import torch import torch.nn as nn from ..utils import manual_cast from . import VarLenTensor from . import config __all__ = [ 'SparseGroupNorm', 'SparseLayerNorm', 'SparseGroupNorm32', 'SparseLayerNorm32', ] class SparseGroupNorm(nn.GroupNorm): def __init__(self, num_groups, num_channels, eps=1e-5, affine=True): super(SparseGroupNorm, self).__init__(num_groups, num_channels, eps, affine) def forward(self, input: VarLenTensor) -> VarLenTensor: nfeats = torch.zeros_like(input.feats) for k in range(input.shape[0]): bfeats = input.feats[input.layout[k]] bfeats = bfeats.permute(1, 0).reshape(1, input.shape[1], -1) bfeats = super().forward(bfeats) bfeats = bfeats.reshape(input.shape[1], -1).permute(1, 0) nfeats[input.layout[k]] = bfeats return input.replace(nfeats) class SparseLayerNorm(nn.LayerNorm): def __init__(self, normalized_shape, eps=1e-5, elementwise_affine=True): super(SparseLayerNorm, self).__init__(normalized_shape, eps, elementwise_affine) def forward(self, input: VarLenTensor) -> VarLenTensor: nfeats = torch.zeros_like(input.feats) for k in range(input.shape[0]): bfeats = input.feats[input.layout[k]] bfeats = bfeats.permute(1, 0).reshape(1, input.shape[1], -1) bfeats = super().forward(bfeats) bfeats = bfeats.reshape(input.shape[1], -1).permute(1, 0) nfeats[input.layout[k]] = bfeats return input.replace(nfeats) class SparseGroupNorm32(SparseGroupNorm): """ A GroupNorm layer that converts to float32 before the forward pass. """ def forward(self, x: VarLenTensor) -> VarLenTensor: x_dtype = x.dtype x = manual_cast(x, torch.float32) o = super().forward(x) return manual_cast(o, x_dtype) class SparseLayerNorm32(SparseLayerNorm): """ A LayerNorm layer that converts to float32 before the forward pass. """ def forward(self, x: VarLenTensor) -> VarLenTensor: x_dtype = x.dtype x = manual_cast(x, torch.float32) o = super().forward(x) return manual_cast(o, x_dtype)