from typing import * from fractions import Fraction import torch from . import config __all__ = [ 'VarLenTensor', 'varlen_cat', 'varlen_unbind', 'SparseTensor', 'sparse_cat', 'sparse_unbind', ] class VarLenTensor: """ Sequential tensor with variable length. Args: feats (torch.Tensor): Features of the varlen tensor. layout (List[slice]): Layout of the varlen tensor for each batch """ def __init__(self, feats: torch.Tensor, layout: List[slice]=None): self.feats = feats self.layout = layout if layout is not None else [slice(0, feats.shape[0])] self._cache = {} @staticmethod def layout_from_seqlen(seqlen: list) -> List[slice]: """ Create a layout from a tensor of sequence lengths. """ layout = [] start = 0 for l in seqlen: layout.append(slice(start, start + l)) start += l return layout @staticmethod def from_tensor_list(tensor_list: List[torch.Tensor]) -> 'VarLenTensor': """ Create a VarLenTensor from a list of tensors. """ feats = torch.cat(tensor_list, dim=0) layout = [] start = 0 for tensor in tensor_list: layout.append(slice(start, start + tensor.shape[0])) start += tensor.shape[0] return VarLenTensor(feats, layout) def to_tensor_list(self) -> List[torch.Tensor]: """ Convert a VarLenTensor to a list of tensors. """ tensor_list = [] for s in self.layout: tensor_list.append(self.feats[s]) return tensor_list def __len__(self) -> int: return len(self.layout) @property def shape(self) -> torch.Size: return torch.Size([len(self.layout), *self.feats.shape[1:]]) def dim(self) -> int: return len(self.shape) @property def ndim(self) -> int: return self.dim() @property def dtype(self): return self.feats.dtype @property def device(self): return self.feats.device @property def seqlen(self) -> torch.LongTensor: if 'seqlen' not in self._cache: self._cache['seqlen'] = torch.tensor([l.stop - l.start for l in self.layout], dtype=torch.long, device=self.device) return self._cache['seqlen'] @property def cum_seqlen(self) -> torch.LongTensor: if 'cum_seqlen' not in self._cache: self._cache['cum_seqlen'] = torch.cat([ torch.tensor([0], dtype=torch.long, device=self.device), self.seqlen.cumsum(dim=0) ], dim=0) return self._cache['cum_seqlen'] @property def batch_boardcast_map(self) -> torch.LongTensor: """ Get the broadcast map for the varlen tensor. """ if 'batch_boardcast_map' not in self._cache: self._cache['batch_boardcast_map'] = torch.repeat_interleave( torch.arange(len(self.layout), device=self.device), self.seqlen, ) return self._cache['batch_boardcast_map'] @overload def to(self, dtype: torch.dtype, *, non_blocking: bool = False, copy: bool = False) -> 'VarLenTensor': ... @overload def to(self, device: Optional[Union[str, torch.device]] = None, dtype: Optional[torch.dtype] = None, *, non_blocking: bool = False, copy: bool = False) -> 'VarLenTensor': ... def to(self, *args, **kwargs) -> 'VarLenTensor': device = None dtype = None if len(args) == 2: device, dtype = args elif len(args) == 1: if isinstance(args[0], torch.dtype): dtype = args[0] else: device = args[0] if 'dtype' in kwargs: assert dtype is None, "to() received multiple values for argument 'dtype'" dtype = kwargs['dtype'] if 'device' in kwargs: assert device is None, "to() received multiple values for argument 'device'" device = kwargs['device'] non_blocking = kwargs.get('non_blocking', False) copy = kwargs.get('copy', False) new_feats = self.feats.to(device=device, dtype=dtype, non_blocking=non_blocking, copy=copy) return self.replace(new_feats) def type(self, dtype): new_feats = self.feats.type(dtype) return self.replace(new_feats) def cpu(self) -> 'VarLenTensor': new_feats = self.feats.cpu() return self.replace(new_feats) def cuda(self) -> 'VarLenTensor': new_feats = self.feats.cuda() return self.replace(new_feats) def half(self) -> 'VarLenTensor': new_feats = self.feats.half() return self.replace(new_feats) def float(self) -> 'VarLenTensor': new_feats = self.feats.float() return self.replace(new_feats) def detach(self) -> 'VarLenTensor': new_feats = self.feats.detach() return self.replace(new_feats) def reshape(self, *shape) -> 'VarLenTensor': new_feats = self.feats.reshape(self.feats.shape[0], *shape) return self.replace(new_feats) def unbind(self, dim: int) -> List['VarLenTensor']: return varlen_unbind(self, dim) def replace(self, feats: torch.Tensor) -> 'VarLenTensor': new_tensor = VarLenTensor( feats=feats, layout=self.layout, ) new_tensor._cache = self._cache return new_tensor def to_dense(self, max_length=None) -> torch.Tensor: """ Convert a VarLenTensor to a dense representation without for-loop. Returns: dense (torch.Tensor): (N, L, C) dense tensor mask (torch.BoolTensor): (N, L) mask indicating valid positions """ N = len(self) L = max_length or self.seqlen.max().item() spatial = self.feats.shape[1:] idx = torch.arange(L, device=self.device).unsqueeze(0).expand(N, L) mask = (idx < self.seqlen.unsqueeze(1)) mapping = mask.reshape(-1).cumsum(dim=0) - 1 dense = self.feats[mapping] dense = dense.reshape(N, L, *spatial) return dense, mask def __neg__(self) -> 'VarLenTensor': return self.replace(-self.feats) def __elemwise__(self, other: Union[torch.Tensor, 'VarLenTensor'], op: callable) -> 'VarLenTensor': if isinstance(other, torch.Tensor): try: other = torch.broadcast_to(other, self.shape) other = other[self.batch_boardcast_map] except: pass if isinstance(other, VarLenTensor): other = other.feats new_feats = op(self.feats, other) new_tensor = self.replace(new_feats) return new_tensor def __add__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor': return self.__elemwise__(other, torch.add) def __radd__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor': return self.__elemwise__(other, torch.add) def __sub__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor': return self.__elemwise__(other, torch.sub) def __rsub__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor': return self.__elemwise__(other, lambda x, y: torch.sub(y, x)) def __mul__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor': return self.__elemwise__(other, torch.mul) def __rmul__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor': return self.__elemwise__(other, torch.mul) def __truediv__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor': return self.__elemwise__(other, torch.div) def __rtruediv__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor': return self.__elemwise__(other, lambda x, y: torch.div(y, x)) def __getitem__(self, idx): if isinstance(idx, int): idx = [idx] elif isinstance(idx, slice): idx = range(*idx.indices(self.shape[0])) elif isinstance(idx, list): assert all(isinstance(i, int) for i in idx), f"Only integer indices are supported: {idx}" elif isinstance(idx, torch.Tensor): if idx.dtype == torch.bool: assert idx.shape == (self.shape[0],), f"Invalid index shape: {idx.shape}" idx = idx.nonzero().squeeze(1) elif idx.dtype in [torch.int32, torch.int64]: assert len(idx.shape) == 1, f"Invalid index shape: {idx.shape}" else: raise ValueError(f"Unknown index type: {idx.dtype}") else: raise ValueError(f"Unknown index type: {type(idx)}") new_feats = [] new_layout = [] start = 0 for new_idx, old_idx in enumerate(idx): new_feats.append(self.feats[self.layout[old_idx]]) new_layout.append(slice(start, start + len(new_feats[-1]))) start += len(new_feats[-1]) new_feats = torch.cat(new_feats, dim=0).contiguous() new_tensor = VarLenTensor(feats=new_feats, layout=new_layout) return new_tensor def reduce(self, op: str, dim: Optional[Union[int, Tuple[int,...]]] = None, keepdim: bool = False) -> torch.Tensor: if isinstance(dim, int): dim = (dim,) if op =='mean': red = self.feats.mean(dim=dim, keepdim=keepdim) elif op =='sum': red = self.feats.sum(dim=dim, keepdim=keepdim) elif op == 'prod': red = self.feats.prod(dim=dim, keepdim=keepdim) else: raise ValueError(f"Unsupported reduce operation: {op}") if dim is None or 0 in dim: return red red = torch.segment_reduce(red, reduce=op, lengths=self.seqlen) return red def mean(self, dim: Optional[Union[int, Tuple[int,...]]] = None, keepdim: bool = False) -> torch.Tensor: return self.reduce(op='mean', dim=dim, keepdim=keepdim) def sum(self, dim: Optional[Union[int, Tuple[int,...]]] = None, keepdim: bool = False) -> torch.Tensor: return self.reduce(op='sum', dim=dim, keepdim=keepdim) def prod(self, dim: Optional[Union[int, Tuple[int,...]]] = None, keepdim: bool = False) -> torch.Tensor: return self.reduce(op='prod', dim=dim, keepdim=keepdim) def std(self, dim: Optional[Union[int, Tuple[int,...]]] = None, keepdim: bool = False) -> torch.Tensor: mean = self.mean(dim=dim, keepdim=True) mean2 = self.replace(self.feats ** 2).mean(dim=dim, keepdim=True) std = (mean2 - mean ** 2).sqrt() return std def __repr__(self) -> str: return f"VarLenTensor(shape={self.shape}, dtype={self.dtype}, device={self.device})" def varlen_cat(inputs: List[VarLenTensor], dim: int = 0) -> VarLenTensor: """ Concatenate a list of varlen tensors. Args: inputs (List[VarLenTensor]): List of varlen tensors to concatenate. """ if dim == 0: new_feats = torch.cat([input.feats for input in inputs], dim=0) start = 0 new_layout = [] for input in inputs: for l in input.layout: new_layout.append(slice(start, start + l.stop - l.start)) start += l.stop - l.start output = VarLenTensor(feats=new_feats, layout=new_layout) else: feats = torch.cat([input.feats for input in inputs], dim=dim) output = inputs[0].replace(feats) return output def varlen_unbind(input: VarLenTensor, dim: int) -> Union[List[VarLenTensor]]: """ Unbind a varlen tensor along a dimension. Args: input (VarLenTensor): Varlen tensor to unbind. dim (int): Dimension to unbind. """ if dim == 0: return [input[i] for i in range(len(input))] else: feats = input.feats.unbind(dim) return [input.replace(f) for f in feats] class SparseTensor(VarLenTensor): """ Sparse tensor with support for both torchsparse and spconv backends. Parameters: - feats (torch.Tensor): Features of the sparse tensor. - coords (torch.Tensor): Coordinates of the sparse tensor. - shape (torch.Size): Shape of the sparse tensor. - layout (List[slice]): Layout of the sparse tensor for each batch - data (SparseTensorData): Sparse tensor data used for convolusion NOTE: - Data corresponding to a same batch should be contiguous. - Coords should be in [0, 1023] """ SparseTensorData = None @overload def __init__(self, feats: torch.Tensor, coords: torch.Tensor, shape: Optional[torch.Size] = None, **kwargs): ... @overload def __init__(self, data, shape: Optional[torch.Size] = None, **kwargs): ... def __init__(self, *args, **kwargs): # Lazy import of sparse tensor backend if self.SparseTensorData is None: import importlib if config.CONV == 'torchsparse': self.SparseTensorData = importlib.import_module('torchsparse').SparseTensor elif config.CONV == 'spconv': self.SparseTensorData = importlib.import_module('spconv.pytorch').SparseConvTensor method_id = 0 if len(args) != 0: method_id = 0 if isinstance(args[0], torch.Tensor) else 1 else: method_id = 1 if 'data' in kwargs else 0 if method_id == 0: feats, coords, shape = args + (None,) * (3 - len(args)) if 'feats' in kwargs: feats = kwargs['feats'] del kwargs['feats'] if 'coords' in kwargs: coords = kwargs['coords'] del kwargs['coords'] if 'shape' in kwargs: shape = kwargs['shape'] del kwargs['shape'] if config.CONV == 'torchsparse': self.data = self.SparseTensorData(feats, coords, **kwargs) elif config.CONV == 'spconv': spatial_shape = list(coords.max(0)[0] + 1) self.data = self.SparseTensorData(feats.reshape(feats.shape[0], -1), coords, spatial_shape[1:], spatial_shape[0], **kwargs) self.data._features = feats else: self.data = { 'feats': feats, 'coords': coords, } elif method_id == 1: data, shape = args + (None,) * (2 - len(args)) if 'data' in kwargs: data = kwargs['data'] del kwargs['data'] if 'shape' in kwargs: shape = kwargs['shape'] del kwargs['shape'] self.data = data self._shape = shape self._scale = kwargs.get('scale', (Fraction(1, 1), Fraction(1, 1), Fraction(1, 1))) self._spatial_cache = kwargs.get('spatial_cache', {}) if config.DEBUG: try: assert self.feats.shape[0] == self.coords.shape[0], f"Invalid feats shape: {self.feats.shape}, coords shape: {self.coords.shape}" assert self.shape == self.__cal_shape(self.feats, self.coords), f"Invalid shape: {self.shape}" assert self.layout == self.__cal_layout(self.coords, self.shape[0]), f"Invalid layout: {self.layout}" for i in range(self.shape[0]): assert torch.all(self.coords[self.layout[i], 0] == i), f"The data of batch {i} is not contiguous" except Exception as e: print('Debugging information:') print(f"- Shape: {self.shape}") print(f"- Layout: {self.layout}") print(f"- Scale: {self._scale}") print(f"- Coords: {self.coords}") raise e @staticmethod def from_tensor_list(feats_list: List[torch.Tensor], coords_list: List[torch.Tensor]) -> 'SparseTensor': """ Create a SparseTensor from a list of tensors. """ feats = torch.cat(feats_list, dim=0) coords = [] for i, coord in enumerate(coords_list): coord = torch.cat([torch.full_like(coord[:, :1], i), coord[:, 1:]], dim=1) coords.append(coord) coords = torch.cat(coords, dim=0) return SparseTensor(feats, coords) def to_tensor_list(self) -> Tuple[List[torch.Tensor], List[torch.Tensor]]: """ Convert a SparseTensor to list of tensors. """ feats_list = [] coords_list = [] for s in self.layout: feats_list.append(self.feats[s]) coords_list.append(self.coords[s]) return feats_list, coords_list def __len__(self) -> int: return len(self.layout) def __cal_shape(self, feats, coords): shape = [] shape.append(coords[:, 0].max().item() + 1) shape.extend([*feats.shape[1:]]) return torch.Size(shape) def __cal_layout(self, coords, batch_size): seq_len = torch.bincount(coords[:, 0], minlength=batch_size) offset = torch.cumsum(seq_len, dim=0) layout = [slice((offset[i] - seq_len[i]).item(), offset[i].item()) for i in range(batch_size)] return layout def __cal_spatial_shape(self, coords): return torch.Size((coords[:, 1:].max(0)[0] + 1).tolist()) @property def shape(self) -> torch.Size: if self._shape is None: self._shape = self.__cal_shape(self.feats, self.coords) return self._shape @property def layout(self) -> List[slice]: layout = self.get_spatial_cache('layout') if layout is None: layout = self.__cal_layout(self.coords, self.shape[0]) self.register_spatial_cache('layout', layout) return layout @property def spatial_shape(self) -> torch.Size: spatial_shape = self.get_spatial_cache('shape') if spatial_shape is None: spatial_shape = self.__cal_spatial_shape(self.coords) self.register_spatial_cache('shape', spatial_shape) return spatial_shape @property def feats(self) -> torch.Tensor: if config.CONV == 'torchsparse': return self.data.F elif config.CONV == 'spconv': return self.data.features else: return self.data['feats'] @feats.setter def feats(self, value: torch.Tensor): if config.CONV == 'torchsparse': self.data.F = value elif config.CONV == 'spconv': self.data.features = value else: self.data['feats'] = value @property def coords(self) -> torch.Tensor: if config.CONV == 'torchsparse': return self.data.C elif config.CONV == 'spconv': return self.data.indices else: return self.data['coords'] @coords.setter def coords(self, value: torch.Tensor): if config.CONV == 'torchsparse': self.data.C = value elif config.CONV == 'spconv': self.data.indices = value else: self.data['coords'] = value @property def dtype(self): return self.feats.dtype @property def device(self): return self.feats.device @property def seqlen(self) -> torch.LongTensor: seqlen = self.get_spatial_cache('seqlen') if seqlen is None: seqlen = torch.tensor([l.stop - l.start for l in self.layout], dtype=torch.long, device=self.device) self.register_spatial_cache('seqlen', seqlen) return seqlen @property def cum_seqlen(self) -> torch.LongTensor: cum_seqlen = self.get_spatial_cache('cum_seqlen') if cum_seqlen is None: cum_seqlen = torch.cat([ torch.tensor([0], dtype=torch.long, device=self.device), self.seqlen.cumsum(dim=0) ], dim=0) self.register_spatial_cache('cum_seqlen', cum_seqlen) return cum_seqlen @property def batch_boardcast_map(self) -> torch.LongTensor: """ Get the broadcast map for the varlen tensor. """ batch_boardcast_map = self.get_spatial_cache('batch_boardcast_map') if batch_boardcast_map is None: batch_boardcast_map = torch.repeat_interleave( torch.arange(len(self.layout), device=self.device), self.seqlen, ) self.register_spatial_cache('batch_boardcast_map', batch_boardcast_map) return batch_boardcast_map @overload def to(self, dtype: torch.dtype, *, non_blocking: bool = False, copy: bool = False) -> 'SparseTensor': ... @overload def to(self, device: Optional[Union[str, torch.device]] = None, dtype: Optional[torch.dtype] = None, *, non_blocking: bool = False, copy: bool = False) -> 'SparseTensor': ... def to(self, *args, **kwargs) -> 'SparseTensor': device = None dtype = None if len(args) == 2: device, dtype = args elif len(args) == 1: if isinstance(args[0], torch.dtype): dtype = args[0] else: device = args[0] if 'dtype' in kwargs: assert dtype is None, "to() received multiple values for argument 'dtype'" dtype = kwargs['dtype'] if 'device' in kwargs: assert device is None, "to() received multiple values for argument 'device'" device = kwargs['device'] non_blocking = kwargs.get('non_blocking', False) copy = kwargs.get('copy', False) new_feats = self.feats.to(device=device, dtype=dtype, non_blocking=non_blocking, copy=copy) new_coords = self.coords.to(device=device, non_blocking=non_blocking, copy=copy) return self.replace(new_feats, new_coords) def type(self, dtype): new_feats = self.feats.type(dtype) return self.replace(new_feats) def cpu(self) -> 'SparseTensor': new_feats = self.feats.cpu() new_coords = self.coords.cpu() return self.replace(new_feats, new_coords) def cuda(self) -> 'SparseTensor': new_feats = self.feats.cuda() new_coords = self.coords.cuda() return self.replace(new_feats, new_coords) def half(self) -> 'SparseTensor': new_feats = self.feats.half() return self.replace(new_feats) def float(self) -> 'SparseTensor': new_feats = self.feats.float() return self.replace(new_feats) def detach(self) -> 'SparseTensor': new_coords = self.coords.detach() new_feats = self.feats.detach() return self.replace(new_feats, new_coords) def reshape(self, *shape) -> 'SparseTensor': new_feats = self.feats.reshape(self.feats.shape[0], *shape) return self.replace(new_feats) def unbind(self, dim: int) -> List['SparseTensor']: return sparse_unbind(self, dim) def replace(self, feats: torch.Tensor, coords: Optional[torch.Tensor] = None) -> 'SparseTensor': if config.CONV == 'torchsparse': new_data = self.SparseTensorData( feats=feats, coords=self.data.coords if coords is None else coords, stride=self.data.stride, spatial_range=self.data.spatial_range, ) new_data._caches = self.data._caches elif config.CONV == 'spconv': new_data = self.SparseTensorData( self.data.features.reshape(self.data.features.shape[0], -1), self.data.indices, self.data.spatial_shape, self.data.batch_size, self.data.grid, self.data.voxel_num, self.data.indice_dict ) new_data._features = feats new_data.benchmark = self.data.benchmark new_data.benchmark_record = self.data.benchmark_record new_data.thrust_allocator = self.data.thrust_allocator new_data._timer = self.data._timer new_data.force_algo = self.data.force_algo new_data.int8_scale = self.data.int8_scale if coords is not None: new_data.indices = coords else: new_data = { 'feats': feats, 'coords': self.data['coords'] if coords is None else coords, } new_tensor = SparseTensor( new_data, shape=torch.Size([self._shape[0]] + list(feats.shape[1:])) if self._shape is not None else None, scale=self._scale, spatial_cache=self._spatial_cache ) return new_tensor def to_dense(self) -> torch.Tensor: if config.CONV == 'torchsparse': return self.data.dense() elif config.CONV == 'spconv': return self.data.dense() else: spatial_shape = self.spatial_shape ret = torch.zeros(*self.shape, *spatial_shape, dtype=self.dtype, device=self.device) idx = [self.coords[:, 0], slice(None)] + self.coords[:, 1:].unbind(1) ret[tuple(idx)] = self.feats return ret @staticmethod def full(aabb, dim, value, dtype=torch.float32, device=None) -> 'SparseTensor': N, C = dim x = torch.arange(aabb[0], aabb[3] + 1) y = torch.arange(aabb[1], aabb[4] + 1) z = torch.arange(aabb[2], aabb[5] + 1) coords = torch.stack(torch.meshgrid(x, y, z, indexing='ij'), dim=-1).reshape(-1, 3) coords = torch.cat([ torch.arange(N).view(-1, 1).repeat(1, coords.shape[0]).view(-1, 1), coords.repeat(N, 1), ], dim=1).to(dtype=torch.int32, device=device) feats = torch.full((coords.shape[0], C), value, dtype=dtype, device=device) return SparseTensor(feats=feats, coords=coords) def __merge_sparse_cache(self, other: 'SparseTensor') -> dict: new_cache = {} for k in set(list(self._spatial_cache.keys()) + list(other._spatial_cache.keys())): if k in self._spatial_cache: new_cache[k] = self._spatial_cache[k] if k in other._spatial_cache: if k not in new_cache: new_cache[k] = other._spatial_cache[k] else: new_cache[k].update(other._spatial_cache[k]) return new_cache def __elemwise__(self, other: Union[torch.Tensor, VarLenTensor], op: callable) -> 'SparseTensor': if isinstance(other, torch.Tensor): try: other = torch.broadcast_to(other, self.shape) other = other[self.batch_boardcast_map] except: pass if isinstance(other, VarLenTensor): other = other.feats new_feats = op(self.feats, other) new_tensor = self.replace(new_feats) if isinstance(other, SparseTensor): new_tensor._spatial_cache = self.__merge_sparse_cache(other) return new_tensor def __getitem__(self, idx): if isinstance(idx, int): idx = [idx] elif isinstance(idx, slice): idx = range(*idx.indices(self.shape[0])) elif isinstance(idx, list): assert all(isinstance(i, int) for i in idx), f"Only integer indices are supported: {idx}" elif isinstance(idx, torch.Tensor): if idx.dtype == torch.bool: assert idx.shape == (self.shape[0],), f"Invalid index shape: {idx.shape}" idx = idx.nonzero().squeeze(1) elif idx.dtype in [torch.int32, torch.int64]: assert len(idx.shape) == 1, f"Invalid index shape: {idx.shape}" else: raise ValueError(f"Unknown index type: {idx.dtype}") else: raise ValueError(f"Unknown index type: {type(idx)}") new_coords = [] new_feats = [] new_layout = [] new_shape = torch.Size([len(idx)] + list(self.shape[1:])) start = 0 for new_idx, old_idx in enumerate(idx): new_coords.append(self.coords[self.layout[old_idx]].clone()) new_coords[-1][:, 0] = new_idx new_feats.append(self.feats[self.layout[old_idx]]) new_layout.append(slice(start, start + len(new_coords[-1]))) start += len(new_coords[-1]) new_coords = torch.cat(new_coords, dim=0).contiguous() new_feats = torch.cat(new_feats, dim=0).contiguous() new_tensor = SparseTensor(feats=new_feats, coords=new_coords, shape=new_shape) new_tensor.register_spatial_cache('layout', new_layout) return new_tensor def clear_spatial_cache(self) -> None: """ Clear all spatial caches. """ self._spatial_cache = {} def register_spatial_cache(self, key, value) -> None: """ Register a spatial cache. The spatial cache can be any thing you want to cache. The registery and retrieval of the cache is based on current scale. """ scale_key = str(self._scale) if scale_key not in self._spatial_cache: self._spatial_cache[scale_key] = {} self._spatial_cache[scale_key][key] = value def get_spatial_cache(self, key=None): """ Get a spatial cache. """ scale_key = str(self._scale) cur_scale_cache = self._spatial_cache.get(scale_key, {}) if key is None: return cur_scale_cache return cur_scale_cache.get(key, None) def __repr__(self) -> str: return f"SparseTensor(shape={self.shape}, dtype={self.dtype}, device={self.device})" def sparse_cat(inputs: List[SparseTensor], dim: int = 0) -> SparseTensor: """ Concatenate a list of sparse tensors. Args: inputs (List[SparseTensor]): List of sparse tensors to concatenate. """ if dim == 0: start = 0 coords = [] for input in inputs: coords.append(input.coords.clone()) coords[-1][:, 0] += start start += input.shape[0] coords = torch.cat(coords, dim=0) feats = torch.cat([input.feats for input in inputs], dim=0) output = SparseTensor( coords=coords, feats=feats, ) else: feats = torch.cat([input.feats for input in inputs], dim=dim) output = inputs[0].replace(feats) return output def sparse_unbind(input: SparseTensor, dim: int) -> List[SparseTensor]: """ Unbind a sparse tensor along a dimension. Args: input (SparseTensor): Sparse tensor to unbind. dim (int): Dimension to unbind. """ if dim == 0: return [input[i] for i in range(input.shape[0])] else: feats = input.feats.unbind(dim) return [input.replace(f) for f in feats]