Spaces:
Running
Running
File size: 14,827 Bytes
4b9febd 02a1ddd 4b9febd dd581eb 4b9febd dd581eb 4b9febd dd581eb 4b9febd dd581eb 4b9febd dbdbcdd 4b9febd 32d203a 4b9febd 32d203a 4b9febd 32d203a 4b9febd 32d203a 4b9febd dd581eb 4b9febd dd581eb 4b9febd 32d203a 4b9febd dbdbcdd f744169 dbdbcdd 4b9febd 32d203a 4b9febd 32d203a 4b9febd 32d203a 4b9febd dd581eb 4b9febd dd581eb 4b9febd dd581eb 4b9febd dbdbcdd 32d203a dbdbcdd 32d203a dbdbcdd 32d203a 4b9febd c4e2180 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
import gradio as gr
from huggingface_hub import InferenceClient
from dotenv import load_dotenv
from voice_handler import (
create_stt_provider,
create_tts_provider,
get_available_stt_providers,
get_available_tts_providers,
get_voices_for_provider,
get_available_languages,
get_language_code,
get_default_voice_for_language,
VoiceConfig
)
load_dotenv(override=True)
# Initialize the Hugging Face Inference Client
model_name = "swiss-ai/Apertus-8B-Instruct-2509"
short_model_name = "Apertus-8B-Instruct"
client = InferenceClient(model=model_name)
def format_messages(message, chat_history, system_prompt):
"""Format the conversation into messages list."""
messages = []
# Add system prompt if provided
if system_prompt.strip():
messages.append({"role": "system", "content": system_prompt})
# Add chat history (already in messages format)
messages.extend(chat_history)
# Add current message
messages.append({"role": "user", "content": message})
return messages
def create_language_tutor_prompt(native_language, target_language, enable_translations=True):
"""
Create a system prompt for the language tutor based on native and target languages.
Args:
native_language: User's native language
target_language: Language the user wants to learn
enable_translations: Whether to include native language translations
Returns:
System prompt string
"""
translation_guidance = ""
if enable_translations:
translation_guidance = f"""- Provide {native_language} translations when the user seems confused or asks for help
- Include {native_language} explanations in parentheses when helpful"""
else:
translation_guidance = f"""- Keep responses entirely in {target_language} for full immersion
- Only use {native_language} if the user explicitly asks for translation or clarification"""
prompt = f"""You are an expert language tutor helping a {native_language} speaker learn {target_language}.
Your role:
- Respond primarily in {target_language} to provide immersive practice
{translation_guidance}
- Correct mistakes gently and explain grammar rules when appropriate
- Adjust your vocabulary and sentence complexity based on the user's level
- Ask engaging questions to encourage conversation practice
- Provide cultural context when relevant
- Be patient, encouraging, and supportive
Guidelines:
- Keep responses conversational and natural
- Use {target_language} for the main response
- Praise progress and provide constructive feedback
- Adapt difficulty based on the user's responses
Start by greeting the user and asking what they'd like to practice today."""
return prompt
def transcribe_audio(audio_path, stt_provider_name):
"""
Transcribe audio to text using selected STT provider.
Args:
audio_path: Path to audio file
stt_provider_name: Name of STT provider
Returns:
Transcribed text or error message
"""
if audio_path is None:
return ""
try:
stt_provider = create_stt_provider(stt_provider_name)
text = stt_provider.transcribe(audio_path)
return text
except Exception as e:
return f"[Transcription Error: {str(e)}]"
def synthesize_speech(text, tts_provider_name, tts_voice, target_language="English"):
"""
Synthesize text to speech using selected TTS provider.
Args:
text: Text to synthesize
tts_provider_name: Name of TTS provider
tts_voice: Voice to use
target_language: Target language name for TTS
Returns:
Path to generated audio file or None if failed
"""
if not text or not text.strip():
return None
try:
language_code = get_language_code(target_language)
tts_provider = create_tts_provider(tts_provider_name, voice=tts_voice, language=language_code)
audio_path = tts_provider.synthesize(text)
return audio_path
except Exception as e:
print(f"TTS Error: {str(e)}")
return None
def update_voice_dropdown(tts_provider_name, target_language="English"):
"""
Update the voice dropdown based on selected TTS provider and target language.
Args:
tts_provider_name: Name of TTS provider
target_language: Target language for voice selection
Returns:
Updated dropdown configuration
"""
language_code = get_language_code(target_language)
voices = get_voices_for_provider(tts_provider_name, language_code)
return gr.Dropdown(choices=voices, value=voices[0] if voices else None)
def chat(message, chat_history, system_prompt, max_tokens, temperature, top_p,
enable_tts, tts_provider_name, tts_voice, target_language):
"""Generate a response from the Hugging Face hosted model."""
if not message.strip():
return "", chat_history, None
# Format the messages
messages = format_messages(message, chat_history, system_prompt)
try:
# Call the Hugging Face Inference API
response = client.chat_completion(
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=False
)
# Extract the assistant's reply
assistant_message = response.choices[0].message.content
# Update chat history with messages format
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": assistant_message})
# Generate TTS audio if enabled
audio_output = None
if enable_tts:
audio_output = synthesize_speech(assistant_message, tts_provider_name, tts_voice, target_language)
return "", chat_history, audio_output
except Exception as e:
error_message = f"Error: {str(e)}"
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": error_message})
return "", chat_history, None
def process_voice_input(audio, stt_provider_name):
"""
Process voice input and return transcribed text.
Args:
audio: Audio file from microphone
stt_provider_name: Name of STT provider
Returns:
Transcribed text
"""
if audio is None:
return ""
transcribed_text = transcribe_audio(audio, stt_provider_name)
return transcribed_text
def clear_voice_input_if_enabled(auto_clear):
"""
Clear the voice input component if auto-clear is enabled.
Args:
auto_clear: Boolean indicating if auto-clear is enabled
Returns:
None if auto-clear is enabled (clears the audio), otherwise gr.update() to keep it
"""
if auto_clear:
return None
else:
return gr.update()
# Create Gradio interface
with gr.Blocks(title="Language Tutor with Apertus-70B", theme=gr.themes.Glass(primary_hue="indigo")) as demo:
gr.Markdown("# ๐ Language Tutor")
gr.Markdown(f"Practice any language with an AI tutor powered by **Swiss AI {short_model_name}** - trained on 1000+ languages!")
# gr.Markdown("โ ๏ธ **Note**: You may need a Hugging Face token for API access. Set it with `huggingface-cli login` or pass it to InferenceClient.")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(label="Conversation", height=400, type='messages')
# Text input section
with gr.Row():
msg = gr.Textbox(
label="Your Message",
placeholder="Type your message here...",
scale=4,
lines=2
)
submit = gr.Button("Send", scale=1, variant="primary")
# Voice input section
with gr.Row():
voice_input = gr.Audio(
sources=["microphone"],
type="filepath",
label="Voice Input (Recording auto-transcribes when you stop)",
waveform_options=gr.WaveformOptions(
show_controls=False
)
)
# Voice output section
voice_output = gr.Audio(
label="Assistant Voice Response",
autoplay=True,
visible=True
)
clear = gr.Button("Clear Conversation")
with gr.Column(scale=1):
gr.Markdown("### ๐ Language Settings")
native_language = gr.Dropdown(
choices=get_available_languages(),
value="English",
label="Your Native Language",
info="Language for explanations and help"
)
target_language = gr.Dropdown(
choices=get_available_languages(),
value="German",
label="Language to Practice",
info="Language you want to learn"
)
enable_translations = gr.Checkbox(
label="Enable Native Language Hints",
value=True,
info="Show translations and explanations in your native language (in parentheses)"
)
system_prompt = gr.Textbox(
label="System Prompt (Auto-generated)",
placeholder="System prompt is automatically generated based on language selection...",
lines=5,
value=create_language_tutor_prompt("English", "German", True),
interactive=True,
info="You can customize this if needed",
visible=False # Hidden from UI, but still functional in backend
)
gr.Markdown("### Voice Settings")
enable_voice_input = gr.Checkbox(
label="Enable Voice Input (STT)",
value=True,
info="Transcribe voice to text"
)
stt_provider = gr.Dropdown(
choices=get_available_stt_providers(),
value=VoiceConfig.DEFAULT_STT,
label="Speech-to-Text Provider",
info="Choose quality/cost tier"
)
auto_clear_recording = gr.Checkbox(
label="Auto-clear recording after transcription",
value=True,
info="Remove check to enable playback. Enables you to play the recording and listen to your pronunciation"
)
enable_voice_output = gr.Checkbox(
label="Enable Voice Output (TTS)",
value=True,
info="Convert responses to speech"
)
tts_provider = gr.Dropdown(
choices=get_available_tts_providers(),
value=VoiceConfig.DEFAULT_TTS,
label="Text-to-Speech Provider",
info="Choose quality/cost tier"
)
tts_voice = gr.Dropdown(
choices=get_voices_for_provider(VoiceConfig.DEFAULT_TTS, get_language_code("German")),
value=get_default_voice_for_language("German", VoiceConfig.DEFAULT_TTS),
label="TTS Voice",
info="Voice automatically matched to target language"
)
gr.Markdown("### Generation Parameters")
max_tokens = gr.Slider(
minimum=50,
maximum=2048,
value=512,
step=50,
label="Max Tokens",
info="Maximum length of the response"
)
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature",
info="Higher = more creative, Lower = more focused"
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.9,
step=0.05,
label="Top P",
info="Nucleus sampling threshold"
)
# Event handlers
# Update system prompt when languages or translation setting changes
def update_system_prompt(native_lang, target_lang, enable_trans):
return create_language_tutor_prompt(native_lang, target_lang, enable_trans)
native_language.change(
update_system_prompt,
inputs=[native_language, target_language, enable_translations],
outputs=[system_prompt]
)
target_language.change(
update_system_prompt,
inputs=[native_language, target_language, enable_translations],
outputs=[system_prompt]
)
enable_translations.change(
update_system_prompt,
inputs=[native_language, target_language, enable_translations],
outputs=[system_prompt]
)
# Update TTS voice dropdown when target language or provider changes
target_language.change(
update_voice_dropdown,
inputs=[tts_provider, target_language],
outputs=[tts_voice]
)
tts_provider.change(
update_voice_dropdown,
inputs=[tts_provider, target_language],
outputs=[tts_voice]
)
# Text message submit
submit.click(
chat,
inputs=[msg, chatbot, system_prompt, max_tokens, temperature, top_p,
enable_voice_output, tts_provider, tts_voice, target_language],
outputs=[msg, chatbot, voice_output]
)
msg.submit(
chat,
inputs=[msg, chatbot, system_prompt, max_tokens, temperature, top_p,
enable_voice_output, tts_provider, tts_voice, target_language],
outputs=[msg, chatbot, voice_output]
)
# Automatic voice input transcription when recording stops, then auto-send to LLM
voice_input.stop_recording(
process_voice_input,
inputs=[voice_input, stt_provider],
outputs=[msg]
).then(
chat,
inputs=[msg, chatbot, system_prompt, max_tokens, temperature, top_p,
enable_voice_output, tts_provider, tts_voice, target_language],
outputs=[msg, chatbot, voice_output]
).then(
clear_voice_input_if_enabled,
inputs=[auto_clear_recording],
outputs=[voice_input]
)
# Also trigger transcription on audio change (for uploaded files)
# Note: No auto-send here to avoid duplicate calls when stop_recording fires
voice_input.change(
process_voice_input,
inputs=[voice_input, stt_provider],
outputs=[msg]
)
# Clear conversation
clear.click(
lambda: ([], None),
outputs=[chatbot, voice_output]
)
# Launch the app
if __name__ == "__main__":
demo.launch(share=False, inbrowser=True) |