File size: 19,470 Bytes
aae3ba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import os
import cv2
import numpy as np
import torch
import matplotlib as mpl

from .video_utils import (
    read_video_frames,
    resize_frames_to_long_side,
    save_to_video,
    add_overlay_text
)
from typing import Optional, List, Tuple
from libs.models.mano_wrapper import MANO
from .render_utils import Renderer

class Config:
    """
    Configuration class for file paths, parameters, and visual settings.
    Paths are initialized with default values but can be overridden by arguments.
    """
    def __init__(self, args=None):
        # --- Paths (Overridden by CLI arguments) ---
        self.VIDEO_ROOT = getattr(args, 'video_root', 'data/examples/videos')
        self.LABEL_ROOT = getattr(args, 'label_root', 'data/examples/annotations')
        self.SAVE_PATH = getattr(args, 'save_path', 'data/examples/visualize')
        self.MANO_MODEL_PATH = getattr(args, 'mano_model_path', './weights/mano')

        # --- Fixed Parameters ---
        self.RENDER_SIZE_LONG_SIDE = 480
        self.FPS = 15

        # --- Fixed Colors and CMAPs ---
        self.LEFT_CMAP = "inferno"
        self.RIGHT_CMAP = "inferno"

        # Base colors for the hands
        self.LEFT_COLOR = np.array([0.6594, 0.6259, 0.7451])
        self.RIGHT_COLOR = np.array([0.4078, 0.4980, 0.7451])


class HandVisualizer:
    """
    Main class for loading data, configuring the renderer, and visualizing
    the hand episode, including mesh and trajectory.
    """
    def __init__(self, config: Config, render_gradual_traj: bool = False):
        self.config = config
        self.render_gradual_traj = render_gradual_traj
        self.all_modes = ['cam', 'first']
        if self.render_gradual_traj:
            self.all_modes = ['cam', 'full', 'first']

        # Initialize MANO and faces (use right hand model for both hands by default)
        self.mano = MANO(model_path=self.config.MANO_MODEL_PATH).cuda()
        faces_right = torch.from_numpy(self.mano.faces).float().cuda()
        # MANO faces are defined for right hand, left hand faces need vertex order flip
        self.faces_left = faces_right[:, [0, 2, 1]]
        self.faces_right = faces_right

    def _render_hand_trajectory(self, video_frames, hand_traj_wordspace, hand_mask, extrinsics, renderer: Renderer, mode: str):
        """
        Renders hand mesh for one frame or hand trajectory across multiple frames,
        depending on the mode ('cam', 'first', 'full').
        """
        verts_left_worldspace, verts_right_worldspace = hand_traj_wordspace
        left_hand_mask, right_hand_mask = hand_mask
        R_w2c, t_w2c = extrinsics

        num_total_frames = len(video_frames)
        all_save_frames = []

        # Determine rendering parameters based on mode
        if mode == 'cam':
            # Renders only the current frame's mesh
            num_loop_frames = num_total_frames
            # Single color for all frames
            left_colors = self.config.LEFT_COLOR[np.newaxis, :].repeat(num_total_frames, axis=0)
            right_colors = self.config.RIGHT_COLOR[np.newaxis, :].repeat(num_total_frames, axis=0)
        elif mode == 'first':
            # Renders the full trajectory onto the first frame
            num_loop_frames = 1
            left_colors = self.config.LEFT_COLOR[np.newaxis, :].repeat(num_total_frames, axis=0)
            right_colors = self.config.RIGHT_COLOR[np.newaxis, :].repeat(num_total_frames, axis=0)
        elif mode == 'full':
            # Renders a gradual trajectory for each frame
            num_loop_frames = num_total_frames
            # Generate color sequence for trajectory
            left_colors, right_colors = generate_hand_colors(num_total_frames, self.config.LEFT_CMAP, self.config.RIGHT_CMAP)
        else:
            raise ValueError(f'Unknown rendering mode: {mode}')

        for current_frame_idx in range(num_loop_frames):

            if not mode == 'first':
                print(f'Processing frame {current_frame_idx + 1}/{num_loop_frames}', end='\r')
                # Start with the base video frame (copied and normalized)
                curr_img_overlay = video_frames[current_frame_idx].copy().astype(np.float32) / 255.0

            # Calculate camera space vertices for all frames relative to the *current* camera pose
            R_w2c_cur = R_w2c[current_frame_idx]
            t_w2c_cur = t_w2c[current_frame_idx]

            # R_w2c_cur: (3, 3), t_w2c_cur: (3, 1). Need to broadcast to all frames (T)
            verts_left_camspace = (
                R_w2c_cur @ verts_left_worldspace.transpose(0, 2, 1) + t_w2c_cur
            ).transpose(0, 2, 1)
            verts_right_camspace = (
                R_w2c_cur @ verts_right_worldspace.transpose(0, 2, 1) + t_w2c_cur
            ).transpose(0, 2, 1)

            # Determine the segment of the trajectory to render for the current frame
            if mode == 'cam':
                # Render only the current frame's mesh (from index to index)
                start_traj_idx = current_frame_idx
                end_traj_idx = current_frame_idx + 1
                transparency = [1.0]
            elif mode == 'first':
                # Render full trajectory on frame 0 (index 0 to T)
                start_traj_idx = 0
                end_traj_idx = num_total_frames
                transparency = [1.0] * (end_traj_idx - start_traj_idx)
                # The loop only runs once for mode='first'
                if current_frame_idx > 0: continue
            elif mode == 'full':
                # Render gradual trajectory (from index to T)
                start_traj_idx = current_frame_idx
                end_traj_idx = num_total_frames
                # Gradual transparency for the trajectory: older points are more transparent
                transparency = np.linspace(0.4, 0.7, end_traj_idx - start_traj_idx)
            else:
                raise ValueError(f'Unknown rendering mode: {mode}')

            # Iterate over the trajectory segment
            for traj_idx, kk in enumerate(range(start_traj_idx, end_traj_idx)):

                if mode == 'first':
                    print(f'Processing frame {traj_idx + 1}/{num_total_frames}', end='\r')
                    curr_img_overlay = video_frames[current_frame_idx].copy().astype(np.float32)/255

                # Get hand data for the trajectory point 'kk'
                left_mask_k = left_hand_mask[kk]
                right_mask_k = right_hand_mask[kk]
                transp_k = transparency[traj_idx] if len(transparency) > traj_idx else 1.0

                left_verts_list, left_color_list, left_face_list = ([], [], [])
                right_verts_list, right_color_list, right_face_list = ([], [], [])

                if left_mask_k != 0:
                    left_verts_list = [torch.from_numpy(verts_left_camspace[kk]).float().cuda()]
                    # Repeat color for all 778 vertices
                    left_color_list = [torch.from_numpy(left_colors[kk]).float().unsqueeze(0).repeat(778, 1).cuda()]
                    left_face_list = [self.faces_left]

                if right_mask_k != 0:
                    right_verts_list = [torch.from_numpy(verts_right_camspace[kk]).float().cuda()]
                    right_color_list = [torch.from_numpy(right_colors[kk]).float().unsqueeze(0).repeat(778, 1).cuda()]
                    right_face_list = [self.faces_right]

                verts_list  = left_verts_list + right_verts_list
                faces_list  = left_face_list + right_face_list
                colors_list = left_color_list + right_color_list

                if verts_list:
                    # Render the mesh onto the current image
                    rend, mask = renderer.render(verts_list, faces_list, colors_list)
                    rend = rend[..., ::-1]  # RGB to BGR

                    color_mesh = rend.astype(np.float32) / 255.0
                    valid_mask = mask[..., None].astype(np.float32)

                    # Alpha blending for the mesh overlay:
                    # new_image = base * (1-mask) + mesh * mask * alpha + base * mask * (1-alpha)
                    curr_img_overlay = (
                        curr_img_overlay[:, :, :3] * (1 - valid_mask) +
                        color_mesh[:, :, :3] * valid_mask * transp_k +
                        curr_img_overlay[:, :, :3] * valid_mask * (1 - transp_k)
                    )
                if mode == 'first':
                    # Finalize image format and color space
                    final_frame = (curr_img_overlay * 255).astype(np.uint8)
                    final_frame = cv2.cvtColor(final_frame, cv2.COLOR_BGR2RGB)
                    all_save_frames.append(final_frame)
            
            if mode == 'cam' or mode == 'full':
                # Finalize image format and color space
                final_frame = (curr_img_overlay * 255).astype(np.uint8)
                final_frame = cv2.cvtColor(final_frame, cv2.COLOR_BGR2RGB)
                all_save_frames.append(final_frame)

        print(f'Finished rendering with mode: {mode}')
        return all_save_frames

    def process_episode(self, episode_name: str):
            """Loads data and orchestrates the visualization process for a single episode."""
            print(f'\nProcessing episode: {episode_name}')

            # 1. Load Paths and Check Existence
            dataset_name = episode_name.split('_')[0]
            ep_name = episode_name.split('_')[-2] + '_' + episode_name.split('_')[-1]
            video_name = episode_name.replace(f'{dataset_name}_', '').replace(f'_{ep_name}', '')
            video_path = os.path.join(self.config.VIDEO_ROOT, f'{video_name}.mp4')
            label_path = os.path.join(self.config.LABEL_ROOT, episode_name + '.npy')

            if not os.path.exists(label_path):
                print(f'Episode file {label_path} does not exist, skipping...')
                return

            # 2. Load Episode Data
            cap = cv2.VideoCapture(video_path)
            episode_info = np.load(label_path, allow_pickle=True).item()

            start_frame, end_frame = get_frame_interval(episode_info)
            R_w2c, t_w2c, normalized_intrinsics = get_camera_info(episode_info)
            caption_left, caption_right, hand_type = get_caption_info(episode_info)
            (verts_left_worldspace, left_hand_mask), (verts_right_worldspace, right_hand_mask) = \
                get_hand_labels(episode_info, self.mano)

            # 3. Read and Resize Video Frames
            video_frames = read_video_frames(cap, start_frame=start_frame, end_frame=end_frame, interval=1)
            resize_video_frames = resize_frames_to_long_side(video_frames, self.config.RENDER_SIZE_LONG_SIDE)
            H, W, _ = resize_video_frames[0].shape

            # 4. Initialize Renderer
            # Denormalize intrinsics based on the new frame size (W, H)
            intrinsics_denorm = normalized_intrinsics.copy()
            intrinsics_denorm[0] *= W
            intrinsics_denorm[1] *= H
            fx_exo = intrinsics_denorm[0, 0]
            fy_exo = intrinsics_denorm[1, 1]

            renderer = Renderer(W, H, (fx_exo, fy_exo), 'cuda')

            # 5. Render Hands for All Modes
            all_rendered_frames = []
            hand_traj_wordspace = (verts_left_worldspace, verts_right_worldspace)
            hand_mask = (left_hand_mask, right_hand_mask)
            extrinsics = (R_w2c, t_w2c)

            for mode in self.all_modes:
                save_frames = self._render_hand_trajectory(
                    resize_video_frames,
                    hand_traj_wordspace,
                    hand_mask,
                    extrinsics,
                    renderer,
                    mode=mode
                )
                all_rendered_frames.append(save_frames)

            # 6. Concatenate Frames and Add Captions
            final_save_frames = []
            num_frames = len(all_rendered_frames[0])

            # Select primary caption and extract opposite intervals for text lookup
            caption_primary = caption_right if hand_type == 'right' else caption_left
            caption_opposite = caption_left if hand_type == 'right' else caption_right
            opposite_intervals = [interval for _, interval in caption_opposite]

            for frame_idx in range(num_frames):
                # Concatenate frames from different modes side by side
                curr_img_overlay = np.concatenate(
                    [all_rendered_frames[mode_idx][frame_idx] for mode_idx in range(len(self.all_modes))],
                    axis=1
                )

                # Get caption for the primary hand (assumes primary caption only has one interval: [0])
                overlay_text_primary = caption_primary[0][0]

                # Get caption for the opposite hand based on the current frame index
                opposite_idx = find_caption_index(frame_idx, opposite_intervals)
                overlay_text_opposite = caption_opposite[opposite_idx][0] if opposite_idx is not None else 'None.'

                # Format and add the full overlay text
                overlay_text_full = generate_overlay_text(
                    overlay_text_primary, 
                    overlay_text_opposite, 
                    hand_type
                )
                add_overlay_text(curr_img_overlay, overlay_text_full)

                final_save_frames.append(curr_img_overlay)

            # 7. Save Final Video
            os.makedirs(self.config.SAVE_PATH, exist_ok=True)
            save_to_video(final_save_frames, f'{self.config.SAVE_PATH}/{episode_name}.mp4', fps=self.config.FPS)
            print(f'\nSuccessfully saved episode to {self.config.SAVE_PATH}/{episode_name}.mp4')

def find_caption_index(frame_index: int, intervals: list[tuple[int, int]]) -> Optional[int]:
    """Finds the interval index for a given frame index."""
    for idx, (start, end) in enumerate(intervals):
        if start <= frame_index <= end:
            return idx
    return None

def generate_hand_colors(T: int, left_cmap: str, right_cmap: str) -> tuple[np.ndarray, np.ndarray]:
    """
    Generates RGB color sequences for left and right hands over T frames.
    Returns colors in shape (T, 3), normalized 0-1, based on the specified colormaps.
    """
    t_norm = np.linspace(0, 0.95, T)
    left_colors = mpl.colormaps.get_cmap(left_cmap)(t_norm)[:, :3]
    right_colors = mpl.colormaps.get_cmap(right_cmap)(t_norm)[:, :3]
    return left_colors, right_colors

def get_frame_interval(episode_info: dict) -> tuple[int, int]:
    """Extracts start (inclusive) and end (exclusive) frame indices from episode info."""
    video_decode_frames = episode_info['video_decode_frame']
    start_frame = video_decode_frames[0]
    end_frame = video_decode_frames[-1] + 1
    return start_frame, end_frame

def normalize_camera_intrinsics(intrinsics: np.ndarray) -> np.ndarray:
    """
    Normalizes intrinsics based on the assumption that the principal point
    is at the image center (image size is 2*cx, 2*cy).
    """
    # Create a deep copy to avoid modifying the original array
    normalized_intrinsics = intrinsics.copy()
    normalized_intrinsics[0] /= normalized_intrinsics[0, 2] * 2
    normalized_intrinsics[1] /= normalized_intrinsics[1, 2] * 2
    return normalized_intrinsics

def get_camera_info(episode_info: dict) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
    """
    Extracts and normalizes camera intrinsics and extrinsics (world-to-cam).
    """
    extrinsics = episode_info['extrinsics']  # world2cam, shape (T, 4, 4)
    R_w2c = extrinsics[:, :3, :3].copy()
    t_w2c = extrinsics[:, :3, 3:].copy()  # shape (T, 3, 1)

    intrinsics = episode_info['intrinsics'].copy()
    normalized_intrinsics = normalize_camera_intrinsics(intrinsics)

    return R_w2c, t_w2c, normalized_intrinsics

def get_caption_info(episode_info: dict) -> tuple[list, list, str]:
    """
    Extracts and formats caption information for left and right hands.
    Adds a large interval if captions are empty to cover all frames.
    """
    hand_type = episode_info['anno_type']

    caption_right = episode_info['text'].get('right', [])
    caption_left = episode_info['text'].get('left', [])

    # Ensure captions are not empty to simplify downstream logic
    if not caption_right:
        caption_right = [['None.', (0, 10000)]] # large interval to cover all frames
    if not caption_left:
        caption_left = [['None.', (0, 10000)]]

    return caption_left, caption_right, hand_type

def get_hand_labels(episode_info: dict, mano: MANO):
    """
    Processes hand labels (pose, shape, translation, orientation) through the MANO model
    to obtain hand vertices in world space.
    """
    left_labels = episode_info['left']
    right_labels = episode_info['right']

    # --- Left Hand Processing ---
    left_hand_mask = left_labels['kept_frames']
    verts_left, _ = process_single_hand_labels(left_labels, left_hand_mask, mano, is_left=True)

    # --- Right Hand Processing ---
    right_hand_mask = right_labels['kept_frames']
    verts_right, _ = process_single_hand_labels(right_labels, right_hand_mask, mano)
    
    return (verts_left, left_hand_mask), (verts_right, right_hand_mask)

def process_single_hand_labels(hand_labels: dict, hand_mask: np.ndarray, mano: MANO, is_left: bool = False):
    """
    Helper function to compute MANO vertices for a single hand (left or right).
    """
    T = len(hand_mask)
    
    wrist_worldspace = hand_labels['transl_worldspace'].reshape(-1, 1, 3)
    wrist_orientation = hand_labels['global_orient_worldspace']
    beta = hand_labels['beta']
    pose = hand_labels['hand_pose']

    # Set pose to identity for masked frames (no hand present)
    identity = np.eye(3, dtype=pose.dtype)
    identity_block = np.broadcast_to(identity, (pose.shape[1], 3, 3))
    mask_indices = (hand_mask == 0)
    if np.any(mask_indices):
        pose[mask_indices] = identity_block
    # pose[hand_mask == 0] = identity_block

    beta_torch = torch.from_numpy(beta).float().cuda().unsqueeze(0).repeat(T, 1)
    pose_torch = torch.from_numpy(pose).float().cuda()
    
    # Placeholder for global orientation in MANO forward pass (will be applied manually later)
    global_rot_placeholder = torch.eye(3).float().unsqueeze(0).unsqueeze(0).cuda().repeat(T, 1, 1, 1)
    # MANO forward pass
    mano_out = mano(betas=beta_torch, hand_pose=pose_torch, global_orient=global_rot_placeholder)
    
    verts = mano_out.vertices.cpu().numpy()
    joints = mano_out.joints.cpu().numpy()

    # Apply the wrist orientation and translation to get world space coordinates
    # X-axis flip for the left hand.
    if is_left:
        verts[:, :, 0] *= -1
        joints[:, :, 0] *= -1

    # World space transformation: R @ (V - J0) + T
    # (T, 778, 3) = (T, 3, 3) @ (T, 3, 778) + (T, 3, 1) -> (T, 3, 778) -> (T, 778, 3)
    verts_worldspace = (
        wrist_orientation @ 
        (verts - joints[:, 0][:, None]).transpose(0, 2, 1)
    ).transpose(0, 2, 1) + wrist_worldspace

    return verts_worldspace, joints[:, 0]

def generate_overlay_text(overlay_text: str, overlay_text_opposite: str, hand_type: str) -> str:
    """Formats the caption string based on the primary hand type."""
    if hand_type == 'right':
        return f'Left: {overlay_text_opposite} | Right: {overlay_text}'
    else:
        return f'Left: {overlay_text} | Right: {overlay_text_opposite}'