JeffreyXiang's picture
Finalize
a1e3f5f
from typing import *
from fractions import Fraction
import torch
from . import config
__all__ = [
'VarLenTensor',
'varlen_cat',
'varlen_unbind',
'SparseTensor',
'sparse_cat',
'sparse_unbind',
]
class VarLenTensor:
"""
Sequential tensor with variable length.
Args:
feats (torch.Tensor): Features of the varlen tensor.
layout (List[slice]): Layout of the varlen tensor for each batch
"""
def __init__(self, feats: torch.Tensor, layout: List[slice]=None):
self.feats = feats
self.layout = layout if layout is not None else [slice(0, feats.shape[0])]
self._cache = {}
@staticmethod
def layout_from_seqlen(seqlen: list) -> List[slice]:
"""
Create a layout from a tensor of sequence lengths.
"""
layout = []
start = 0
for l in seqlen:
layout.append(slice(start, start + l))
start += l
return layout
@staticmethod
def from_tensor_list(tensor_list: List[torch.Tensor]) -> 'VarLenTensor':
"""
Create a VarLenTensor from a list of tensors.
"""
feats = torch.cat(tensor_list, dim=0)
layout = []
start = 0
for tensor in tensor_list:
layout.append(slice(start, start + tensor.shape[0]))
start += tensor.shape[0]
return VarLenTensor(feats, layout)
def to_tensor_list(self) -> List[torch.Tensor]:
"""
Convert a VarLenTensor to a list of tensors.
"""
tensor_list = []
for s in self.layout:
tensor_list.append(self.feats[s])
return tensor_list
def __len__(self) -> int:
return len(self.layout)
@property
def shape(self) -> torch.Size:
return torch.Size([len(self.layout), *self.feats.shape[1:]])
def dim(self) -> int:
return len(self.shape)
@property
def ndim(self) -> int:
return self.dim()
@property
def dtype(self):
return self.feats.dtype
@property
def device(self):
return self.feats.device
@property
def seqlen(self) -> torch.LongTensor:
if 'seqlen' not in self._cache:
self._cache['seqlen'] = torch.tensor([l.stop - l.start for l in self.layout], dtype=torch.long, device=self.device)
return self._cache['seqlen']
@property
def cum_seqlen(self) -> torch.LongTensor:
if 'cum_seqlen' not in self._cache:
self._cache['cum_seqlen'] = torch.cat([
torch.tensor([0], dtype=torch.long, device=self.device),
self.seqlen.cumsum(dim=0)
], dim=0)
return self._cache['cum_seqlen']
@property
def batch_boardcast_map(self) -> torch.LongTensor:
"""
Get the broadcast map for the varlen tensor.
"""
if 'batch_boardcast_map' not in self._cache:
self._cache['batch_boardcast_map'] = torch.repeat_interleave(
torch.arange(len(self.layout), device=self.device),
self.seqlen,
)
return self._cache['batch_boardcast_map']
@overload
def to(self, dtype: torch.dtype, *, non_blocking: bool = False, copy: bool = False) -> 'VarLenTensor': ...
@overload
def to(self, device: Optional[Union[str, torch.device]] = None, dtype: Optional[torch.dtype] = None, *, non_blocking: bool = False, copy: bool = False) -> 'VarLenTensor': ...
def to(self, *args, **kwargs) -> 'VarLenTensor':
device = None
dtype = None
if len(args) == 2:
device, dtype = args
elif len(args) == 1:
if isinstance(args[0], torch.dtype):
dtype = args[0]
else:
device = args[0]
if 'dtype' in kwargs:
assert dtype is None, "to() received multiple values for argument 'dtype'"
dtype = kwargs['dtype']
if 'device' in kwargs:
assert device is None, "to() received multiple values for argument 'device'"
device = kwargs['device']
non_blocking = kwargs.get('non_blocking', False)
copy = kwargs.get('copy', False)
new_feats = self.feats.to(device=device, dtype=dtype, non_blocking=non_blocking, copy=copy)
return self.replace(new_feats)
def type(self, dtype):
new_feats = self.feats.type(dtype)
return self.replace(new_feats)
def cpu(self) -> 'VarLenTensor':
new_feats = self.feats.cpu()
return self.replace(new_feats)
def cuda(self) -> 'VarLenTensor':
new_feats = self.feats.cuda()
return self.replace(new_feats)
def half(self) -> 'VarLenTensor':
new_feats = self.feats.half()
return self.replace(new_feats)
def float(self) -> 'VarLenTensor':
new_feats = self.feats.float()
return self.replace(new_feats)
def detach(self) -> 'VarLenTensor':
new_feats = self.feats.detach()
return self.replace(new_feats)
def reshape(self, *shape) -> 'VarLenTensor':
new_feats = self.feats.reshape(self.feats.shape[0], *shape)
return self.replace(new_feats)
def unbind(self, dim: int) -> List['VarLenTensor']:
return varlen_unbind(self, dim)
def replace(self, feats: torch.Tensor) -> 'VarLenTensor':
new_tensor = VarLenTensor(
feats=feats,
layout=self.layout,
)
new_tensor._cache = self._cache
return new_tensor
def to_dense(self, max_length=None) -> torch.Tensor:
"""
Convert a VarLenTensor to a dense representation without for-loop.
Returns:
dense (torch.Tensor): (N, L, C) dense tensor
mask (torch.BoolTensor): (N, L) mask indicating valid positions
"""
N = len(self)
L = max_length or self.seqlen.max().item()
spatial = self.feats.shape[1:]
idx = torch.arange(L, device=self.device).unsqueeze(0).expand(N, L)
mask = (idx < self.seqlen.unsqueeze(1))
mapping = mask.reshape(-1).cumsum(dim=0) - 1
dense = self.feats[mapping]
dense = dense.reshape(N, L, *spatial)
return dense, mask
def __neg__(self) -> 'VarLenTensor':
return self.replace(-self.feats)
def __elemwise__(self, other: Union[torch.Tensor, 'VarLenTensor'], op: callable) -> 'VarLenTensor':
if isinstance(other, torch.Tensor):
try:
other = torch.broadcast_to(other, self.shape)
other = other[self.batch_boardcast_map]
except:
pass
if isinstance(other, VarLenTensor):
other = other.feats
new_feats = op(self.feats, other)
new_tensor = self.replace(new_feats)
return new_tensor
def __add__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor':
return self.__elemwise__(other, torch.add)
def __radd__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor':
return self.__elemwise__(other, torch.add)
def __sub__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor':
return self.__elemwise__(other, torch.sub)
def __rsub__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor':
return self.__elemwise__(other, lambda x, y: torch.sub(y, x))
def __mul__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor':
return self.__elemwise__(other, torch.mul)
def __rmul__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor':
return self.__elemwise__(other, torch.mul)
def __truediv__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor':
return self.__elemwise__(other, torch.div)
def __rtruediv__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor':
return self.__elemwise__(other, lambda x, y: torch.div(y, x))
def __getitem__(self, idx):
if isinstance(idx, int):
idx = [idx]
elif isinstance(idx, slice):
idx = range(*idx.indices(self.shape[0]))
elif isinstance(idx, list):
assert all(isinstance(i, int) for i in idx), f"Only integer indices are supported: {idx}"
elif isinstance(idx, torch.Tensor):
if idx.dtype == torch.bool:
assert idx.shape == (self.shape[0],), f"Invalid index shape: {idx.shape}"
idx = idx.nonzero().squeeze(1)
elif idx.dtype in [torch.int32, torch.int64]:
assert len(idx.shape) == 1, f"Invalid index shape: {idx.shape}"
else:
raise ValueError(f"Unknown index type: {idx.dtype}")
else:
raise ValueError(f"Unknown index type: {type(idx)}")
new_feats = []
new_layout = []
start = 0
for new_idx, old_idx in enumerate(idx):
new_feats.append(self.feats[self.layout[old_idx]])
new_layout.append(slice(start, start + len(new_feats[-1])))
start += len(new_feats[-1])
new_feats = torch.cat(new_feats, dim=0).contiguous()
new_tensor = VarLenTensor(feats=new_feats, layout=new_layout)
return new_tensor
def reduce(self, op: str, dim: Optional[Union[int, Tuple[int,...]]] = None, keepdim: bool = False) -> torch.Tensor:
if isinstance(dim, int):
dim = (dim,)
if op =='mean':
red = self.feats.mean(dim=dim, keepdim=keepdim)
elif op =='sum':
red = self.feats.sum(dim=dim, keepdim=keepdim)
elif op == 'prod':
red = self.feats.prod(dim=dim, keepdim=keepdim)
else:
raise ValueError(f"Unsupported reduce operation: {op}")
if dim is None or 0 in dim:
return red
red = torch.segment_reduce(red, reduce=op, lengths=self.seqlen)
return red
def mean(self, dim: Optional[Union[int, Tuple[int,...]]] = None, keepdim: bool = False) -> torch.Tensor:
return self.reduce(op='mean', dim=dim, keepdim=keepdim)
def sum(self, dim: Optional[Union[int, Tuple[int,...]]] = None, keepdim: bool = False) -> torch.Tensor:
return self.reduce(op='sum', dim=dim, keepdim=keepdim)
def prod(self, dim: Optional[Union[int, Tuple[int,...]]] = None, keepdim: bool = False) -> torch.Tensor:
return self.reduce(op='prod', dim=dim, keepdim=keepdim)
def std(self, dim: Optional[Union[int, Tuple[int,...]]] = None, keepdim: bool = False) -> torch.Tensor:
mean = self.mean(dim=dim, keepdim=True)
mean2 = self.replace(self.feats ** 2).mean(dim=dim, keepdim=True)
std = (mean2 - mean ** 2).sqrt()
return std
def __repr__(self) -> str:
return f"VarLenTensor(shape={self.shape}, dtype={self.dtype}, device={self.device})"
def varlen_cat(inputs: List[VarLenTensor], dim: int = 0) -> VarLenTensor:
"""
Concatenate a list of varlen tensors.
Args:
inputs (List[VarLenTensor]): List of varlen tensors to concatenate.
"""
if dim == 0:
new_feats = torch.cat([input.feats for input in inputs], dim=0)
start = 0
new_layout = []
for input in inputs:
for l in input.layout:
new_layout.append(slice(start, start + l.stop - l.start))
start += l.stop - l.start
output = VarLenTensor(feats=new_feats, layout=new_layout)
else:
feats = torch.cat([input.feats for input in inputs], dim=dim)
output = inputs[0].replace(feats)
return output
def varlen_unbind(input: VarLenTensor, dim: int) -> Union[List[VarLenTensor]]:
"""
Unbind a varlen tensor along a dimension.
Args:
input (VarLenTensor): Varlen tensor to unbind.
dim (int): Dimension to unbind.
"""
if dim == 0:
return [input[i] for i in range(len(input))]
else:
feats = input.feats.unbind(dim)
return [input.replace(f) for f in feats]
class SparseTensor(VarLenTensor):
"""
Sparse tensor with support for both torchsparse and spconv backends.
Parameters:
- feats (torch.Tensor): Features of the sparse tensor.
- coords (torch.Tensor): Coordinates of the sparse tensor.
- shape (torch.Size): Shape of the sparse tensor.
- layout (List[slice]): Layout of the sparse tensor for each batch
- data (SparseTensorData): Sparse tensor data used for convolusion
NOTE:
- Data corresponding to a same batch should be contiguous.
- Coords should be in [0, 1023]
"""
SparseTensorData = None
@overload
def __init__(self, feats: torch.Tensor, coords: torch.Tensor, shape: Optional[torch.Size] = None, **kwargs): ...
@overload
def __init__(self, data, shape: Optional[torch.Size] = None, **kwargs): ...
def __init__(self, *args, **kwargs):
# Lazy import of sparse tensor backend
if self.SparseTensorData is None:
import importlib
if config.CONV == 'torchsparse':
self.SparseTensorData = importlib.import_module('torchsparse').SparseTensor
elif config.CONV == 'spconv':
self.SparseTensorData = importlib.import_module('spconv.pytorch').SparseConvTensor
method_id = 0
if len(args) != 0:
method_id = 0 if isinstance(args[0], torch.Tensor) else 1
else:
method_id = 1 if 'data' in kwargs else 0
if method_id == 0:
feats, coords, shape = args + (None,) * (3 - len(args))
if 'feats' in kwargs:
feats = kwargs['feats']
del kwargs['feats']
if 'coords' in kwargs:
coords = kwargs['coords']
del kwargs['coords']
if 'shape' in kwargs:
shape = kwargs['shape']
del kwargs['shape']
if config.CONV == 'torchsparse':
self.data = self.SparseTensorData(feats, coords, **kwargs)
elif config.CONV == 'spconv':
spatial_shape = list(coords.max(0)[0] + 1)
self.data = self.SparseTensorData(feats.reshape(feats.shape[0], -1), coords, spatial_shape[1:], spatial_shape[0], **kwargs)
self.data._features = feats
else:
self.data = {
'feats': feats,
'coords': coords,
}
elif method_id == 1:
data, shape = args + (None,) * (2 - len(args))
if 'data' in kwargs:
data = kwargs['data']
del kwargs['data']
if 'shape' in kwargs:
shape = kwargs['shape']
del kwargs['shape']
self.data = data
self._shape = shape
self._scale = kwargs.get('scale', (Fraction(1, 1), Fraction(1, 1), Fraction(1, 1)))
self._spatial_cache = kwargs.get('spatial_cache', {})
if config.DEBUG:
try:
assert self.feats.shape[0] == self.coords.shape[0], f"Invalid feats shape: {self.feats.shape}, coords shape: {self.coords.shape}"
assert self.shape == self.__cal_shape(self.feats, self.coords), f"Invalid shape: {self.shape}"
assert self.layout == self.__cal_layout(self.coords, self.shape[0]), f"Invalid layout: {self.layout}"
for i in range(self.shape[0]):
assert torch.all(self.coords[self.layout[i], 0] == i), f"The data of batch {i} is not contiguous"
except Exception as e:
print('Debugging information:')
print(f"- Shape: {self.shape}")
print(f"- Layout: {self.layout}")
print(f"- Scale: {self._scale}")
print(f"- Coords: {self.coords}")
raise e
@staticmethod
def from_tensor_list(feats_list: List[torch.Tensor], coords_list: List[torch.Tensor]) -> 'SparseTensor':
"""
Create a SparseTensor from a list of tensors.
"""
feats = torch.cat(feats_list, dim=0)
coords = []
for i, coord in enumerate(coords_list):
coord = torch.cat([torch.full_like(coord[:, :1], i), coord[:, 1:]], dim=1)
coords.append(coord)
coords = torch.cat(coords, dim=0)
return SparseTensor(feats, coords)
def to_tensor_list(self) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
"""
Convert a SparseTensor to list of tensors.
"""
feats_list = []
coords_list = []
for s in self.layout:
feats_list.append(self.feats[s])
coords_list.append(self.coords[s])
return feats_list, coords_list
def __len__(self) -> int:
return len(self.layout)
def __cal_shape(self, feats, coords):
shape = []
shape.append(coords[:, 0].max().item() + 1)
shape.extend([*feats.shape[1:]])
return torch.Size(shape)
def __cal_layout(self, coords, batch_size):
seq_len = torch.bincount(coords[:, 0], minlength=batch_size)
offset = torch.cumsum(seq_len, dim=0)
layout = [slice((offset[i] - seq_len[i]).item(), offset[i].item()) for i in range(batch_size)]
return layout
def __cal_spatial_shape(self, coords):
return torch.Size((coords[:, 1:].max(0)[0] + 1).tolist())
@property
def shape(self) -> torch.Size:
if self._shape is None:
self._shape = self.__cal_shape(self.feats, self.coords)
return self._shape
@property
def layout(self) -> List[slice]:
layout = self.get_spatial_cache('layout')
if layout is None:
layout = self.__cal_layout(self.coords, self.shape[0])
self.register_spatial_cache('layout', layout)
return layout
@property
def spatial_shape(self) -> torch.Size:
spatial_shape = self.get_spatial_cache('shape')
if spatial_shape is None:
spatial_shape = self.__cal_spatial_shape(self.coords)
self.register_spatial_cache('shape', spatial_shape)
return spatial_shape
@property
def feats(self) -> torch.Tensor:
if config.CONV == 'torchsparse':
return self.data.F
elif config.CONV == 'spconv':
return self.data.features
else:
return self.data['feats']
@feats.setter
def feats(self, value: torch.Tensor):
if config.CONV == 'torchsparse':
self.data.F = value
elif config.CONV == 'spconv':
self.data.features = value
else:
self.data['feats'] = value
@property
def coords(self) -> torch.Tensor:
if config.CONV == 'torchsparse':
return self.data.C
elif config.CONV == 'spconv':
return self.data.indices
else:
return self.data['coords']
@coords.setter
def coords(self, value: torch.Tensor):
if config.CONV == 'torchsparse':
self.data.C = value
elif config.CONV == 'spconv':
self.data.indices = value
else:
self.data['coords'] = value
@property
def dtype(self):
return self.feats.dtype
@property
def device(self):
return self.feats.device
@property
def seqlen(self) -> torch.LongTensor:
seqlen = self.get_spatial_cache('seqlen')
if seqlen is None:
seqlen = torch.tensor([l.stop - l.start for l in self.layout], dtype=torch.long, device=self.device)
self.register_spatial_cache('seqlen', seqlen)
return seqlen
@property
def cum_seqlen(self) -> torch.LongTensor:
cum_seqlen = self.get_spatial_cache('cum_seqlen')
if cum_seqlen is None:
cum_seqlen = torch.cat([
torch.tensor([0], dtype=torch.long, device=self.device),
self.seqlen.cumsum(dim=0)
], dim=0)
self.register_spatial_cache('cum_seqlen', cum_seqlen)
return cum_seqlen
@property
def batch_boardcast_map(self) -> torch.LongTensor:
"""
Get the broadcast map for the varlen tensor.
"""
batch_boardcast_map = self.get_spatial_cache('batch_boardcast_map')
if batch_boardcast_map is None:
batch_boardcast_map = torch.repeat_interleave(
torch.arange(len(self.layout), device=self.device),
self.seqlen,
)
self.register_spatial_cache('batch_boardcast_map', batch_boardcast_map)
return batch_boardcast_map
@overload
def to(self, dtype: torch.dtype, *, non_blocking: bool = False, copy: bool = False) -> 'SparseTensor': ...
@overload
def to(self, device: Optional[Union[str, torch.device]] = None, dtype: Optional[torch.dtype] = None, *, non_blocking: bool = False, copy: bool = False) -> 'SparseTensor': ...
def to(self, *args, **kwargs) -> 'SparseTensor':
device = None
dtype = None
if len(args) == 2:
device, dtype = args
elif len(args) == 1:
if isinstance(args[0], torch.dtype):
dtype = args[0]
else:
device = args[0]
if 'dtype' in kwargs:
assert dtype is None, "to() received multiple values for argument 'dtype'"
dtype = kwargs['dtype']
if 'device' in kwargs:
assert device is None, "to() received multiple values for argument 'device'"
device = kwargs['device']
non_blocking = kwargs.get('non_blocking', False)
copy = kwargs.get('copy', False)
new_feats = self.feats.to(device=device, dtype=dtype, non_blocking=non_blocking, copy=copy)
new_coords = self.coords.to(device=device, non_blocking=non_blocking, copy=copy)
return self.replace(new_feats, new_coords)
def type(self, dtype):
new_feats = self.feats.type(dtype)
return self.replace(new_feats)
def cpu(self) -> 'SparseTensor':
new_feats = self.feats.cpu()
new_coords = self.coords.cpu()
return self.replace(new_feats, new_coords)
def cuda(self) -> 'SparseTensor':
new_feats = self.feats.cuda()
new_coords = self.coords.cuda()
return self.replace(new_feats, new_coords)
def half(self) -> 'SparseTensor':
new_feats = self.feats.half()
return self.replace(new_feats)
def float(self) -> 'SparseTensor':
new_feats = self.feats.float()
return self.replace(new_feats)
def detach(self) -> 'SparseTensor':
new_coords = self.coords.detach()
new_feats = self.feats.detach()
return self.replace(new_feats, new_coords)
def reshape(self, *shape) -> 'SparseTensor':
new_feats = self.feats.reshape(self.feats.shape[0], *shape)
return self.replace(new_feats)
def unbind(self, dim: int) -> List['SparseTensor']:
return sparse_unbind(self, dim)
def replace(self, feats: torch.Tensor, coords: Optional[torch.Tensor] = None) -> 'SparseTensor':
if config.CONV == 'torchsparse':
new_data = self.SparseTensorData(
feats=feats,
coords=self.data.coords if coords is None else coords,
stride=self.data.stride,
spatial_range=self.data.spatial_range,
)
new_data._caches = self.data._caches
elif config.CONV == 'spconv':
new_data = self.SparseTensorData(
self.data.features.reshape(self.data.features.shape[0], -1),
self.data.indices,
self.data.spatial_shape,
self.data.batch_size,
self.data.grid,
self.data.voxel_num,
self.data.indice_dict
)
new_data._features = feats
new_data.benchmark = self.data.benchmark
new_data.benchmark_record = self.data.benchmark_record
new_data.thrust_allocator = self.data.thrust_allocator
new_data._timer = self.data._timer
new_data.force_algo = self.data.force_algo
new_data.int8_scale = self.data.int8_scale
if coords is not None:
new_data.indices = coords
else:
new_data = {
'feats': feats,
'coords': self.data['coords'] if coords is None else coords,
}
new_tensor = SparseTensor(
new_data,
shape=torch.Size([self._shape[0]] + list(feats.shape[1:])) if self._shape is not None else None,
scale=self._scale,
spatial_cache=self._spatial_cache
)
return new_tensor
def to_dense(self) -> torch.Tensor:
if config.CONV == 'torchsparse':
return self.data.dense()
elif config.CONV == 'spconv':
return self.data.dense()
else:
spatial_shape = self.spatial_shape
ret = torch.zeros(*self.shape, *spatial_shape, dtype=self.dtype, device=self.device)
idx = [self.coords[:, 0], slice(None)] + self.coords[:, 1:].unbind(1)
ret[tuple(idx)] = self.feats
return ret
@staticmethod
def full(aabb, dim, value, dtype=torch.float32, device=None) -> 'SparseTensor':
N, C = dim
x = torch.arange(aabb[0], aabb[3] + 1)
y = torch.arange(aabb[1], aabb[4] + 1)
z = torch.arange(aabb[2], aabb[5] + 1)
coords = torch.stack(torch.meshgrid(x, y, z, indexing='ij'), dim=-1).reshape(-1, 3)
coords = torch.cat([
torch.arange(N).view(-1, 1).repeat(1, coords.shape[0]).view(-1, 1),
coords.repeat(N, 1),
], dim=1).to(dtype=torch.int32, device=device)
feats = torch.full((coords.shape[0], C), value, dtype=dtype, device=device)
return SparseTensor(feats=feats, coords=coords)
def __merge_sparse_cache(self, other: 'SparseTensor') -> dict:
new_cache = {}
for k in set(list(self._spatial_cache.keys()) + list(other._spatial_cache.keys())):
if k in self._spatial_cache:
new_cache[k] = self._spatial_cache[k]
if k in other._spatial_cache:
if k not in new_cache:
new_cache[k] = other._spatial_cache[k]
else:
new_cache[k].update(other._spatial_cache[k])
return new_cache
def __elemwise__(self, other: Union[torch.Tensor, VarLenTensor], op: callable) -> 'SparseTensor':
if isinstance(other, torch.Tensor):
try:
other = torch.broadcast_to(other, self.shape)
other = other[self.batch_boardcast_map]
except:
pass
if isinstance(other, VarLenTensor):
other = other.feats
new_feats = op(self.feats, other)
new_tensor = self.replace(new_feats)
if isinstance(other, SparseTensor):
new_tensor._spatial_cache = self.__merge_sparse_cache(other)
return new_tensor
def __getitem__(self, idx):
if isinstance(idx, int):
idx = [idx]
elif isinstance(idx, slice):
idx = range(*idx.indices(self.shape[0]))
elif isinstance(idx, list):
assert all(isinstance(i, int) for i in idx), f"Only integer indices are supported: {idx}"
elif isinstance(idx, torch.Tensor):
if idx.dtype == torch.bool:
assert idx.shape == (self.shape[0],), f"Invalid index shape: {idx.shape}"
idx = idx.nonzero().squeeze(1)
elif idx.dtype in [torch.int32, torch.int64]:
assert len(idx.shape) == 1, f"Invalid index shape: {idx.shape}"
else:
raise ValueError(f"Unknown index type: {idx.dtype}")
else:
raise ValueError(f"Unknown index type: {type(idx)}")
new_coords = []
new_feats = []
new_layout = []
new_shape = torch.Size([len(idx)] + list(self.shape[1:]))
start = 0
for new_idx, old_idx in enumerate(idx):
new_coords.append(self.coords[self.layout[old_idx]].clone())
new_coords[-1][:, 0] = new_idx
new_feats.append(self.feats[self.layout[old_idx]])
new_layout.append(slice(start, start + len(new_coords[-1])))
start += len(new_coords[-1])
new_coords = torch.cat(new_coords, dim=0).contiguous()
new_feats = torch.cat(new_feats, dim=0).contiguous()
new_tensor = SparseTensor(feats=new_feats, coords=new_coords, shape=new_shape)
new_tensor.register_spatial_cache('layout', new_layout)
return new_tensor
def clear_spatial_cache(self) -> None:
"""
Clear all spatial caches.
"""
self._spatial_cache = {}
def register_spatial_cache(self, key, value) -> None:
"""
Register a spatial cache.
The spatial cache can be any thing you want to cache.
The registery and retrieval of the cache is based on current scale.
"""
scale_key = str(self._scale)
if scale_key not in self._spatial_cache:
self._spatial_cache[scale_key] = {}
self._spatial_cache[scale_key][key] = value
def get_spatial_cache(self, key=None):
"""
Get a spatial cache.
"""
scale_key = str(self._scale)
cur_scale_cache = self._spatial_cache.get(scale_key, {})
if key is None:
return cur_scale_cache
return cur_scale_cache.get(key, None)
def __repr__(self) -> str:
return f"SparseTensor(shape={self.shape}, dtype={self.dtype}, device={self.device})"
def sparse_cat(inputs: List[SparseTensor], dim: int = 0) -> SparseTensor:
"""
Concatenate a list of sparse tensors.
Args:
inputs (List[SparseTensor]): List of sparse tensors to concatenate.
"""
if dim == 0:
start = 0
coords = []
for input in inputs:
coords.append(input.coords.clone())
coords[-1][:, 0] += start
start += input.shape[0]
coords = torch.cat(coords, dim=0)
feats = torch.cat([input.feats for input in inputs], dim=0)
output = SparseTensor(
coords=coords,
feats=feats,
)
else:
feats = torch.cat([input.feats for input in inputs], dim=dim)
output = inputs[0].replace(feats)
return output
def sparse_unbind(input: SparseTensor, dim: int) -> List[SparseTensor]:
"""
Unbind a sparse tensor along a dimension.
Args:
input (SparseTensor): Sparse tensor to unbind.
dim (int): Dimension to unbind.
"""
if dim == 0:
return [input[i] for i in range(input.shape[0])]
else:
feats = input.feats.unbind(dim)
return [input.replace(f) for f in feats]