import torch import torch.nn as nn from ..modules import sparse as sp MIX_PRECISION_MODULES = ( nn.Conv1d, nn.Conv2d, nn.Conv3d, nn.ConvTranspose1d, nn.ConvTranspose2d, nn.ConvTranspose3d, nn.Linear, sp.SparseConv3d, sp.SparseInverseConv3d, sp.SparseLinear, ) def convert_module_to_f16(l): """ Convert primitive modules to float16. """ if isinstance(l, MIX_PRECISION_MODULES): for p in l.parameters(): p.data = p.data.half() def convert_module_to_f32(l): """ Convert primitive modules to float32, undoing convert_module_to_f16(). """ if isinstance(l, MIX_PRECISION_MODULES): for p in l.parameters(): p.data = p.data.float() def convert_module_to(l, dtype): """ Convert primitive modules to the given dtype. """ if isinstance(l, MIX_PRECISION_MODULES): for p in l.parameters(): p.data = p.data.to(dtype) def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def scale_module(module, scale): """ Scale the parameters of a module and return it. """ for p in module.parameters(): p.detach().mul_(scale) return module def modulate(x, shift, scale): return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) def manual_cast(tensor, dtype): """ Cast if autocast is not enabled. """ if not torch.is_autocast_enabled(): return tensor.type(dtype) return tensor def str_to_dtype(dtype_str: str): return { 'f16': torch.float16, 'fp16': torch.float16, 'float16': torch.float16, 'bf16': torch.bfloat16, 'bfloat16': torch.bfloat16, 'f32': torch.float32, 'fp32': torch.float32, 'float32': torch.float32, }[dtype_str]