:
                                parts = line.split()
                                if len(parts) > 8:
                                    entropy = float(parts[8])
                                    descriptor_dict[f'sconf_quasiharmonic_{temp}'] = entropy
            except Exception as e:
                logger.warning(f"Failed to parse entropy log {log_file}: {e}")
    
    # Create DataFrame
    df = pd.DataFrame([descriptor_dict])
    
    return df


def load_existing_descriptors(simulation_result: Dict, config: Dict) -> Dict:
    """

    Load existing descriptor computation results.

    

    Args:

        simulation_result: Dictionary containing simulation results

        config: Configuration dictionary

        

    Returns:

        Dictionary matching format from compute_descriptors

        

    Raises:

        FileNotFoundError: If descriptor file not found

    """
    logger.info("Loading existing descriptor computation results...")
    
    work_dir = Path(simulation_result["work_dir"]).resolve()
    
    # Try CSV first, then pickle
    descriptors_csv = work_dir / "descriptors.csv"
    descriptors_pkl = work_dir / "descriptors.pkl"
    
    descriptors_df = None
    
    if descriptors_csv.exists():
        try:
            descriptors_df = pd.read_csv(descriptors_csv)
            logger.info(f"Loaded descriptors from {descriptors_csv}")
        except Exception as e:
            logger.warning(f"Failed to load descriptors from CSV: {e}")
    
    if descriptors_df is None and descriptors_pkl.exists():
        try:
            import pickle
            with open(descriptors_pkl, 'rb') as f:
                descriptors_df = pickle.load(f)
            logger.info(f"Loaded descriptors from {descriptors_pkl}")
        except Exception as e:
            logger.warning(f"Failed to load descriptors from pickle: {e}")
    
    if descriptors_df is None:
        error_msg = f"Descriptor file not found when skipping descriptor computation.\n"
        error_msg += f"Expected one of:\n"
        error_msg += f"  - {descriptors_csv}\n"
        error_msg += f"  - {descriptors_pkl}\n"
        error_msg += f"\nWork directory: {work_dir}"
        raise FileNotFoundError(error_msg)
    
    # Get list of XVG files in work directory (if they exist)
    xvg_files = []
    try:
        xvg_files = [str(f.name) for f in work_dir.glob("*.xvg")]
        logger.info(f"Found {len(xvg_files)} XVG files in work directory")
    except Exception as e:
        logger.warning(f"Could not enumerate XVG files: {e}")
    
    result = {
        "status": "success",
        "descriptors_df": descriptors_df,
        "xvg_files": xvg_files,
        "work_dir": str(work_dir),
        "message": "Descriptor computation results loaded successfully"
    }
    
    logger.info(f"Successfully loaded descriptors. DataFrame shape: {descriptors_df.shape}")
    logger.info(f"Features: {len(descriptors_df.columns)}")
    
    return result


def _parse_xvg_file(xvg_file: str) -> Optional[np.ndarray]:
    """

    Parse GROMACS .xvg file and return data as numpy array.

    

    Args:

        xvg_file: Path to .xvg file

        

    Returns:

        Numpy array with data (time in first column, data in subsequent columns)

    """
    try:
        t, x, y, z, r = [], [], [], [], []
        
        with open(xvg_file, 'r') as f:
            for line in f:
                # Skip comments and metadata
                if line.startswith('#') or line.startswith('@'):
                    continue
                
                cols = line.split()
                
                if len(cols) == 0:
                    continue
                elif len(cols) == 2:
                    t.append(float(cols[0]))
                    x.append(float(cols[1]))
                elif len(cols) == 3:
                    t.append(float(cols[0]))
                    x.append(float(cols[1]))
                    y.append(float(cols[2]))
                elif len(cols) == 4:
                    t.append(float(cols[0]))
                    x.append(float(cols[1]))
                    y.append(float(cols[2]))
                    z.append(float(cols[3]))
                elif len(cols) == 5:
                    t.append(float(cols[0]))
                    r.append(float(cols[1]))
                    x.append(float(cols[2]))
                    y.append(float(cols[3]))
                    z.append(float(cols[4]))
        
        # Return appropriate array based on what was collected
        if len(r) > 0:
            return np.column_stack([r, x, y, z])
        elif len(z) > 0:
            return np.column_stack([x, y, z])
        elif len(y) > 0:
            return np.column_stack([x, y])
        elif len(x) > 0:
            return np.array(x)
        else:
            return None
            
    except Exception as e:
        logger.warning(f"Failed to parse {xvg_file}: {e}")
        return None