Spaces:
Build error
Build error
File size: 12,284 Bytes
8ef403e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
#!/usr/bin/env python3
"""
Model inference module for AbMelt pipeline.
Loads trained models and makes predictions on computed descriptors.
"""
import logging
import joblib
import pandas as pd
import numpy as np
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import warnings
warnings.filterwarnings("ignore")
logger = logging.getLogger(__name__)
class AbMeltPredictor:
"""
Predictor class that loads trained models and makes predictions.
"""
def __init__(self, models_dir: Path = None):
"""
Initialize the predictor with model directory.
Args:
models_dir: Path to directory containing trained models
"""
if models_dir is None:
# Default to local models directory
current_dir = Path(__file__).parent
models_dir = current_dir.parent / "models"
self.models_dir = Path(models_dir)
# Model paths
self.model_paths = {
"tagg": self.models_dir / "tagg" / "efs_best_knn.pkl",
"tm": self.models_dir / "tm" / "efs_best_randomforest.pkl",
"tmon": self.models_dir / "tmon" / "efs_best_elasticnet.pkl",
}
# Feature definitions for each model
# These are the features selected by exhaustive feature selection
self.model_features = {
"tagg": [
"rmsf_cdrs_mu_400",
"gyr_cdrs_Rg_std_400",
"all-temp_lamda_b=25_eq=20"
],
"tm": [
"gyr_cdrs_Rg_std_350",
"bonds_contacts_std_350",
"rmsf_cdrl1_std_350"
],
"tmon": [
"bonds_contacts_std_350",
"all-temp-sasa_core_mean_k=20_eq=20",
"all-temp-sasa_core_std_k=20_eq=20",
"r-lamda_b=2.5_eq=20"
]
}
# Loaded models cache
self.loaded_models = {}
# Validate model files exist
self._validate_models()
def _validate_models(self):
"""Validate that all model files exist."""
missing_models = []
for model_name, model_path in self.model_paths.items():
if not model_path.exists():
missing_models.append(f"{model_name}: {model_path}")
if missing_models:
raise FileNotFoundError(
f"Missing model files:\n" + "\n".join(missing_models)
)
logger.info(f"Validated {len(self.model_paths)} model files")
def load_model(self, model_name: str):
"""
Load a trained model from disk.
Args:
model_name: Name of the model (tagg, tm, or tmon)
Returns:
Loaded scikit-learn model
"""
if model_name not in self.model_paths:
raise ValueError(
f"Unknown model: {model_name}. "
f"Available models: {list(self.model_paths.keys())}"
)
# Check cache first
if model_name in self.loaded_models:
logger.debug(f"Using cached model: {model_name}")
return self.loaded_models[model_name]
# Load model
model_path = self.model_paths[model_name]
logger.info(f"Loading model: {model_name} from {model_path}")
try:
model = joblib.load(model_path)
self.loaded_models[model_name] = model
logger.info(f"Successfully loaded {model_name} model")
return model
except Exception as e:
logger.error(f"Failed to load model {model_name}: {e}")
raise
def extract_features(self, descriptors_df: pd.DataFrame, model_name: str) -> pd.DataFrame:
"""
Extract required features for a specific model.
Args:
descriptors_df: DataFrame containing all computed descriptors
model_name: Name of the model
Returns:
DataFrame with only the features required by the model
"""
required_features = self.model_features[model_name]
# Check which features are available
available_features = descriptors_df.columns.tolist()
missing_features = [f for f in required_features if f not in available_features]
if missing_features:
logger.error(f"Missing features for {model_name}: {missing_features}")
logger.error(f"Available features: {available_features}")
raise ValueError(
f"Missing required features for {model_name}: {missing_features}"
)
# Extract features in the correct order
features_df = descriptors_df[required_features].copy()
logger.info(f"Extracted {len(required_features)} features for {model_name}")
logger.debug(f"Features: {required_features}")
return features_df
def predict(self, descriptors_df: pd.DataFrame, model_name: str) -> np.ndarray:
"""
Make prediction using a specific model.
Args:
descriptors_df: DataFrame containing all computed descriptors
model_name: Name of the model (tagg, tm, or tmon)
Returns:
Array of predictions
"""
# Load model
model = self.load_model(model_name)
# Extract required features
features_df = self.extract_features(descriptors_df, model_name)
# Make prediction
logger.info(f"Making prediction with {model_name} model...")
predictions = model.predict(features_df)
logger.info(f"Prediction completed: {predictions}")
return predictions
def predict_all(self, descriptors_df: pd.DataFrame) -> Dict[str, np.ndarray]:
"""
Make predictions using all three models.
Args:
descriptors_df: DataFrame containing all computed descriptors
Returns:
Dictionary mapping model name to predictions
"""
logger.info("Making predictions with all models...")
predictions = {}
for model_name in ["tagg", "tm", "tmon"]:
try:
pred = self.predict(descriptors_df, model_name)
predictions[model_name] = pred
except Exception as e:
logger.error(f"Failed to predict with {model_name}: {e}")
predictions[model_name] = None
return predictions
def run_model_inference(descriptor_result: Dict, config: Dict) -> Dict:
"""
Main entry point for model inference.
Args:
descriptor_result: Dictionary containing descriptors DataFrame
config: Configuration dictionary
Returns:
Dictionary containing predictions and metadata
"""
logger.info("Starting model inference...")
descriptors_df = descriptor_result["descriptors_df"]
work_dir = Path(descriptor_result["work_dir"])
antibody_name = work_dir.name
# Initialize predictor
try:
predictor = AbMeltPredictor()
except Exception as e:
logger.error(f"Failed to initialize predictor: {e}")
raise
# Make predictions
try:
predictions = predictor.predict_all(descriptors_df)
except Exception as e:
logger.error(f"Prediction failed: {e}")
raise
# Format results
results = _format_predictions(predictions, antibody_name)
# Save predictions
try:
_save_predictions(results, work_dir, antibody_name)
except Exception as e:
logger.warning(f"Failed to save predictions: {e}")
logger.info("Model inference completed successfully")
return {
"status": "success",
"predictions": predictions,
"results": results,
"work_dir": str(work_dir),
"message": "Model inference completed successfully"
}
def _format_predictions(predictions: Dict[str, np.ndarray], antibody_name: str) -> pd.DataFrame:
"""
Format predictions into a readable DataFrame.
Args:
predictions: Dictionary mapping model name to predictions
antibody_name: Name of the antibody
Returns:
DataFrame with formatted results
"""
results_data = {
"antibody": [antibody_name],
}
# Add predictions for each target
target_names = {
"tagg": "T_agg (°C)",
"tm": "T_m (°C)",
"tmon": "T_m_onset (°C)"
}
for model_name, pred in predictions.items():
if pred is not None:
# Convert from standardized/scaled value to actual temperature
# Note: These are still relative values unless you have the original scaling
target_name = target_names.get(model_name, model_name)
results_data[target_name] = [float(pred[0]) if len(pred) > 0 else None]
else:
target_name = target_names.get(model_name, model_name)
results_data[target_name] = [None]
results_df = pd.DataFrame(results_data)
logger.info("Prediction results:")
logger.info(f"\n{results_df.to_string(index=False)}")
return results_df
def _save_predictions(results: pd.DataFrame, work_dir: Path, antibody_name: str):
"""
Save predictions to files.
Args:
results: DataFrame containing formatted results
work_dir: Working directory
antibody_name: Name of the antibody
"""
# Save to CSV
csv_path = work_dir / f"{antibody_name}_predictions.csv"
results.to_csv(csv_path, index=False)
logger.info(f"Saved predictions to {csv_path}")
# Also save to a summary file in the results directory
try:
results_dir = work_dir.parent.parent / "results"
results_dir.mkdir(parents=True, exist_ok=True)
summary_path = results_dir / "predictions_summary.csv"
# Append to summary file if it exists, otherwise create new
if summary_path.exists():
existing = pd.read_csv(summary_path)
combined = pd.concat([existing, results], ignore_index=True)
combined.to_csv(summary_path, index=False)
logger.info(f"Appended predictions to {summary_path}")
else:
results.to_csv(summary_path, index=False)
logger.info(f"Created predictions summary at {summary_path}")
except Exception as e:
logger.warning(f"Could not save to summary file: {e}")
def load_existing_predictions(work_dir: Path, antibody_name: str) -> Dict:
"""
Load previously computed predictions from disk.
Args:
work_dir: Working directory
antibody_name: Name of the antibody
Returns:
Dictionary containing predictions
"""
csv_path = work_dir / f"{antibody_name}_predictions.csv"
if not csv_path.exists():
raise FileNotFoundError(f"Predictions file not found: {csv_path}")
logger.info(f"Loading existing predictions from {csv_path}")
results_df = pd.read_csv(csv_path)
# Extract predictions back into dictionary format
predictions = {
"tagg": np.array([results_df["T_agg (°C)"].values[0]]) if "T_agg (°C)" in results_df.columns else None,
"tm": np.array([results_df["T_m (°C)"].values[0]]) if "T_m (°C)" in results_df.columns else None,
"tmon": np.array([results_df["T_m_onset (°C)"].values[0]]) if "T_m_onset (°C)" in results_df.columns else None,
}
return {
"status": "success",
"predictions": predictions,
"results": results_df,
"work_dir": str(work_dir),
"message": "Loaded existing predictions"
}
|