# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import sys from typing import Callable, List, Optional import torch from fairseq import scoring, utils from fairseq.data.indexed_dataset import get_available_dataset_impl def get_preprocessing_parser(default_task="translation"): parser = get_parser("Preprocessing", default_task) add_preprocess_args(parser) return parser def get_training_parser(default_task="translation"): parser = get_parser("Trainer", default_task) add_dataset_args(parser, train=True) add_distributed_training_args(parser) add_model_args(parser) add_optimization_args(parser) add_checkpoint_args(parser) return parser def get_generation_parser(interactive=False, default_task="translation"): parser = get_parser("Generation", default_task) add_dataset_args(parser, gen=True) add_distributed_training_args(parser, default_world_size=1) add_generation_args(parser) if interactive: add_interactive_args(parser) return parser def get_interactive_generation_parser(default_task="translation"): return get_generation_parser(interactive=True, default_task=default_task) def get_eval_lm_parser(default_task="language_modeling"): parser = get_parser("Evaluate Language Model", default_task) add_dataset_args(parser, gen=True) add_distributed_training_args(parser, default_world_size=1) add_eval_lm_args(parser) return parser def get_validation_parser(default_task=None): parser = get_parser("Validation", default_task) add_dataset_args(parser, train=True) add_distributed_training_args(parser, default_world_size=1) group = parser.add_argument_group("Evaluation") add_common_eval_args(group) return parser def csv_str_list(x): return x.split(',') def eval_str_list(x, type=float): if x is None: return None if isinstance(x, str): x = eval(x) try: return list(map(type, x)) except TypeError: return [type(x)] def eval_str_dict(x, type=dict): if x is None: return None if isinstance(x, str): x = eval(x) return x def eval_bool(x, default=False): if x is None: return default try: return bool(eval(x)) except TypeError: return default def parse_args_and_arch( parser: argparse.ArgumentParser, input_args: List[str] = None, parse_known: bool = False, suppress_defaults: bool = False, modify_parser: Optional[Callable[[argparse.ArgumentParser], None]] = None, ): """ Args: parser (ArgumentParser): the parser input_args (List[str]): strings to parse, defaults to sys.argv parse_known (bool): only parse known arguments, similar to `ArgumentParser.parse_known_args` suppress_defaults (bool): parse while ignoring all default values modify_parser (Optional[Callable[[ArgumentParser], None]]): function to modify the parser, e.g., to set default values """ if suppress_defaults: # Parse args without any default values. This requires us to parse # twice, once to identify all the necessary task/model args, and a second # time with all defaults set to None. args = parse_args_and_arch( parser, input_args=input_args, parse_known=parse_known, suppress_defaults=False, ) suppressed_parser = argparse.ArgumentParser(add_help=False, parents=[parser]) suppressed_parser.set_defaults(**{k: None for k, v in vars(args).items()}) args = suppressed_parser.parse_args(input_args) return argparse.Namespace( **{k: v for k, v in vars(args).items() if v is not None} ) from fairseq.models import ARCH_MODEL_REGISTRY, ARCH_CONFIG_REGISTRY # Before creating the true parser, we need to import optional user module # in order to eagerly import custom tasks, optimizers, architectures, etc. usr_parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False) usr_parser.add_argument("--user-dir", default=None) usr_args, _ = usr_parser.parse_known_args(input_args) utils.import_user_module(usr_args) if modify_parser is not None: modify_parser(parser) # The parser doesn't know about model/criterion/optimizer-specific args, so # we parse twice. First we parse the model/criterion/optimizer, then we # parse a second time after adding the *-specific arguments. # If input_args is given, we will parse those args instead of sys.argv. args, _ = parser.parse_known_args(input_args) # Add model-specific args to parser. if hasattr(args, "arch"): model_specific_group = parser.add_argument_group( "Model-specific configuration", # Only include attributes which are explicitly given as command-line # arguments or which have default values. argument_default=argparse.SUPPRESS, ) ARCH_MODEL_REGISTRY[args.arch].add_args(model_specific_group) # Add *-specific args to parser. from fairseq.registry import REGISTRIES for registry_name, REGISTRY in REGISTRIES.items(): choice = getattr(args, registry_name, None) if choice is not None: cls = REGISTRY["registry"][choice] if hasattr(cls, "add_args"): cls.add_args(parser) if hasattr(args, "task"): from fairseq.tasks import TASK_REGISTRY TASK_REGISTRY[args.task].add_args(parser) if getattr(args, "use_bmuf", False): # hack to support extra args for block distributed data parallelism from fairseq.optim.bmuf import FairseqBMUF FairseqBMUF.add_args(parser) # Modify the parser a second time, since defaults may have been reset if modify_parser is not None: modify_parser(parser) # Parse a second time. if parse_known: args, extra = parser.parse_known_args(input_args) else: args = parser.parse_args(input_args) extra = None # Post-process args. if hasattr(args, "max_sentences_valid") and args.max_sentences_valid is None: args.max_sentences_valid = args.max_sentences if hasattr(args, "max_tokens_valid") and args.max_tokens_valid is None: args.max_tokens_valid = args.max_tokens if getattr(args, "memory_efficient_fp16", False): args.fp16 = True if getattr(args, "memory_efficient_bf16", False): args.bf16 = True args.tpu = getattr(args, "tpu", False) args.bf16 = getattr(args, "bf16", False) if args.bf16: args.tpu = True if args.tpu and args.fp16: raise ValueError("Cannot combine --fp16 and --tpu, use --bf16 on TPUs") if getattr(args, "seed", None) is None: args.seed = 1 # default seed for training args.no_seed_provided = True else: args.no_seed_provided = False # Apply architecture configuration. if hasattr(args, "arch"): ARCH_CONFIG_REGISTRY[args.arch](args) if parse_known: return args, extra else: return args def get_parser(desc, default_task="translation"): # Before creating the true parser, we need to import optional user module # in order to eagerly import custom tasks, optimizers, architectures, etc. usr_parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False) usr_parser.add_argument("--user-dir", default=None) usr_args, _ = usr_parser.parse_known_args() utils.import_user_module(usr_args) parser = argparse.ArgumentParser(allow_abbrev=False) # fmt: off parser.add_argument('--no-progress-bar', action='store_true', help='disable progress bar') parser.add_argument('--log-interval', type=int, default=100, metavar='N', help='log progress every N batches (when progress bar is disabled)') parser.add_argument('--log-format', default=None, help='log format to use', choices=['json', 'none', 'simple', 'tqdm']) parser.add_argument('--tensorboard-logdir', metavar='DIR', default='', help='path to save logs for tensorboard, should match --logdir ' 'of running tensorboard (default: no tensorboard logging)') parser.add_argument('--seed', default=None, type=int, metavar='N', help='pseudo random number generator seed') parser.add_argument('--cpu', action='store_true', help='use CPU instead of CUDA') parser.add_argument('--tpu', action='store_true', help='use TPU instead of CUDA') parser.add_argument('--bf16', action='store_true', help='use bfloat16; implies --tpu') parser.add_argument('--fp16', action='store_true', help='use FP16') parser.add_argument('--memory-efficient-bf16', action='store_true', help='use a memory-efficient version of BF16 training; implies --bf16') parser.add_argument('--memory-efficient-fp16', action='store_true', help='use a memory-efficient version of FP16 training; implies --fp16') parser.add_argument('--fp16-no-flatten-grads', action='store_true', help='don\'t flatten FP16 grads tensor') parser.add_argument('--fp16-init-scale', default=2 ** 7, type=int, help='default FP16 loss scale') parser.add_argument('--fp16-scale-window', type=int, help='number of updates before increasing loss scale') parser.add_argument('--fp16-scale-tolerance', default=0.0, type=float, help='pct of updates that can overflow before decreasing the loss scale') parser.add_argument('--min-loss-scale', default=1e-4, type=float, metavar='D', help='minimum FP16 loss scale, after which training is stopped') parser.add_argument('--threshold-loss-scale', type=float, help='threshold FP16 loss scale from below') parser.add_argument('--user-dir', default=None, help='path to a python module containing custom extensions (tasks and/or architectures)') parser.add_argument('--empty-cache-freq', default=0, type=int, help='how often to clear the PyTorch CUDA cache (0 to disable)') parser.add_argument('--all-gather-list-size', default=16384, type=int, help='number of bytes reserved for gathering stats from workers') parser.add_argument('--model-parallel-size', type=int, metavar='N', default=1, help='total number of GPUs to parallelize model over') parser.add_argument('--checkpoint-suffix', default='', help='suffix to add to the checkpoint file name') parser.add_argument('--quantization-config-path', default=None, help='path to quantization config file') parser.add_argument('--profile', action='store_true', help='enable autograd profiler emit_nvtx') from fairseq.registry import REGISTRIES for registry_name, REGISTRY in REGISTRIES.items(): parser.add_argument( '--' + registry_name.replace('_', '-'), default=REGISTRY['default'], choices=REGISTRY['registry'].keys(), ) # Task definitions can be found under fairseq/tasks/ from fairseq.tasks import TASK_REGISTRY parser.add_argument('--task', metavar='TASK', default=default_task, choices=TASK_REGISTRY.keys(), help='task') # fmt: on return parser def add_preprocess_args(parser): group = parser.add_argument_group("Preprocessing") # fmt: off group.add_argument("-s", "--source-lang", default=None, metavar="SRC", help="source language") group.add_argument("-t", "--target-lang", default=None, metavar="TARGET", help="target language") group.add_argument("--trainpref", metavar="FP", default=None, help="train file prefix") group.add_argument("--validpref", metavar="FP", default=None, help="comma separated, valid file prefixes") group.add_argument("--testpref", metavar="FP", default=None, help="comma separated, test file prefixes") group.add_argument("--align-suffix", metavar="FP", default=None, help="alignment file suffix") group.add_argument("--destdir", metavar="DIR", default="data-bin", help="destination dir") group.add_argument("--thresholdtgt", metavar="N", default=0, type=int, help="map words appearing less than threshold times to unknown") group.add_argument("--thresholdsrc", metavar="N", default=0, type=int, help="map words appearing less than threshold times to unknown") group.add_argument("--tgtdict", metavar="FP", help="reuse given target dictionary") group.add_argument("--srcdict", metavar="FP", help="reuse given source dictionary") group.add_argument("--nwordstgt", metavar="N", default=-1, type=int, help="number of target words to retain") group.add_argument("--nwordssrc", metavar="N", default=-1, type=int, help="number of source words to retain") group.add_argument("--alignfile", metavar="ALIGN", default=None, help="an alignment file (optional)") parser.add_argument('--dataset-impl', metavar='FORMAT', default='mmap', choices=get_available_dataset_impl(), help='output dataset implementation') group.add_argument("--joined-dictionary", action="store_true", help="Generate joined dictionary") group.add_argument("--only-source", action="store_true", help="Only process the source language") group.add_argument("--padding-factor", metavar="N", default=8, type=int, help="Pad dictionary size to be multiple of N") group.add_argument("--workers", metavar="N", default=1, type=int, help="number of parallel workers") # fmt: on return parser def add_dataset_args(parser, train=False, gen=False): group = parser.add_argument_group("Dataset and data loading") # fmt: off group.add_argument('--num-workers', default=1, type=int, metavar='N', help='how many subprocesses to use for data loading') group.add_argument('--skip-invalid-size-inputs-valid-test', action='store_true', help='ignore too long or too short lines in valid and test set') group.add_argument('--max-tokens', type=int, metavar='N', help='maximum number of tokens in a batch') group.add_argument('--max-sentences', '--batch-size', type=int, metavar='N', help='maximum number of sentences in a batch') group.add_argument('--required-batch-size-multiple', default=8, type=int, metavar='N', help='batch size will either be less than this value, ' 'or a multiple of this value') parser.add_argument('--dataset-impl', metavar='FORMAT', choices=get_available_dataset_impl(), help='output dataset implementation') group.add_argument('--data-buffer-size', default=10, type=int, metavar='N', help='number of batches to preload') if train: group.add_argument('--train-subset', default='train', metavar='SPLIT', help='data subset to use for training (e.g. train, valid, test)') group.add_argument('--valid-subset', default='valid', metavar='SPLIT', help='comma separated list of data subsets to use for validation' ' (e.g. train, valid, test)') group.add_argument('--validate-interval', type=int, default=1, metavar='N', help='validate every N epochs') group.add_argument('--validate-interval-updates', type=int, default=0, metavar='N', help='validate every N updates') group.add_argument('--validate-after-updates', type=int, default=0, metavar='N', help='dont validate until reaching this many updates') group.add_argument('--fixed-validation-seed', default=None, type=int, metavar='N', help='specified random seed for validation') group.add_argument('--disable-validation', action='store_true', help='disable validation') group.add_argument('--max-tokens-valid', type=int, metavar='N', help='maximum number of tokens in a validation batch' ' (defaults to --max-tokens)') group.add_argument('--max-sentences-valid', type=int, metavar='N', help='maximum number of sentences in a validation batch' ' (defaults to --max-sentences)') group.add_argument('--curriculum', default=0, type=int, metavar='N', help='don\'t shuffle batches for first N epochs') if gen: group.add_argument('--gen-subset', default='test', metavar='SPLIT', help='data subset to generate (train, valid, test)') group.add_argument('--num-shards', default=1, type=int, metavar='N', help='shard generation over N shards') group.add_argument('--shard-id', default=0, type=int, metavar='ID', help='id of the shard to generate (id < num_shards)') # fmt: on return group def add_distributed_training_args(parser, default_world_size=None): group = parser.add_argument_group("Distributed training") # fmt: off if default_world_size is None: default_world_size = max(1, torch.cuda.device_count()) group.add_argument('--distributed-world-size', type=int, metavar='N', default=default_world_size, help='total number of GPUs across all nodes (default: all visible GPUs)') group.add_argument('--distributed-rank', default=0, type=int, help='rank of the current worker') group.add_argument('--distributed-backend', default='nccl', type=str, help='distributed backend') group.add_argument('--distributed-init-method', default=None, type=str, help='typically tcp://hostname:port that will be used to ' 'establish initial connetion') group.add_argument('--distributed-port', default=-1, type=int, help='port number (not required if using --distributed-init-method)') group.add_argument('--device-id', '--local_rank', default=0, type=int, help='which GPU to use (usually configured automatically)') group.add_argument('--distributed-no-spawn', action='store_true', help='do not spawn multiple processes even if multiple GPUs are visible') # "c10d" is PyTorch's DDP implementation and provides the fastest # training. "no_c10d" is a more robust, but slightly slower DDP # implementation. Try this if you get warning messages about # inconsistent gradients between workers, or if some of your model # parameters are not always used. group.add_argument('--ddp-backend', default='c10d', type=str, choices=['c10d', 'no_c10d'], help='DistributedDataParallel backend') group.add_argument('--bucket-cap-mb', default=25, type=int, metavar='MB', help='bucket size for reduction') group.add_argument('--fix-batches-to-gpus', action='store_true', help='don\'t shuffle batches between GPUs; this reduces overall ' 'randomness and may affect precision but avoids the cost of ' 're-reading the data') group.add_argument('--find-unused-parameters', default=False, action='store_true', help='disable unused parameter detection (not applicable to ' 'no_c10d ddp-backend') group.add_argument('--fast-stat-sync', default=False, action='store_true', help='[deprecated] this is now defined per Criterion') group.add_argument('--broadcast-buffers', default=False, action='store_true', help='Copy non-trainable parameters between GPUs, such as ' 'batchnorm population statistics') group.add_argument('--distributed-wrapper', default='DDP', type=str, choices=['DDP', 'SlowMo'], help='DistributedDataParallel backend') # Add arguments for SlowMo - these will be used when SlowMo is enabled via above group.add_argument('--slowmo-momentum', default=None, type=float, help='SlowMo momentum term; by default use 0.0 for 16 GPUs, ' '0.2 for 32 GPUs; 0.5 for 64 GPUs, 0.6 for > 64 GPUs') group.add_argument('--slowmo-algorithm', default='LocalSGD', choices=['LocalSGD', 'SGP'], help='whether to use LocalSGD or SGP') group.add_argument('--localsgd-frequency', default=3, type=int, help='Local SGD allreduce frequency') group.add_argument('--nprocs-per-node', type=int, metavar='N', default=max(1, torch.cuda.device_count()), help='number of GPUs in each node. An allreduce operation across GPUs in ' 'a node is very fast. Hence, we do allreduce across GPUs in a node, ' 'and gossip across different nodes') # fmt: on return group def add_optimization_args(parser): group = parser.add_argument_group("Optimization") # fmt: off group.add_argument('--max-epoch', '--me', default=0, type=int, metavar='N', help='force stop training at specified epoch') group.add_argument('--max-update', '--mu', default=0, type=int, metavar='N', help='force stop training at specified update') group.add_argument('--stop-time-hours', default=0, type=float, metavar='N', help='force stop training after specified cumulative time (if >0)') group.add_argument('--clip-norm', default=0.0, type=float, metavar='NORM', help='clip threshold of gradients') group.add_argument('--sentence-avg', action='store_true', help='normalize gradients by the number of sentences in a batch' ' (default is to normalize by number of tokens)') group.add_argument('--update-freq', default='1', metavar='N1,N2,...,N_K', type=lambda uf: eval_str_list(uf, type=int), help='update parameters every N_i batches, when in epoch i') group.add_argument('--lr', '--learning-rate', default='0.25', type=eval_str_list, metavar='LR_1,LR_2,...,LR_N', help='learning rate for the first N epochs; all epochs >N using LR_N' ' (note: this may be interpreted differently depending on --lr-scheduler)') group.add_argument('--min-lr', default=-1, type=float, metavar='LR', help='stop training when the learning rate reaches this minimum') group.add_argument('--use-bmuf', default=False, action='store_true', help='specify global optimizer for syncing models on different GPUs/shards') # fmt: on return group def add_checkpoint_args(parser): group = parser.add_argument_group("Checkpointing") # fmt: off group.add_argument('--save-dir', metavar='DIR', default='checkpoints', help='path to save checkpoints') group.add_argument('--restore-file', default='checkpoint_last.pt', help='filename from which to load checkpoint ' '(default: /checkpoint_last.pt') group.add_argument('--finetune-from-model', default=None, type=str, help='finetune from a pretrained model; ' 'note that meters and lr scheduler will be reset') group.add_argument('--reset-dataloader', action='store_true', help='if set, does not reload dataloader state from the checkpoint') group.add_argument('--reset-lr-scheduler', action='store_true', help='if set, does not load lr scheduler state from the checkpoint') group.add_argument('--reset-meters', action='store_true', help='if set, does not load meters from the checkpoint') group.add_argument('--reset-optimizer', action='store_true', help='if set, does not load optimizer state from the checkpoint') group.add_argument('--optimizer-overrides', default="{}", type=str, metavar='DICT', help='a dictionary used to override optimizer args when loading a checkpoint') group.add_argument('--save-interval', type=int, default=1, metavar='N', help='save a checkpoint every N epochs') group.add_argument('--save-interval-updates', type=int, default=0, metavar='N', help='save a checkpoint (and validate) every N updates') group.add_argument('--keep-interval-updates', type=int, default=-1, metavar='N', help='keep the last N checkpoints saved with --save-interval-updates') group.add_argument('--keep-last-epochs', type=int, default=-1, metavar='N', help='keep last N epoch checkpoints') group.add_argument('--keep-best-checkpoints', type=int, default=-1, metavar='N', help='keep best N checkpoints based on scores') group.add_argument('--no-save', action='store_true', help='don\'t save models or checkpoints') group.add_argument('--no-epoch-checkpoints', action='store_true', help='only store last and best checkpoints') group.add_argument('--no-last-checkpoints', action='store_true', help='don\'t store last checkpoints') group.add_argument('--no-save-optimizer-state', action='store_true', help='don\'t save optimizer-state as part of checkpoint') group.add_argument('--best-checkpoint-metric', type=str, default='loss', help='metric to use for saving "best" checkpoints') group.add_argument('--maximize-best-checkpoint-metric', action='store_true', help='select the largest metric value for saving "best" checkpoints') group.add_argument('--patience', type=int, default=-1, metavar='N', help=('early stop training if valid performance doesn\'t ' 'improve for N consecutive validation runs; note ' 'that this is influenced by --validate-interval')) # fmt: on return group def add_common_eval_args(group): # fmt: off group.add_argument('--path', metavar='FILE', help='path(s) to model file(s), colon separated') group.add_argument('--remove-bpe', '--post-process', nargs='?', const='@@ ', default=None, help='remove BPE tokens before scoring (can be set to sentencepiece)') group.add_argument('--quiet', action='store_true', help='only print final scores') group.add_argument('--model-overrides', default="{}", type=str, metavar='DICT', help='a dictionary used to override model args at generation ' 'that were used during model training') group.add_argument('--results-path', metavar='RESDIR', type=str, default=None, help='path to save eval results (optional)"') # fmt: on def add_eval_lm_args(parser): group = parser.add_argument_group("LM Evaluation") add_common_eval_args(group) # fmt: off group.add_argument('--output-word-probs', action='store_true', help='if set, outputs words and their predicted log probabilities to standard output') group.add_argument('--output-word-stats', action='store_true', help='if set, outputs word statistics such as word count, average probability, etc') group.add_argument('--context-window', default=0, type=int, metavar='N', help='ensures that every evaluated token has access to a context of at least this size,' ' if possible') group.add_argument('--softmax-batch', default=sys.maxsize, type=int, metavar='N', help='if BxT is more than this, will batch the softmax over vocab to this amount of tokens' ' in order to fit into GPU memory') # fmt: on def add_generation_args(parser): group = parser.add_argument_group("Generation") add_common_eval_args(group) # fmt: off group.add_argument('--beam', default=5, type=int, metavar='N', help='beam size') group.add_argument('--nbest', default=1, type=int, metavar='N', help='number of hypotheses to output') group.add_argument('--max-len-a', default=0, type=float, metavar='N', help=('generate sequences of maximum length ax + b, ' 'where x is the source length')) group.add_argument('--max-len-b', default=200, type=int, metavar='N', help=('generate sequences of maximum length ax + b, ' 'where x is the source length')) group.add_argument('--min-len', default=1, type=float, metavar='N', help=('minimum generation length')) group.add_argument('--match-source-len', default=False, action='store_true', help=('generations should match the source length')) group.add_argument('--no-early-stop', action='store_true', help='deprecated') group.add_argument('--unnormalized', action='store_true', help='compare unnormalized hypothesis scores') group.add_argument('--no-beamable-mm', action='store_true', help='don\'t use BeamableMM in attention layers') group.add_argument('--lenpen', default=1, type=float, help='length penalty: <1.0 favors shorter, >1.0 favors longer sentences') group.add_argument('--unkpen', default=0, type=float, help='unknown word penalty: <0 produces more unks, >0 produces fewer') group.add_argument('--replace-unk', nargs='?', const=True, default=None, help='perform unknown replacement (optionally with alignment dictionary)') group.add_argument('--sacrebleu', action='store_true', help='score with sacrebleu') group.add_argument('--score-reference', action='store_true', help='just score the reference translation') group.add_argument('--prefix-size', default=0, type=int, metavar='PS', help='initialize generation by target prefix of given length') group.add_argument('--no-repeat-ngram-size', default=0, type=int, metavar='N', help='ngram blocking such that this size ngram cannot be repeated in the generation') group.add_argument('--sampling', action='store_true', help='sample hypotheses instead of using beam search') group.add_argument('--sampling-topk', default=-1, type=int, metavar='PS', help='sample from top K likely next words instead of all words') group.add_argument('--sampling-topp', default=-1.0, type=float, metavar='PS', help='sample from the smallest set whose cumulative probability mass exceeds p for next words') group.add_argument('--temperature', default=1., type=float, metavar='N', help='temperature for generation') group.add_argument('--diverse-beam-groups', default=-1, type=int, metavar='N', help='number of groups for Diverse Beam Search') group.add_argument('--diverse-beam-strength', default=0.5, type=float, metavar='N', help='strength of diversity penalty for Diverse Beam Search') group.add_argument('--diversity-rate', default=-1.0, type=float, metavar='N', help='strength of diversity penalty for Diverse Siblings Search') group.add_argument('--print-alignment', action='store_true', help='if set, uses attention feedback to compute and print alignment to source tokens') group.add_argument('--print-step', action='store_true') # arguments for iterative refinement generator group.add_argument('--iter-decode-eos-penalty', default=0.0, type=float, metavar='N', help='if > 0.0, it penalized early-stopping in decoding.') group.add_argument('--iter-decode-max-iter', default=10, type=int, metavar='N', help='maximum iterations for iterative refinement.') group.add_argument('--iter-decode-force-max-iter', action='store_true', help='if set, run exact the maximum number of iterations without early stop') group.add_argument('--iter-decode-with-beam', default=1, type=int, metavar='N', help='if > 1, model will generate translations varying by the lengths.') group.add_argument('--iter-decode-with-external-reranker', action='store_true', help='if set, the last checkpoint are assumed to be a reranker to rescore the translations'), group.add_argument('--retain-iter-history', action='store_true', help='if set, decoding returns the whole history of iterative refinement') group.add_argument('--retain-dropout', action='store_true', help='Use dropout at inference time') group.add_argument('--retain-dropout-modules', default=None, nargs='+', type=str, help='if set, only retain dropout for the specified modules; ' 'if not set, then dropout will be retained for all modules') # special decoding format for advanced decoding. group.add_argument('--decoding-format', default=None, type=str, choices=['unigram', 'ensemble', 'vote', 'dp', 'bs']) # fmt: on return group def add_interactive_args(parser): group = parser.add_argument_group("Interactive") # fmt: off group.add_argument('--buffer-size', default=0, type=int, metavar='N', help='read this many sentences into a buffer before processing them') group.add_argument('--input', default='-', type=str, metavar='FILE', help='file to read from; use - for stdin') # fmt: on def add_model_args(parser): group = parser.add_argument_group("Model configuration") # fmt: off # Model definitions can be found under fairseq/models/ # # The model architecture can be specified in several ways. # In increasing order of priority: # 1) model defaults (lowest priority) # 2) --arch argument # 3) --encoder/decoder-* arguments (highest priority) from fairseq.models import ARCH_MODEL_REGISTRY group.add_argument('--arch', '-a', default='fconv', metavar='ARCH', choices=ARCH_MODEL_REGISTRY.keys(), help='Model Architecture') # fmt: on return group