File size: 6,534 Bytes
aae3ba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Utils for video processing, frame manipulation, and visualization.
import cv2
import numpy as np
from typing import List
import imageio

def rotate_frame(frame: np.ndarray) -> np.ndarray:
    """Rotate a frame 90 degrees clockwise."""
    return cv2.rotate(frame, cv2.ROTATE_90_CLOCKWISE)

def center_crop_image(frame: np.ndarray, crop_percent: float = 1.0) -> np.ndarray:
    """
    Center crop an image to a specified percentage of its original size.

    Args:
        frame (np.ndarray): Input image.
        crop_percent (float): Percentage of original size to crop to (0 < crop_percent <= 1).

    Returns:
        np.ndarray: Cropped image.
    """
    if crop_percent == 1.0:  
        return frame

    # Get original dimensions  
    original_height, original_width = frame.shape[:2]  
    
    # Calculate new dimensions  
    new_width = int(original_width * crop_percent)  
    new_height = int(original_height * crop_percent)  
    
    # Calculate top-left corner of the cropping box  
    start_x = (original_width - new_width) // 2  
    start_y = (original_height - new_height) // 2  
    
    # Perform the crop  
    cropped_frame = frame[start_y:start_y + new_height, start_x:start_x + new_width]  

    return cropped_frame

def read_video_frames(
    cap,
    start_frame: int = None,
    end_frame: int = None,
    interval: int = 1,
    rotate: bool = False,
    crop_percent: float = 1.0
    ) -> List[np.ndarray]:
    """
    Read frames from a video capture object with optional rotation and cropping.

    Args:
        cap: OpenCV VideoCapture object.
        start_frame (int): Starting frame index.
        end_frame (int): Ending frame index.
        interval (int): Frame interval for sampling.
        rotate (bool): Whether to rotate frames 90 degrees clockwise.
        crop_percent (float): Center crop percentage.

    Returns:
        List[np.ndarray]: List of frames.
    """
    frame_count = 0  
    frame_list = []

    # If a start frame is specified, move the video pointer
    if start_frame is not None:
        cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame) 
        frame_count += start_frame
    
    # If no end frame is specified, read until the end of the video
    if end_frame is None:
        end_frame = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

    # Read frames in a loop
    while frame_count < end_frame:  
        ret, frame = cap.read()  
        if not ret:  
            break  

        # Process frames at the specified interval
        if frame_count % interval == 0:

            # Optionally rotate the frame
            if rotate:
                frame = rotate_frame(frame)
            
            # Optionally center crop the frame
            frame = center_crop_image(frame, crop_percent=crop_percent)
            frame_list.append(frame) 

        frame_count += 1  

    return frame_list

def save_to_video(frames: List[np.ndarray], output_path: str, fps: int = 30):
    """
    Save a list of frames to a video file.

    Args:
        frames (List[np.ndarray]): List of frames.
        output_path (str): Output video path.
        fps (int): Frames per second.
    """
    imageio.mimsave(output_path, frames, fps=fps, codec='libx264')

def resize_frames_to_long_side(frames: List[np.ndarray], target_long_side: int) -> List[np.ndarray]:
    """
    Resize frames so the longer side matches the target size, preserving aspect ratio.

    Args:
        frames (List[np.ndarray]): List of frames.
        target_long_side (int): Desired length of the longer side.

    Returns:
        List[np.ndarray]: Resized frames.
    """

    # If target_long_side is None, return original frames without resizing
    if target_long_side is None:
        return frames
    
    resized_frames = []  
    # Loop over each frame
    for frame in frames:  
        height, width = frame.shape[:2]  
          
        # Determine the scaling factor and new dimensions  
        if width > height:  
            scale_factor = target_long_side / width  
        else:  
            scale_factor = target_long_side / height  
          
        new_width = int(width * scale_factor)  
        new_height = int(height * scale_factor)  
          
        # Resize the frame while maintaining the aspect ratio  
        resized_frame = cv2.resize(frame, (new_width, new_height), interpolation=cv2.INTER_AREA)  
        resized_frames.append(resized_frame)  
      
    return resized_frames  

def sample_frames_evenly(video_frames: List[np.ndarray], num_frames: int) -> List[np.ndarray]:
    """
    Sample frames evenly from a video sequence.

    Args:
        video_frames (List[np.ndarray]): List of frames.
        num_frames (int): Number of frames to sample.

    Returns:
        List[np.ndarray]: Sampled frames.
    """
    total = len(video_frames)
    if num_frames >= total:
        return video_frames.copy() 

    indices = np.linspace(0, total - 1, num=num_frames, dtype=int)
    return [video_frames[i] for i in indices]

def wrap_text(text: str, max_width: int, font, font_scale: float) -> List[str]:
    """  
    Wraps text to fit within a given width.  
    
    Args:  
        text (str): The text to wrap.  
        max_width (int): The maximum width in pixels.  
        font: The font to use.  
        font_scale (float): The scale of the font.  
    
    Returns:  
        List of lines of wrapped text.  
    """  
    words = text.split(' ')  
    lines = []  
    current_line = ''  
    
    for word in words:  
        test_line = current_line + word + ' '  
        # Measure the width of the line  
        size = cv2.getTextSize(test_line, font, font_scale, 1)[0]  
        if size[0] > max_width:  
            lines.append(current_line.strip())  
            current_line = word + ' '  
        else:  
            current_line = test_line  
    
    if current_line:  
        lines.append(current_line.strip())  
    
    return lines  

def add_overlay_text(frame: np.ndarray, caption: str) -> np.ndarray:
    """
    Add overlay text to a frame.

    Args:
        frame (np.ndarray): Input image.
        caption (str): Text to overlay.

    Returns:
        np.ndarray: Frame with text.
    """

    w = frame.shape[1]  # Width of the frame
    y0, dy = 30, 20  # Starting Y position and line height  
    for i, line in enumerate(wrap_text(caption, w, cv2.FONT_HERSHEY_SIMPLEX, 1.0)):  
        y = y0 + i * dy  
        cv2.putText(frame, line, (10, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 255), 2)  
    return frame