Spaces:
Sleeping
Sleeping
File size: 30,877 Bytes
7417a6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 |
from typing import Union, Optional, Dict, List
from pathlib import Path
import yaml
import torch
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg') # Non-interactive backend for server/training use
# ============================================================================
# YAML Config
# ============================================================================
def load_config(file_path: Union[str, Path]) -> dict:
"""Load a YAML configuration file."""
with open(file_path, 'r') as f:
config = yaml.safe_load(f)
return config
# ============================================================================
# Spectrogram Utilities
# ============================================================================
def compute_spectrogram(
waveform: torch.Tensor,
n_fft: int = 2048,
hop_length: int = 512,
power: float = 2.0,
to_db: bool = True,
top_db: float = 80.0,
) -> torch.Tensor:
"""
Compute spectrogram from waveform using STFT.
Args:
waveform: (C, T) or (T,) audio waveform
n_fft: FFT window size
hop_length: Hop length between frames
power: Exponent for magnitude (1.0 for magnitude, 2.0 for power)
to_db: Convert to decibel scale
top_db: Threshold for dynamic range in dB
Returns:
(F, T') spectrogram tensor
"""
# Handle stereo by taking mean to mono
if waveform.dim() == 2:
waveform = waveform.mean(dim=0) # (T,)
# Move to CPU for STFT computation
waveform = waveform.cpu()
# Compute STFT
window = torch.hann_window(n_fft)
stft = torch.stft(
waveform,
n_fft=n_fft,
hop_length=hop_length,
win_length=n_fft,
window=window,
return_complex=True,
center=True,
pad_mode='reflect'
)
# Compute magnitude spectrogram
spec = torch.abs(stft).pow(power)
# Convert to dB
if to_db:
spec = amplitude_to_db(spec, top_db=top_db)
return spec
def amplitude_to_db(
spec: torch.Tensor,
ref: float = 1.0,
amin: float = 1e-10,
top_db: float = 80.0,
) -> torch.Tensor:
"""Convert amplitude/power spectrogram to decibel scale."""
spec_db = 10.0 * torch.log10(torch.clamp(spec, min=amin) / ref)
# Clip to top_db range
max_val = spec_db.max()
spec_db = torch.clamp(spec_db, min=max_val - top_db)
return spec_db
def plot_spectrogram(
spec: torch.Tensor,
sample_rate: int = 44100,
hop_length: int = 512,
title: str = "Spectrogram",
figsize: tuple = (10, 4),
cmap: str = "magma",
colorbar: bool = True,
) -> plt.Figure:
"""
Plot a single spectrogram.
Args:
spec: (F, T) spectrogram tensor (in dB scale)
sample_rate: Audio sample rate
hop_length: Hop length used for STFT
title: Plot title
figsize: Figure size
cmap: Colormap for spectrogram
colorbar: Whether to show colorbar
Returns:
matplotlib Figure object
"""
spec_np = spec.detach().cpu().numpy() if isinstance(spec, torch.Tensor) else spec
fig, ax = plt.subplots(figsize=figsize)
# Compute time and frequency axes
n_frames = spec_np.shape[1]
n_freqs = spec_np.shape[0]
time_max = n_frames * hop_length / sample_rate
freq_max = sample_rate / 2 # Nyquist frequency
img = ax.imshow(
spec_np,
aspect='auto',
origin='lower',
cmap=cmap,
extent=[0, time_max, 0, freq_max / 1000] # freq in kHz
)
ax.set_xlabel('Time (s)')
ax.set_ylabel('Frequency (kHz)')
ax.set_title(title)
if colorbar:
cbar = fig.colorbar(img, ax=ax, format='%+2.0f dB')
cbar.set_label('Magnitude (dB)')
fig.tight_layout()
return fig
def plot_spectrogram_comparison(
spectrograms: Dict[str, torch.Tensor],
sample_rate: int = 44100,
hop_length: int = 512,
figsize: tuple = (14, 3),
cmap: str = "magma",
suptitle: Optional[str] = None,
) -> plt.Figure:
"""
Plot multiple spectrograms side by side for comparison.
Args:
spectrograms: Dict mapping names to spectrogram tensors
sample_rate: Audio sample rate
hop_length: Hop length used for STFT
figsize: Figure size (width, height per row)
cmap: Colormap for spectrograms
suptitle: Super title for the figure
Returns:
matplotlib Figure object
"""
n_specs = len(spectrograms)
fig, axes = plt.subplots(
1, n_specs,
figsize=(figsize[0], figsize[1]),
constrained_layout=True # Better layout handling with colorbars
)
if n_specs == 1:
axes = [axes]
# Find global min/max for consistent colorbar
all_specs = [s.detach().cpu().numpy() if isinstance(s, torch.Tensor) else s
for s in spectrograms.values()]
vmin = min(s.min() for s in all_specs)
vmax = max(s.max() for s in all_specs)
for ax, (name, spec) in zip(axes, spectrograms.items()):
spec_np = spec.detach().cpu().numpy() if isinstance(spec, torch.Tensor) else spec
n_frames = spec_np.shape[1]
time_max = n_frames * hop_length / sample_rate
freq_max = sample_rate / 2
img = ax.imshow(
spec_np,
aspect='auto',
origin='lower',
cmap=cmap,
extent=[0, time_max, 0, freq_max / 1000],
vmin=vmin,
vmax=vmax,
)
ax.set_xlabel('Time (s)')
ax.set_ylabel('Frequency (kHz)')
ax.set_title(name)
# Add single colorbar
fig.colorbar(img, ax=axes, format='%+2.0f dB', label='Magnitude (dB)')
if suptitle:
fig.suptitle(suptitle, fontsize=12)
return fig
def plot_separation_spectrograms(
mixture: torch.Tensor,
estimated: torch.Tensor,
reference: torch.Tensor,
stem_name: str = "stem",
sample_rate: int = 44100,
n_fft: int = 2048,
hop_length: int = 512,
) -> plt.Figure:
"""
Create a comparison spectrogram plot for stem separation.
Shows mixture, estimated, reference, and difference.
Args:
mixture: (C, T) mixture waveform
estimated: (C, T) estimated stem waveform
reference: (C, T) ground truth stem waveform
stem_name: Name of the stem for title
sample_rate: Audio sample rate
n_fft: FFT window size
hop_length: Hop length
Returns:
matplotlib Figure object
"""
# Compute spectrograms
spec_mix = compute_spectrogram(mixture, n_fft=n_fft, hop_length=hop_length)
spec_est = compute_spectrogram(estimated, n_fft=n_fft, hop_length=hop_length)
spec_ref = compute_spectrogram(reference, n_fft=n_fft, hop_length=hop_length)
# Create comparison plot
spectrograms = {
"Mixture": spec_mix,
f"Estimated ({stem_name})": spec_est,
f"Ground Truth ({stem_name})": spec_ref,
}
fig = plot_spectrogram_comparison(
spectrograms,
sample_rate=sample_rate,
hop_length=hop_length,
suptitle=f"Stem Separation: {stem_name.capitalize()}"
)
return fig
def plot_all_stems_spectrograms(
mixture: torch.Tensor,
estimated_stems: Dict[str, torch.Tensor],
reference_stems: Dict[str, torch.Tensor],
sample_rate: int = 44100,
n_fft: int = 2048,
hop_length: int = 512,
figsize: tuple = (16, 12),
) -> plt.Figure:
"""
Create a grid of spectrograms for all stems.
Args:
mixture: (C, T) mixture waveform
estimated_stems: Dict mapping stem names to estimated (C, T) waveforms
reference_stems: Dict mapping stem names to reference (C, T) waveforms
sample_rate: Audio sample rate
n_fft: FFT window size
hop_length: Hop length
figsize: Figure size
Returns:
matplotlib Figure object
"""
stem_names = list(estimated_stems.keys())
n_stems = len(stem_names)
# Create grid: rows = stems, cols = [Estimated, Ground Truth]
fig, axes = plt.subplots(
n_stems, 2,
figsize=figsize,
constrained_layout=True # Better layout handling with colorbars
)
if n_stems == 1:
axes = axes.reshape(1, -1)
# Compute all spectrograms and find global min/max for consistent colorbar
all_specs = []
spec_data = {}
for stem_name in stem_names:
spec_est = compute_spectrogram(
estimated_stems[stem_name], n_fft=n_fft, hop_length=hop_length
)
spec_ref = compute_spectrogram(
reference_stems[stem_name], n_fft=n_fft, hop_length=hop_length
)
spec_data[stem_name] = {'est': spec_est, 'ref': spec_ref}
all_specs.extend([spec_est.cpu().numpy(), spec_ref.cpu().numpy()])
vmin = min(s.min() for s in all_specs)
vmax = max(s.max() for s in all_specs)
for row, stem_name in enumerate(stem_names):
spec_est = spec_data[stem_name]['est']
spec_ref = spec_data[stem_name]['ref']
# Get time extent
n_frames = spec_est.shape[1]
time_max = n_frames * hop_length / sample_rate
freq_max = sample_rate / 2
# Plot estimated
spec_np = spec_est.detach().cpu().numpy()
axes[row, 0].imshow(
spec_np, aspect='auto', origin='lower', cmap='magma',
extent=[0, time_max, 0, freq_max / 1000],
vmin=vmin, vmax=vmax
)
axes[row, 0].set_title(f'{stem_name.capitalize()} - Estimated')
axes[row, 0].set_ylabel('Freq (kHz)')
# Plot reference
spec_np = spec_ref.detach().cpu().numpy()
img = axes[row, 1].imshow(
spec_np, aspect='auto', origin='lower', cmap='magma',
extent=[0, time_max, 0, freq_max / 1000],
vmin=vmin, vmax=vmax
)
axes[row, 1].set_title(f'{stem_name.capitalize()} - Ground Truth')
# Set x labels on bottom row
axes[-1, 0].set_xlabel('Time (s)')
axes[-1, 1].set_xlabel('Time (s)')
fig.colorbar(img, ax=axes, format='%+2.0f dB', label='Magnitude (dB)')
fig.suptitle('Stem Separation Results', fontsize=14)
return fig
# ============================================================================
# Weights & Biases Logging Utilities
# ============================================================================
def log_spectrogram_to_wandb(
fig: plt.Figure,
key: str = "spectrogram",
step: Optional[int] = None,
caption: Optional[str] = None,
):
"""
Log a matplotlib figure as an image to W&B.
Args:
fig: matplotlib Figure object
key: W&B log key
step: Training step (optional)
caption: Image caption
"""
import wandb
# Convert figure to W&B Image
wandb_img = wandb.Image(fig, caption=caption)
log_dict = {key: wandb_img}
if step is not None:
wandb.log(log_dict, step=step)
else:
wandb.log(log_dict)
# Close the figure to free memory
plt.close(fig)
def log_audio_to_wandb(
audio: torch.Tensor,
stem_name: str,
is_gt: bool,
sample_rate: int = 44100
):
"""
Log audio waveform to W&B.
Args:
audio: (C, T) audio waveform tensor
stem_name: Name of the stem
is_gt: Whether this is ground truth audio (or extracted audio)
sample_rate: Audio sample rate
"""
import wandb
# Convert to numpy
audio_np = audio.detach().cpu().numpy().T # (T, C)
title =f"true_{stem_name}" if is_gt else f"extracted_{stem_name}"
keyname = f"audio/{title}"
wandb.log({
keyname: wandb.Audio(
audio_np,
sample_rate=sample_rate,
caption=title
)
})
def log_separation_spectrograms_to_wandb(
mixture: torch.Tensor,
estimated: torch.Tensor,
reference: torch.Tensor,
stem_name: str,
step: Optional[int] = None,
sample_rate: int = 44100,
):
"""
Log stem separation spectrograms to W&B.
Args:
mixture: (C, T) mixture waveform
estimated: (C, T) estimated stem waveform
reference: (C, T) ground truth stem waveform
stem_name: Name of the stem
step: Training step (optional)
sample_rate: Audio sample rate
"""
fig = plot_separation_spectrograms(
mixture=mixture,
estimated=estimated,
reference=reference,
stem_name=stem_name,
sample_rate=sample_rate,
)
log_spectrogram_to_wandb(
fig=fig,
key=f"spectrograms/{stem_name}",
step=step,
caption=f"Separation for {stem_name}"
)
def log_all_stems_to_wandb(
mixture: torch.Tensor,
estimated_stems: Dict[str, torch.Tensor],
reference_stems: Dict[str, torch.Tensor],
step: Optional[int] = None,
sample_rate: int = 44100,
log_individual: bool = True,
log_combined: bool = True,
):
"""
Log spectrograms for all stems to W&B.
Args:
mixture: (C, T) mixture waveform
estimated_stems: Dict mapping stem names to estimated (C, T) waveforms
reference_stems: Dict mapping stem names to reference (C, T) waveforms
step: Training step (optional)
sample_rate: Audio sample rate
log_individual: Log individual stem comparisons
log_combined: Log combined grid of all stems
"""
if log_individual:
for stem_name in estimated_stems.keys():
log_separation_spectrograms_to_wandb(
mixture=mixture,
estimated=estimated_stems[stem_name],
reference=reference_stems[stem_name],
stem_name=stem_name,
step=step,
sample_rate=sample_rate,
)
if log_combined:
fig = plot_all_stems_spectrograms(
mixture=mixture,
estimated_stems=estimated_stems,
reference_stems=reference_stems,
sample_rate=sample_rate,
)
log_spectrogram_to_wandb(
fig=fig,
key="spectrograms/all_stems",
step=step,
caption="All stems separation comparison"
)
# --- Audio I/O ---
# def load_audio(
# file_path: Union[str, Path],
# sample_rate: int = DEFAULT_SAMPLE_RATE,
# max_len: int = 5,
# mono: bool = True
# ) -> Tuple[np.ndarray, int]:
# """
# Load an audio file into a numpy array.
# Parameters
# ----------
# file_path (str or Path): Path to the audio file
# max_len (int): Maximum length of audio in seconds
# sample_rate (int, optional): Target sample rate
# mono (bool, optional): Whether to convert audio to mono
# Returns
# -------
# tuple
# (audio_data, sample_rate)
# """
# try:
# audio_data, sr = librosa.load(file_path, sr=sample_rate, mono=mono)
# # Clip audio to max_len
# max_samples = int(sample_rate * max_len)
# if len(audio_data) > max_samples:
# audio_data = audio_data[:max_samples]
# else:
# padding = max_samples - len(audio_data)
# audio_data = np.pad(
# audio_data,
# (0, padding),
# 'constant'
# )
# return audio_data, sr
# except Exception as e:
# raise IOError(f"Error loading audio file {file_path}: {str(e)}")
# def save_audio(
# audio_data: np.ndarray,
# file_path: Union[str, Path],
# sample_rate: int = DEFAULT_SAMPLE_RATE,
# normalize: bool = True,
# file_format: str = 'flac'
# ) -> None:
# """
# Save audio data to a file.
# Parameters
# ----------
# audio_data (np.ndarray): Audio time series
# file_path (str or Path): Path to save the audio file
# sample_rate (int, optional): Sample rate of audio
# normalize (bool, optional): Whether to normalize audio before saving
# file_format (str, optional): Audio file format
# Returns
# -------
# None
# """
# output_dir = Path(file_path).parent
# if output_dir and not output_dir.exists():
# try:
# output_dir.mkdir(parents=True, exist_ok=True)
# except Exception as e:
# raise IOError(f"Error creating directory {output_dir}: {str(e)}")
# # Normalize audio before saving
# audio_data = librosa.util.normalize(audio_data) if normalize else audio_data
# try:
# sf.write(file_path, audio_data, sample_rate, format=file_format)
# except Exception as e:
# raise IOError(f"Error saving audio to {file_path}: {str(e)}")
# # --- Gap Processing ---
# def create_gap_mask(
# audio_len_samples: int,
# gap_len_s: float,
# sample_rate: int = DEFAULT_SAMPLE_RATE,
# gap_start_s: Optional[float] = None,
# ) -> Tuple[np.ndarray, Tuple[int, int]]:
# """
# Creates a binary mask with a single gap of zeros at a random location.
# Parameters
# ----------
# audio_len_samples : int
# Length of the target audio in samples.
# gap_len_s : float
# Desired gap length in seconds.
# sample_rate : int, optional
# Sample rate. Defaults to DEFAULT_SAMPLE_RATE.
# gap_start_s : float, optional
# Timestap in seconds where the gap starts. If None, a random position is chosen.
# Returns
# -------
# Tuple[np.ndarray, Tuple[int, int]]
# (mask, (gap_start_sample, gap_end_sample))
# Mask is 1.0 for signal, 0.0 for gap (float32).
# Interval is gap start/end indices in samples.
# """
# gap_len_samples = int(gap_len_s * sample_rate)
# if gap_len_samples <= 0:
# # No gap, return full mask and zero interval
# return np.ones(audio_len_samples, dtype=np.float32), (0, 0)
# if gap_len_samples >= audio_len_samples:
# # Gap covers everything
# print(f"Warning: Gap length ({gap_len_s}s) >= audio length. Returning all zeros mask.")
# return np.zeros(audio_len_samples, dtype=np.float32), (0, audio_len_samples)
# # Choose a random start position for the gap (inclusive range)
# max_start_sample = audio_len_samples - gap_len_samples
# if (gap_start_s is None):
# gap_start_sample = np.random.randint(0, max_start_sample + 1)
# else:
# gap_start_sample = int(gap_start_s * sample_rate)
# gap_end_sample = gap_start_sample + gap_len_samples
# # Create mask
# mask = np.ones(audio_len_samples, dtype=np.float32)
# mask[gap_start_sample:gap_end_sample] = 0.0
# return mask, (gap_start_sample, gap_end_sample)
# def add_random_gap(
# file_path: Union[str, Path],
# gap_len: int,
# sample_rate: int = DEFAULT_SAMPLE_RATE,
# mono: bool = True
# ) -> Tuple[np.ndarray, Tuple[float, float]]:
# """
# Add a random gap of length gap_len at a random valid position within the audio file and return the audio data
# Parameters
# ----------
# file_path (str or Path): Path to the audio file
# gap_len (int): Gap length (seconds) to add at one location within the audio file
# sample_rate (int, optional): Target sample rate
# mono (bool, optional): Whether to convert audio to mono
# Returns
# -------
# tuple
# (modified_audio_data, gap_interval)
# gap_interval is a tuple of (start_time, end_time) in seconds
# """
# audio_data, sr = load_audio(file_path, sample_rate=sample_rate, mono=mono)
# # Convert gap length to samples
# gap_length = int(gap_len * sample_rate)
# audio_len = len(audio_data)
# # Handle case where gap is longer than audio
# if gap_length >= audio_len:
# raise ValueError(f"Gap length ({gap_length}s) exceeds audio length ({audio_len/sample_rate}s)")
# # Get sample indices for gap placement
# gap_start_idx = np.random.randint(0, audio_len - int(gap_len * sample_rate))
# silence = np.zeros(gap_length)
# # Add gap
# audio_new = np.concatenate([audio_data[:gap_start_idx], silence, audio_data[gap_start_idx + gap_length:]])
# # Return gap interval as a tuple
# gap_interval = (gap_start_idx / sample_rate, (gap_start_idx + gap_length) / sample_rate)
# return audio_new, gap_interval
# # --- STFT Processing ---
# def extract_spectrogram(
# audio_data: np.ndarray,
# n_fft: int = 2048,
# hop_length: int = 512,
# win_length: Optional[int] = None,
# window: str = 'hann',
# center: bool = True,
# power: float = 1.0
# ) -> np.ndarray:
# """
# Extract magnitude spectrogram from audio data.
# Parameters
# ----------
# audio_data (np.ndarray): Audio time series
# n_fft (int, optional): FFT window size
# hop_length (int, optional): Number of samples between successive frames
# win_length (int or None, optional): Window length. If None, defaults to n_fft
# window (str, optional): Window specification
# center (bool, optional): If True, pad signal on both sides
# power (float, optional): Exponent for the magnitude spectrogram (e.g. 1 for energy, 2 for power)
# Returns
# -------
# np.ndarray
# Magnitude spectrogram
# """
# if power < 0:
# raise ValueError("Power must be non-negative")
# if win_length is None:
# win_length = n_fft
# stft = librosa.stft(
# audio_data,
# n_fft=n_fft,
# hop_length=hop_length,
# win_length=win_length,
# window=window,
# center=center
# )
# return stft
# def extract_mel_spectrogram(
# audio_data: np.ndarray,
# sample_rate: int = DEFAULT_SAMPLE_RATE,
# n_fft: int = 2048,
# hop_length: int = 512,
# n_mels: int = 128,
# fmin: float = 0.0,
# fmax: Optional[float] = None,
# power: float = 2.0
# ) -> np.ndarray:
# """
# Extract mel spectrogram from audio data.
# Parameters
# ----------
# audio_data (np.ndarray): Audio time series
# sample_rate (int, optional): Sample rate of audio
# n_fft (int, optional): FFT window size
# hop_length (int, optional): Number of samples between successive frames
# n_mels (int, optional): Number of mel bands
# fmin (float, optional): Minimum frequency
# fmax (float or None, optional): Maximum frequency. If None, use sample_rate/2
# power (float, optional): Exponent for the magnitude spectrogram (e.g. 1 for energy, 2 for power)
# Returns
# -------
# np.ndarray
# Mel spectrogram
# """
# if power < 0:
# raise ValueError("Power must be non-negative")
# return librosa.feature.melspectrogram(
# y=audio_data,
# sr=sample_rate,
# n_fft=n_fft,
# hop_length=hop_length,
# n_mels=n_mels,
# fmin=fmin,
# fmax=fmax,
# power=power
# )
# def spectrogram_to_audio(
# spectrogram: np.ndarray,
# phase: Optional[np.ndarray] = None,
# phase_info: bool = False,
# n_fft=512,
# n_iter=64,
# window='hann',
# hop_length=512,
# win_length=None,
# center=True) -> np.ndarray:
# """
# Convert a spectrogram back to audio using either:
# 1. Original phase information (if provided)
# 2. Griffin-Lim algorithm to estimate phase (if no phase provided)
# Even with original phase, the reconstruction is not truely lossless 1e-33 MSE loss.
# Parameters:
# -----------
# spectrogram (np.ndarray): The magnitude spectrogram to convert back to audio
# phase (np.ndarray, optional): Phase information to use for reconstruction. If None, Griffin-Lim is used.
# phase_info (bool): If True, the input is assumed to be a phase spectrogram
# n_fft (int): FFT window size
# n_iter (int, optional): Number of iterations for Griffin-Lim algorithm
# window (str): Window function to use
# win_length (int or None): Window size. If None, defaults to n_fft
# hop_length (int, optional): Number of samples between successive frames
# center (bool, optional): Whether to pad the signal at the edges
# Returns:
# --------
# y : np.ndarray The reconstructed audio signal
# """
# # If the input is in dB scale, convert back to amplitude
# if np.max(spectrogram) < 0 and np.mean(spectrogram) < 0:
# spectrogram = librosa.db_to_amplitude(spectrogram)
# if phase_info:
# return librosa.istft(spectrogram, n_fft=n_fft, hop_length=hop_length,
# win_length=win_length, window=window, center=center)
# # If phase information is provided, use it for reconstruction
# if phase is not None:
# # Combine magnitude and phase to form complex spectrogram
# complex_spectrogram = spectrogram * np.exp(1j * phase)
# # Inverse STFT to get audio
# y = librosa.istft(complex_spectrogram, n_fft=n_fft, hop_length=hop_length,
# win_length=win_length, window=window, center=center)
# else:
# # Use Griffin-Lim algorithm to estimate phase
# y = librosa.griffinlim(spectrogram, n_fft=n_fft, n_iter=n_iter,
# hop_length=hop_length, win_length=win_length,
# window=window, center=center)
# return y
# def mel_spectrogram_to_audio(
# mel_spectrogram: np.ndarray,
# sample_rate: int = DEFAULT_SAMPLE_RATE,
# n_fft: int = 2048,
# hop_length: int = 512,
# n_iter: int = 32,
# n_mels: int = 128,
# fmin: float = 0.0,
# fmax: Optional[float] = None,
# power: float = 2.0
# ) -> np.ndarray:
# """
# Convert a mel spectrogram to audio using inverse transformation and Griffin-Lim.
# Parameters
# ----------
# mel_spectrogram (np.ndarray): Mel spectrogram
# sample_rate (int, optional): Sample rate of audio
# n_fft (int, optional): FFT window size
# hop_length (int, optional): Number of samples between successive frames
# n_iter (int, optional): Number of iterations for Griffin-Lim
# n_mels (int, optional): Number of mel bands
# fmin (float, optional): Minimum frequency
# fmax (float or None, optional): Maximum frequency. If None, use sample_rate/2
# power (float, optional): Exponent for the magnitude spectrogram (e.g. 1 for energy, 2 for power)
# Returns
# -------
# np.ndarray
# Audio time series
# """
# # Create a mel filterbank
# mel_basis = librosa.filters.mel(
# sr=sample_rate,
# n_fft=n_fft,
# n_mels=n_mels,
# fmin=fmin,
# fmax=fmax
# )
# # Compute the pseudo-inverse of the mel filterbank
# mel_filterbank_inv = np.linalg.pinv(mel_basis)
# # Convert Mel spectrogram to linear spectrogram
# linear_spec = np.dot(mel_filterbank_inv, mel_spectrogram)
# # # If the input was a power spectrogram, take the square root
# if power == 2.0:
# linear_spec = np.sqrt(linear_spec)
# # Perform Griffin-Lim to estimate the phase and convert to audio
# audio_data = librosa.griffinlim(
# linear_spec,
# hop_length=hop_length,
# n_fft=n_fft,
# n_iter=n_iter
# )
# return audio_data
# def visualize_spectrogram(
# spectrogram: np.ndarray,
# power: int = 1,
# sample_rate: int = DEFAULT_SAMPLE_RATE,
# n_fft: int = 512,
# hop_length: int = 192,
# win_length: int = 384,
# gap_int: Optional[Tuple[int, int]] = None,
# in_db: bool = False,
# y_axis: str = 'log',
# x_axis: str = 'time',
# title: str = 'Spectrogram',
# save_path: Optional[Union[str, Path]] = None
# ) -> figure:
# """
# Visualize a spectrogram.
# Parameters
# ----------
# spectrogram (np.ndarray): Spectrogram to visualize
# power (int): Whether the spectrogram is in energy (1) or power (2) scale
# sample_rate (int, optional): Sample rate of audio
# hop_length (int, optional): Number of samples between successive frames
# gap_int (float tuple, optional): Start and end time [s] of the gap (if given) to be plotted as vertical lines
# in_db (bool, optional): Whether the spectrogram is already in dB scale
# y_axis (str, optional): Scale for the y-axis ('linear', 'log', or 'mel')
# x_axis (str, optional): Scale for the x-axis ('time' or 'frames')
# title (str, optional): Title for the plot
# save_path (str or Path or None, optional): Path to save the visualization. If None, the plot is displayed.
# Returns
# -------
# Figure or None
# The matplotlib Figure object if save_path is None, otherwise None
# """
# if power not in (1, 2):
# raise ValueError("Power must be 1 (energy) or 2 (power)")
# # Convert to dB scale if needed
# if in_db:
# spectrogram_data = np.array(spectrogram)
# elif power == 1:
# spectrogram_data = librosa.amplitude_to_db(spectrogram, ref=np.max, amin=1e-5, top_db=80)
# else: # power == 2
# spectrogram_data = librosa.power_to_db(spectrogram, ref=np.max, amin=1e-5, top_db=80)
# fig, ax = plt.subplots(figsize=(10, 4))
# img = librosa.display.specshow(
# spectrogram_data,
# sr=sample_rate,
# n_fft=n_fft,
# win_length=win_length,
# hop_length=hop_length,
# y_axis=y_axis,
# x_axis=x_axis,
# ax=ax
# )
# # Compute gap start and end indices and plot vertical lines
# if gap_int is not None:
# gap_start_s, gap_end_s = gap_int
# ax.axvline(x=gap_start_s, color='white', linestyle='--', label='Gap Start')
# ax.axvline(x=gap_end_s, color='white', linestyle='--', label='Gap End')
# ax.legend()
# # Add colorbar and title
# fig.colorbar(img, ax=ax, format='%+2.0f dB')
# ax.set_title(title)
# fig.tight_layout()
# # Save or return the figure
# if save_path is not None:
# save_path = Path(save_path)
# output_dir = save_path.parent
# if output_dir and not output_dir.exists():
# output_dir.mkdir(parents=True, exist_ok=True)
# fig.savefig(save_path)
# plt.close(fig)
# return None
# return fig |