Spaces:
Sleeping
Sleeping
File size: 13,525 Bytes
7417a6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
"""
Gradio Demo for AudioTextHTDemucs - Text-Conditioned Stem Separation
Upload an audio file, enter a text prompt (e.g., "drums", "extract bass", "vocals"),
and the model will separate that stem from the mixture.
"""
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import gradio as gr
import torch
import torch.nn.functional as F
import torchaudio
import numpy as np
import matplotlib.pyplot as plt
from pathlib import Path
from demucs import pretrained
from transformers import ClapModel, AutoTokenizer
from src.models.stem_separation.ATHTDemucs_v2 import AudioTextHTDemucs
from utils import load_config, plot_spectrogram
# ============================================================================
# Configuration
# ============================================================================
cfg = load_config("config.yaml")
CHECKPOINT_PATH = cfg["training"]["resume_from"] # Change as needed
SAMPLE_RATE = cfg["data"]["sample_rate"]
SEGMENT_SECONDS = cfg["data"]["segment_seconds"]
OVERLAP = cfg["data"]["overlap"]
# Auto-detect device
if torch.cuda.is_available():
DEVICE = "cuda"
elif torch.backends.mps.is_available():
DEVICE = "mps"
else:
DEVICE = "cpu"
# DEVICE = "cpu"
# ============================================================================
# Model Loading
# ============================================================================
print(f"Loading model on device: {DEVICE}")
print("Loading HTDemucs...")
htdemucs = pretrained.get_model('htdemucs').models[0]
print("Loading CLAP...")
clap = ClapModel.from_pretrained("laion/clap-htsat-unfused")
tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused")
print("Building AudioTextHTDemucs...")
model = AudioTextHTDemucs(htdemucs, clap, tokenizer)
print(f"Loading checkpoint from {CHECKPOINT_PATH}...")
checkpoint = torch.load(CHECKPOINT_PATH, map_location="cpu")
model.load_state_dict(checkpoint["model_state_dict"], strict=False)
print(f"Loaded checkpoint from epoch {checkpoint.get('epoch', '?')}")
model = model.to(DEVICE)
model.eval()
print("Model ready!")
# ============================================================================
# Helper Functions
# ============================================================================
def create_spectrogram(audio, sr=SAMPLE_RATE, title="Spectrogram"):
"""Create a spectrogram visualization."""
fig, ax = plt.subplots(figsize=(10, 4))
# Convert to mono for visualization if stereo
if audio.shape[0] == 2:
audio_mono = audio.mean(dim=0)
else:
audio_mono = audio.squeeze()
# Compute spectrogram
n_fft = 2048
hop_length = 512
spec = torch.stft(
audio_mono,
n_fft=n_fft,
hop_length=hop_length,
return_complex=True
)
spec_mag = torch.abs(spec)
spec_db = 20 * torch.log10(spec_mag + 1e-8)
# Plot
im = ax.imshow(
spec_db.cpu().numpy(),
aspect='auto',
origin='lower',
cmap='viridis',
interpolation='nearest'
)
ax.set_xlabel('Time (frames)')
ax.set_ylabel('Frequency (bins)')
ax.set_title(title)
plt.colorbar(im, ax=ax, format='%+2.0f dB')
plt.tight_layout()
return fig
def load_audio(audio_path, target_sr=SAMPLE_RATE):
"""Load audio file and resample if necessary."""
waveform, sr = torchaudio.load(audio_path)
# Resample if necessary
if sr != target_sr:
resampler = torchaudio.transforms.Resample(sr, target_sr)
waveform = resampler(waveform)
# Convert to stereo if mono
if waveform.shape[0] == 1:
waveform = waveform.repeat(2, 1)
return waveform, target_sr
def chunked_inference(mixture, prompt):
"""Run chunked inference for a single stem."""
C, T = mixture.shape
chunk_len = int(SAMPLE_RATE * SEGMENT_SECONDS)
overlap_frames = int(OVERLAP * SAMPLE_RATE)
output = torch.zeros(C, T, device=DEVICE)
weight = torch.zeros(T, device=DEVICE)
start = 0
while start < T:
end = min(start + chunk_len, T)
chunk = mixture[:, start:end].unsqueeze(0).to(DEVICE) # (1, C, chunk_len)
# Pad if needed
if chunk.shape[-1] < chunk_len:
pad_amount = chunk_len - chunk.shape[-1]
chunk = F.pad(chunk, (0, pad_amount))
with torch.no_grad():
out = model(chunk, [prompt]) # (1, C, chunk_len)
# Ensure output is on the correct device
out = out.to(DEVICE).squeeze(0) # (C, chunk_len)
# Trim padding if we added any
actual_len = end - start
out = out[:, :actual_len]
# Create fade weights for overlap-add
fade_len = min(overlap_frames, actual_len // 2)
chunk_weight = torch.ones(actual_len, device=DEVICE)
if start > 0 and fade_len > 0:
# Fade in
chunk_weight[:fade_len] = torch.linspace(0, 1, fade_len, device=DEVICE)
if end < T and fade_len > 0:
# Fade out
chunk_weight[-fade_len:] = torch.linspace(1, 0, fade_len, device=DEVICE)
output[:, start:end] += out * chunk_weight
weight[start:end] += chunk_weight
# Move to next chunk with overlap
start += chunk_len - overlap_frames
# Normalize by weights
weight = weight.clamp(min=1e-8)
output = output / weight
return output
def download_youtube_audio(yt_link):
"""Download audio from a YouTube link using yt-dlp."""
try:
import yt_dlp
os.remove("temp/yt_audio.webm") if os.path.exists("temp/yt_audio.webm") else None
ydl_opts = {
'format': 'bestaudio/best',
'quiet': True,
'outtmpl': 'temp/yt_audio.webm',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([yt_link])
mixture, sr = load_audio("temp/yt_audio.webm", target_sr=SAMPLE_RATE)
return (sr, mixture.T.numpy())
except Exception as e:
return f"Error downloading audio from YouTube: {str(e)}"
# ============================================================================
# Gradio Interface Functions
# ============================================================================
def process_audio(audio_file, yt_link, text_prompt):
"""Main processing function for the Gradio interface."""
if audio_file is None and (yt_link is None or yt_link.strip() == ""):
return None, None, None, None, "Please upload an audio file."
if not text_prompt or text_prompt.strip() == "":
return None, None, None, None, "Please enter a text prompt."
if yt_link and yt_link.strip() != "":
try:
download_youtube_audio(yt_link)
except Exception as e:
return None, None, None, None, str(e)
try:
# Load audio
mixture, sr = load_audio(audio_file if audio_file else "temp/yt_audio.webm", target_sr=SAMPLE_RATE)
print(f"Loaded audio: {mixture.shape}, sr={sr}")
# Create input spectrogram
input_spec_fig = create_spectrogram(mixture, sr, title="Input Mixture Spectrogram")
#input_spec_fig = plot_spectrogram(mixture, sr, title="Input Mixture Spectrogram")
# Run separation
print(f"Running separation with prompt: '{text_prompt}'")
separated = chunked_inference(mixture.to(DEVICE), text_prompt.strip())
separated = separated.cpu()
# Debug: Check if output is non-zero
print(f"Separated audio shape: {separated.shape}")
print(f"Separated audio range: [{separated.min():.4f}, {separated.max():.4f}]")
print(f"Separated audio mean abs: {separated.abs().mean():.4f}")
# Create output spectrogram
output_spec_fig = create_spectrogram(separated, sr, title=f"Separated: {text_prompt}")
# Convert to audio format for Gradio
# Gradio Audio expects tuple: (sample_rate, numpy_array)
# numpy_array shape should be (samples, channels) for stereo
input_audio = (sr, mixture.T.numpy()) # (sr, (T, 2))
output_audio = (sr, separated.T.numpy()) # (sr, (T, 2))
status = f"β Successfully separated '{text_prompt}' from the mixture!"
return input_audio, output_audio, input_spec_fig, output_spec_fig, status
except Exception as e:
error_msg = f"Error: {str(e)}"
print(error_msg)
import traceback
traceback.print_exc()
return None, None, None, None, error_msg
# ============================================================================
# Gradio Interface
# ============================================================================
def create_demo():
"""Create the Gradio interface."""
with gr.Blocks(title="AudioTextHTDemucs Demo") as demo:
gr.Markdown(
"""
# π΅ AudioTextHTDemucs - Text-Conditioned Stem Separation
Upload an audio file and enter a text prompt to separate specific stems from the mixture.
**Example prompts:**
- `drums` - Extract drum sounds
- `bass` - Extract bass guitar
- `vocals` - Extract singing voice
- `other` - Extract other instruments
- Or any natural language description like "extract the guitar" or "piano sound"
"""
)
with gr.Row():
with gr.Column():
gr.Markdown("### Input")
audio_input = gr.Audio(
label="Upload Audio File",
type="filepath",
sources=["upload"]
)
yt_link_input = gr.Textbox(
label="YouTube Video URL (optional)",
placeholder="Provide a YouTube link to fetch audio",
lines=1
)
text_input = gr.Textbox(
label="Text Prompt",
placeholder="Enter what you want to extract (e.g., 'drums', 'vocals', 'bass')",
lines=1
)
gr.Examples(
examples=[
["drums"],
["bass"],
["vocals"],
["other"],
["extract the drums"],
["guitar sound"],
],
inputs=text_input,
label="Click to use example prompts"
)
with gr.Row():
clear_btn = gr.Button("Clear", variant="secondary")
submit_btn = gr.Button("Separate Audio", variant="primary")
status_output = gr.Textbox(label="Status", interactive=False)
yt_link_input.change(download_youtube_audio, inputs=[yt_link_input], outputs=[audio_input])
with gr.Row():
with gr.Column():
gr.Markdown("### Input Mixture")
input_audio_player = gr.Audio(
label="Input Audio (Original Mix)",
type="numpy",
interactive=False
)
input_spec_plot = gr.Plot(label="Input Spectrogram")
with gr.Column():
gr.Markdown("### Separated Output")
output_audio_player = gr.Audio(
label="Separated Audio",
type="numpy",
interactive=False
)
output_spec_plot = gr.Plot(label="Output Spectrogram")
# Button actions
submit_btn.click(
fn=process_audio,
inputs=[audio_input, yt_link_input, text_input],
outputs=[
input_audio_player,
output_audio_player,
input_spec_plot,
output_spec_plot,
status_output
]
)
def clear_all():
return None, "", None, None, None, None, None, ""
clear_btn.click(
fn=clear_all,
outputs=[
audio_input,
text_input,
yt_link_input,
input_audio_player,
output_audio_player,
input_spec_plot,
output_spec_plot,
status_output
]
)
gr.Markdown(
"""
---
### Notes
- The model works best with music audio sampled at 44.1kHz
- Processing time depends on audio length (segments processed in 6-second chunks)
- The model was trained on stems: drums, bass, vocals, and other instruments
- You can use natural language descriptions thanks to CLAP text embeddings
"""
)
return demo
# ============================================================================
# Launch
# ============================================================================
if __name__ == "__main__":
demo = create_demo()
demo.launch(
share=False, # Set to True to create a public link
server_name="0.0.0.0", # Allow external connections
server_port=7860
) |