File size: 22,719 Bytes
917a889
fdcc6ec
917a889
 
 
 
 
163fb7c
4f41697
1aa888c
917a889
 
 
 
 
 
 
a1e3f5f
 
98b3116
917a889
 
 
 
 
 
 
 
 
a1e3f5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faaf8be
a1e3f5f
 
 
 
 
 
 
 
 
 
 
faaf8be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1e3f5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f69400c
 
 
 
 
 
 
 
 
 
 
a1e3f5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
917a889
 
 
 
 
 
 
 
 
 
1d2bd93
 
98b3116
 
 
 
 
 
 
917a889
 
98b3116
917a889
 
 
1d2bd93
 
 
 
 
 
 
 
 
 
 
 
 
98b3116
1d2bd93
 
 
 
 
 
 
 
 
 
 
 
 
917a889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3c6a70
917a889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1e3f5f
917a889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71d5a9d
 
917a889
 
 
36c86a2
 
a1e3f5f
917a889
 
a1e3f5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faaf8be
 
 
 
 
 
 
 
a1e3f5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
917a889
 
ca86a1c
917a889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1e3f5f
917a889
 
 
 
 
 
 
 
 
 
0ed9085
 
8c65cde
917a889
a3c6a70
917a889
 
 
 
2128820
917a889
 
 
 
 
 
a83ad71
a3c6a70
faaf8be
917a889
 
 
 
 
 
a1e3f5f
917a889
 
8fd2f97
917a889
a1e3f5f
 
917a889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f69400c
917a889
 
a1e3f5f
917a889
8fd2f97
917a889
 
 
 
a1e3f5f
 
917a889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1e3f5f
 
 
 
 
 
 
 
540a9b3
163fb7c
540a9b3
691d6b0
917a889
 
a1e3f5f
 
 
 
 
 
 
 
 
 
 
 
 
 
917a889
a1e3f5f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
import gradio as gr
from gradio_client import Client, handle_file
import spaces

import os
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = '1'
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
os.environ["ATTN_BACKEND"] = "flash_attn_3"
os.environ["FLEX_GEMM_AUTOTUNE_CACHE_PATH"] = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'autotune_cache.json')
os.environ["FLEX_GEMM_AUTOTUNER_VERBOSE"] = '1'
from datetime import datetime
import shutil
import cv2
from typing import *
import torch
import numpy as np
from PIL import Image
import base64
import io
import tempfile
from trellis2.modules.sparse import SparseTensor
from trellis2.pipelines import Trellis2ImageTo3DPipeline
from trellis2.renderers import EnvMap
from trellis2.utils import render_utils
import o_voxel


MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
MODES = [
    {"name": "Normal", "icon": "assets/app/normal.png", "render_key": "normal"},
    {"name": "Clay render", "icon": "assets/app/clay.png", "render_key": "clay"},
    {"name": "Base color", "icon": "assets/app/basecolor.png", "render_key": "base_color"},
    {"name": "HDRI forest", "icon": "assets/app/hdri_forest.png", "render_key": "shaded_forest"},
    {"name": "HDRI sunset", "icon": "assets/app/hdri_sunset.png", "render_key": "shaded_sunset"},
    {"name": "HDRI courtyard", "icon": "assets/app/hdri_courtyard.png", "render_key": "shaded_courtyard"},
]
STEPS = 8
DEFAULT_MODE = 3
DEFAULT_STEP = 3


css = """
/* Overwrite Gradio Default Style */
.stepper-wrapper {
    padding: 0;
}

.stepper-container {
    padding: 0;
    align-items: center;
}

.step-button {
    flex-direction: row;
}

.step-connector {
    transform: none;
}

.step-number {
    width: 16px;
    height: 16px;
}

.step-label {
    position: relative;
    bottom: 0;
}

.wrap.center.full {
    inset: 0;
    height: 100%;
}

.wrap.center.full.translucent {
    background: var(--block-background-fill);
}

.meta-text-center {
    display: block !important;
    position: absolute !important;
    top: unset !important;
    bottom: 0 !important;
    right: 0 !important;
    transform: unset !important;
}

/* Previewer */
.previewer-container {
    position: relative;
    font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif;
    width: 100%;
    height: 722px;
    margin: 0 auto;
    padding: 20px;
    display: flex;
    flex-direction: column;
    align-items: center;
    justify-content: center;
}

.previewer-container .tips-icon {
    position: absolute;
    right: 10px;
    top: 10px;
    z-index: 10;
    border-radius: 10px;
    color: #fff;
    background-color: var(--color-accent);
    padding: 3px 6px;
    user-select: none;
}

.previewer-container .tips-text {
    position: absolute;
    right: 10px;
    top: 50px;
    color: #fff;
    background-color: var(--color-accent);
    border-radius: 10px;
    padding: 6px;
    text-align: left;
    max-width: 300px;
    z-index: 10;
    transition: all 0.3s;
    opacity: 0%;
    user-select: none;
}

.previewer-container .tips-text p {
    font-size: 14px;
    line-height: 1.2;
}

.tips-icon:hover + .tips-text { 
    display: block;
    opacity: 100%;
}

/* Row 1: Display Modes */
.previewer-container .mode-row {
    width: 100%;
    display: flex;
    gap: 8px;
    justify-content: center;
    margin-bottom: 20px;
    flex-wrap: wrap;
}
.previewer-container .mode-btn {
    width: 24px;
    height: 24px;
    border-radius: 50%;
    cursor: pointer;
    opacity: 0.5;
    transition: all 0.2s;
    border: 2px solid #ddd;
    object-fit: cover;
}
.previewer-container .mode-btn:hover { opacity: 0.9; transform: scale(1.1); }
.previewer-container .mode-btn.active {
    opacity: 1;
    border-color: var(--color-accent);
    transform: scale(1.1);
}

/* Row 2: Display Image */
.previewer-container .display-row {
    margin-bottom: 20px;
    min-height: 400px;
    width: 100%;
    flex-grow: 1;
    display: flex;
    justify-content: center;
    align-items: center;
}
.previewer-container .previewer-main-image {
    max-width: 100%;
    max-height: 100%;
    flex-grow: 1;
    object-fit: contain;
    display: none;
}
.previewer-container .previewer-main-image.visible {
    display: block;
}

/* Row 3: Custom HTML Slider */
.previewer-container .slider-row {
    width: 100%;
    display: flex;
    flex-direction: column;
    align-items: center;
    gap: 10px;
    padding: 0 10px;
}

.previewer-container input[type=range] {
    -webkit-appearance: none;
    width: 100%;
    max-width: 400px;
    background: transparent;
}
.previewer-container input[type=range]::-webkit-slider-runnable-track {
    width: 100%;
    height: 8px;
    cursor: pointer;
    background: #ddd;
    border-radius: 5px;
}
.previewer-container input[type=range]::-webkit-slider-thumb {
    height: 20px;
    width: 20px;
    border-radius: 50%;
    background: var(--color-accent);
    cursor: pointer;
    -webkit-appearance: none;
    margin-top: -6px;
    box-shadow: 0 2px 5px rgba(0,0,0,0.2);
    transition: transform 0.1s;
}
.previewer-container input[type=range]::-webkit-slider-thumb:hover {
    transform: scale(1.2);
}

/* Overwrite Previewer Block Style */
.gradio-container .padded:has(.previewer-container) {
    padding: 0 !important;
}

.gradio-container:has(.previewer-container) [data-testid="block-label"] {
    position: absolute;
    top: 0;
    left: 0;
}
"""


head = """
<script>
    function refreshView(mode, step) {
        // 1. Find current mode and step
        const allImgs = document.querySelectorAll('.previewer-main-image');
        for (let i = 0; i < allImgs.length; i++) {
            const img = allImgs[i];
            if (img.classList.contains('visible')) {
                const id = img.id;
                const [_, m, s] = id.split('-');
                if (mode === -1) mode = parseInt(m.slice(1));
                if (step === -1) step = parseInt(s.slice(1));
                break;
            }
        }
        
        // 2. Hide ALL images
        // We select all elements with class 'previewer-main-image'
        allImgs.forEach(img => img.classList.remove('visible'));

        // 3. Construct the specific ID for the current state
        // Format: view-m{mode}-s{step}
        const targetId = 'view-m' + mode + '-s' + step;
        const targetImg = document.getElementById(targetId);

        // 4. Show ONLY the target
        if (targetImg) {
            targetImg.classList.add('visible');
        }

        // 5. Update Button Highlights
        const allBtns = document.querySelectorAll('.mode-btn');
        allBtns.forEach((btn, idx) => {
            if (idx === mode) btn.classList.add('active');
            else btn.classList.remove('active');
        });
    }
    
    // --- Action: Switch Mode ---
    function selectMode(mode) {
        refreshView(mode, -1);
    }
    
    // --- Action: Slider Change ---
    function onSliderChange(val) {
        refreshView(-1, parseInt(val));
    }
</script>
"""


empty_html = f"""
<div class="previewer-container">
    <svg style=" opacity: .5; height: var(--size-5); color: var(--body-text-color);"
    xmlns="http://www.w3.org/2000/svg" width="100%" height="100%" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="feather feather-image"><rect x="3" y="3" width="18" height="18" rx="2" ry="2"></rect><circle cx="8.5" cy="8.5" r="1.5"></circle><polyline points="21 15 16 10 5 21"></polyline></svg>
</div>
"""


def image_to_base64(image):
    buffered = io.BytesIO()
    image = image.convert("RGB")
    image.save(buffered, format="jpeg", quality=85)
    img_str = base64.b64encode(buffered.getvalue()).decode()
    return f"data:image/jpeg;base64,{img_str}"


def start_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    
    
def end_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    shutil.rmtree(user_dir)
    

def remove_background(input: Image.Image) -> Image.Image:
    with tempfile.NamedTemporaryFile(suffix='.png') as f:
        input = input.convert('RGB')
        input.save(f.name)
        output = rmbg_client.predict(handle_file(f.name), api_name="/image")[0][0]
        output = Image.open(output)
        return output


def preprocess_image(input: Image.Image) -> Image.Image:
    """
    Preprocess the input image.
    """
    # if has alpha channel, use it directly; otherwise, remove background
    has_alpha = False
    if input.mode == 'RGBA':
        alpha = np.array(input)[:, :, 3]
        if not np.all(alpha == 255):
            has_alpha = True
    max_size = max(input.size)
    scale = min(1, 1024 / max_size)
    if scale < 1:
        input = input.resize((int(input.width * scale), int(input.height * scale)), Image.Resampling.LANCZOS)
    if has_alpha:
        output = input
    else:
        output = remove_background(input)
    output_np = np.array(output)
    alpha = output_np[:, :, 3]
    bbox = np.argwhere(alpha > 0.8 * 255)
    bbox = np.min(bbox[:, 1]), np.min(bbox[:, 0]), np.max(bbox[:, 1]), np.max(bbox[:, 0])
    center = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
    size = max(bbox[2] - bbox[0], bbox[3] - bbox[1])
    size = int(size * 1)
    bbox = center[0] - size // 2, center[1] - size // 2, center[0] + size // 2, center[1] + size // 2
    output = output.crop(bbox)  # type: ignore
    output = np.array(output).astype(np.float32) / 255
    output = output[:, :, :3] * output[:, :, 3:4]
    output = Image.fromarray((output * 255).astype(np.uint8))
    return output


def pack_state(latents: Tuple[SparseTensor, SparseTensor, int]) -> dict:
    shape_slat, tex_slat, res = latents
    return {
        'shape_slat_feats': shape_slat.feats.cpu().numpy(),
        'tex_slat_feats': tex_slat.feats.cpu().numpy(),
        'coords': shape_slat.coords.cpu().numpy(),
        'res': res,
    }
    
    
def unpack_state(state: dict) -> Tuple[SparseTensor, SparseTensor, int]:
    shape_slat = SparseTensor(
        feats=torch.from_numpy(state['shape_slat_feats']).cuda(),
        coords=torch.from_numpy(state['coords']).cuda(),
    )
    tex_slat = shape_slat.replace(torch.from_numpy(state['tex_slat_feats']).cuda())
    return shape_slat, tex_slat, state['res']


def get_seed(randomize_seed: bool, seed: int) -> int:
    """
    Get the random seed.
    """
    return np.random.randint(0, MAX_SEED) if randomize_seed else seed


@spaces.GPU(duration=120)
def image_to_3d(
    image: Image.Image,
    seed: int,
    resolution: str,
    ss_guidance_strength: float,
    ss_guidance_rescale: float,
    ss_sampling_steps: int,
    ss_rescale_t: float,
    shape_slat_guidance_strength: float,
    shape_slat_guidance_rescale: float,
    shape_slat_sampling_steps: int,
    shape_slat_rescale_t: float,
    tex_slat_guidance_strength: float,
    tex_slat_guidance_rescale: float,
    tex_slat_sampling_steps: int,
    tex_slat_rescale_t: float,
    req: gr.Request,
    progress=gr.Progress(track_tqdm=True),
) -> str:
    # --- Sampling ---
    outputs, latents = pipeline.run(
        image,
        seed=seed,
        preprocess_image=False,
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "guidance_strength": ss_guidance_strength,
            "guidance_rescale": ss_guidance_rescale,
            "rescale_t": ss_rescale_t,
        },
        shape_slat_sampler_params={
            "steps": shape_slat_sampling_steps,
            "guidance_strength": shape_slat_guidance_strength,
            "guidance_rescale": shape_slat_guidance_rescale,
            "rescale_t": shape_slat_rescale_t,
        },
        tex_slat_sampler_params={
            "steps": tex_slat_sampling_steps,
            "guidance_strength": tex_slat_guidance_strength,
            "guidance_rescale": tex_slat_guidance_rescale,
            "rescale_t": tex_slat_rescale_t,
        },
        pipeline_type={
            "512": "512",
            "1024": "1024_cascade",
            "1536": "1536_cascade",
        }[resolution],
        return_latent=True,
    )
    mesh = outputs[0]
    mesh.simplify(16777216) # nvdiffrast limit
    images = render_utils.render_snapshot(mesh, resolution=1024, r=2, fov=36, nviews=STEPS, envmap=envmap)
    state = pack_state(latents)
    torch.cuda.empty_cache()
    
    # --- HTML Construction ---
    # The Stack of 48 Images
    images_html = ""
    for m_idx, mode in enumerate(MODES):
        for s_idx in range(STEPS):
            # ID Naming Convention: view-m{mode}-s{step}
            unique_id = f"view-m{m_idx}-s{s_idx}"
            
            # Logic: Only Mode 0, Step 0 is visible initially
            is_visible = (m_idx == DEFAULT_MODE and s_idx == DEFAULT_STEP)
            vis_class = "visible" if is_visible else ""
            
            # Image Source
            img_base64 = image_to_base64(Image.fromarray(images[mode['render_key']][s_idx]))
            
            # Render the Tag
            images_html += f"""
                <img id="{unique_id}" 
                     class="previewer-main-image {vis_class}" 
                     src="{img_base64}" 
                     loading="eager">
            """
    
    # Button Row HTML
    btns_html = ""
    for idx, mode in enumerate(MODES):        
        active_class = "active" if idx == DEFAULT_MODE else ""
        # Note: onclick calls the JS function defined in Head
        btns_html += f"""
            <img src="{mode['icon_base64']}" 
                 class="mode-btn {active_class}" 
                 onclick="selectMode({idx})"
                 title="{mode['name']}">
        """
    
    # Assemble the full component
    full_html = f"""
    <div class="previewer-container">
        <div class="tips-wrapper">
            <div class="tips-icon">💡Tips</div>
            <div class="tips-text">
                <p>● <b>Render Mode</b> - Click on the circular buttons to switch between different render modes.</p>
                <p>● <b>View Angle</b> - Drag the slider to change the view angle.</p>
            </div>
        </div>
        
        <!-- Row 1: Viewport containing 48 static <img> tags -->
        <div class="display-row">
            {images_html}
        </div>
        
        <!-- Row 2 -->
        <div class="mode-row" id="btn-group">
            {btns_html}
        </div>

        <!-- Row 3: Slider -->
        <div class="slider-row">
            <input type="range" id="custom-slider" min="0" max="{STEPS - 1}" value="{DEFAULT_STEP}" step="1" oninput="onSliderChange(this.value)">
        </div>
    </div>
    """
    
    return state, full_html


@spaces.GPU(duration=120)
def extract_glb(
    state: dict,
    decimation_target: int,
    texture_size: int,
    req: gr.Request,
    progress=gr.Progress(track_tqdm=True),
) -> Tuple[str, str]:
    """
    Extract a GLB file from the 3D model.

    Args:
        state (dict): The state of the generated 3D model.
        decimation_target (int): The target face count for decimation.
        texture_size (int): The texture resolution.

    Returns:
        str: The path to the extracted GLB file.
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    shape_slat, tex_slat, res = unpack_state(state)
    mesh = pipeline.decode_latent(shape_slat, tex_slat, res)[0]
    mesh.simplify(16777216)
    glb = o_voxel.postprocess.to_glb(
        vertices=mesh.vertices,
        faces=mesh.faces,
        attr_volume=mesh.attrs,
        coords=mesh.coords,
        attr_layout=pipeline.pbr_attr_layout,
        grid_size=res,
        aabb=[[-0.5, -0.5, -0.5], [0.5, 0.5, 0.5]],
        decimation_target=decimation_target,
        texture_size=texture_size,
        remesh=True,
        remesh_band=1,
        remesh_project=0,
        use_tqdm=True,
    )
    now = datetime.now()
    timestamp = now.strftime("%Y-%m-%dT%H%M%S") + f".{now.microsecond // 1000:03d}"
    os.makedirs(user_dir, exist_ok=True)
    glb_path = os.path.join(user_dir, f'sample_{timestamp}.glb')
    glb.export(glb_path, extension_webp=True)
    torch.cuda.empty_cache()
    return glb_path, glb_path


with gr.Blocks(delete_cache=(600, 600)) as demo:
    gr.Markdown("""
    ## Image to 3D Asset with [TRELLIS.2](https://microsoft.github.io/TRELLIS.2)
    * Upload an image (preferably with an alpha-masked foreground object) and click Generate to create a 3D asset.
    * Click Extract GLB to export and download the generated GLB file if you're satisfied with the result. Otherwise, try another time.
    """)
    
    with gr.Row():
        with gr.Column(scale=1, min_width=360):
            image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=400)
            
            resolution = gr.Radio(["512", "1024", "1536"], label="Resolution", value="1024")
            seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
            randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
            decimation_target = gr.Slider(100000, 500000, label="Decimation Target", value=300000, step=10000)
            texture_size = gr.Slider(1024, 4096, label="Texture Size", value=2048, step=1024)
            
            generate_btn = gr.Button("Generate")
                
            with gr.Accordion(label="Advanced Settings", open=False):                
                gr.Markdown("Stage 1: Sparse Structure Generation")
                with gr.Row():
                    ss_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                    ss_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.7, step=0.01)
                    ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                    ss_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=5.0, step=0.1)
                gr.Markdown("Stage 2: Shape Generation")
                with gr.Row():
                    shape_slat_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                    shape_slat_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.5, step=0.01)
                    shape_slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                    shape_slat_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=3.0, step=0.1)
                gr.Markdown("Stage 3: Material Generation")
                with gr.Row():
                    tex_slat_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=1.0, step=0.1)
                    tex_slat_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.0, step=0.01)
                    tex_slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                    tex_slat_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=3.0, step=0.1)                

        with gr.Column(scale=10):
            with gr.Walkthrough(selected=0) as walkthrough:
                with gr.Step("Preview", id=0):
                    preview_output = gr.HTML(empty_html, label="3D Asset Preview", show_label=True, container=True)
                    extract_btn = gr.Button("Extract GLB")
                with gr.Step("Extract", id=1):
                    glb_output = gr.Model3D(label="Extracted GLB", height=724, show_label=True, display_mode="solid", clear_color=(0.25, 0.25, 0.25, 1.0))
                    download_btn = gr.DownloadButton(label="Download GLB")
            gr.Markdown("*We are actively working on improving the speed of GLB extraction. Currently, it may take half a minute or more and face count is limited.*")
                    
        with gr.Column(scale=1, min_width=172):
            examples = gr.Examples(
                examples=[
                    f'assets/example_image/{image}'
                    for image in os.listdir("assets/example_image")
                ],
                inputs=[image_prompt],
                fn=preprocess_image,
                outputs=[image_prompt],
                run_on_click=True,
                examples_per_page=18,
            )
                    
    output_buf = gr.State()
    

    # Handlers
    demo.load(start_session)
    demo.unload(end_session)
    
    image_prompt.upload(
        preprocess_image,
        inputs=[image_prompt],
        outputs=[image_prompt],
    )

    generate_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
    ).then(
        lambda: gr.Walkthrough(selected=0), outputs=walkthrough
    ).then(
        image_to_3d,
        inputs=[
            image_prompt, seed, resolution,
            ss_guidance_strength, ss_guidance_rescale, ss_sampling_steps, ss_rescale_t,
            shape_slat_guidance_strength, shape_slat_guidance_rescale, shape_slat_sampling_steps, shape_slat_rescale_t,
            tex_slat_guidance_strength, tex_slat_guidance_rescale, tex_slat_sampling_steps, tex_slat_rescale_t,
        ],
        outputs=[output_buf, preview_output],
    )
    
    extract_btn.click(
        lambda: gr.Walkthrough(selected=1), outputs=walkthrough
    ).then(
        extract_glb,
        inputs=[output_buf, decimation_target, texture_size],
        outputs=[glb_output, download_btn],
    )
        

# Launch the Gradio app
if __name__ == "__main__":
    os.makedirs(TMP_DIR, exist_ok=True)

    # Construct ui components
    btn_img_base64_strs = {}
    for i in range(len(MODES)):
        icon = Image.open(MODES[i]['icon'])
        MODES[i]['icon_base64'] = image_to_base64(icon)

    rmbg_client = Client("briaai/BRIA-RMBG-2.0")
    pipeline = Trellis2ImageTo3DPipeline.from_pretrained('microsoft/TRELLIS.2-4B')
    pipeline.rembg_model = None
    pipeline.low_vram = False
    pipeline.cuda()
    
    envmap = {
        'forest': EnvMap(torch.tensor(
            cv2.cvtColor(cv2.imread('assets/hdri/forest.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB),
            dtype=torch.float32, device='cuda'
        )),
        'sunset': EnvMap(torch.tensor(
            cv2.cvtColor(cv2.imread('assets/hdri/sunset.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB),
            dtype=torch.float32, device='cuda'
        )),
        'courtyard': EnvMap(torch.tensor(
            cv2.cvtColor(cv2.imread('assets/hdri/courtyard.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB),
            dtype=torch.float32, device='cuda'
        )),
    }
    
    demo.launch(css=css, head=head)