File size: 22,519 Bytes
f986893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
"""

The GROVER models for pretraining, finetuning and fingerprint generating.

"""
from argparse import Namespace
from typing import List, Dict, Callable

import numpy as np
import torch
from torch import nn as nn

from grover.data import get_atom_fdim, get_bond_fdim
from grover.model.layers import Readout, GTransEncoder
from grover.util.nn_utils import get_activation_function


class GROVEREmbedding(nn.Module):
    """

    The GROVER Embedding class. It contains the GTransEncoder.

    This GTransEncoder can be replaced by any validate encoders.

    """

    def __init__(self, args: Namespace):
        """

        Initialize the GROVEREmbedding class.

        :param args:

        """
        super(GROVEREmbedding, self).__init__()
        self.embedding_output_type = args.embedding_output_type
        edge_dim = get_bond_fdim() + get_atom_fdim()
        node_dim = get_atom_fdim()
        if not hasattr(args, "backbone"):
            print("No backbone specified in args, use gtrans backbone.")
            args.backbone = "gtrans"
        if args.backbone == "gtrans" or args.backbone == "dualtrans":
            # dualtrans is the old name.
            self.encoders = GTransEncoder(args,
                                          hidden_size=args.hidden_size,
                                          edge_fdim=edge_dim,
                                          node_fdim=node_dim,
                                          dropout=args.dropout,
                                          activation=args.activation,
                                          num_mt_block=args.num_mt_block,
                                          num_attn_head=args.num_attn_head,
                                          atom_emb_output=self.embedding_output_type,
                                          bias=args.bias,
                                          cuda=args.cuda)

    def forward(self, graph_batch: List) -> Dict:
        """

        The forward function takes graph_batch as input and output a dict. The content of the dict is decided by

        self.embedding_output_type.



        :param graph_batch: the input graph batch generated by MolCollator.

        :return: a dict containing the embedding results.

        """
        output = self.encoders(graph_batch)
        if self.embedding_output_type == 'atom':
            return {"atom_from_atom": output[0], "atom_from_bond": output[1],
                    "bond_from_atom": None, "bond_from_bond": None}  # atom_from_atom, atom_from_bond
        elif self.embedding_output_type == 'bond':
            return {"atom_from_atom": None, "atom_from_bond": None,
                    "bond_from_atom": output[0], "bond_from_bond": output[1]}  # bond_from_atom, bond_from_bond
        elif self.embedding_output_type == "both":
            return {"atom_from_atom": output[0][0], "bond_from_atom": output[0][1],
                    "atom_from_bond": output[1][0], "bond_from_bond": output[1][1]}


class AtomVocabPrediction(nn.Module):
    """

    The atom-wise vocabulary prediction task. The atom vocabulary is constructed by the context.

    """
    def __init__(self, args, vocab_size, hidden_size=None):
        """

        :param args: the argument.

        :param vocab_size: the size of atom vocabulary.

        """
        super(AtomVocabPrediction, self).__init__()
        if not hidden_size:
            hidden_size = args.hidden_size
        self.linear = nn.Linear(hidden_size, vocab_size)
        self.logsoftmax = nn.LogSoftmax(dim=1)

    def forward(self, embeddings):
        """

        If embeddings is None: do not go through forward pass.

        :param embeddings: the atom embeddings, num_atom X fea_dim.

        :return: the prediction for each atom, num_atom X vocab_size.

        """
        if embeddings is None:
            return None
        return self.logsoftmax(self.linear(embeddings))


class BondVocabPrediction(nn.Module):
    """

    The bond-wise vocabulary prediction task. The bond vocabulary is constructed by the context.

    """
    def __init__(self, args, vocab_size, hidden_size=None):
        """

        Might need to use different architecture for bond vocab prediction.

        :param args:

        :param vocab_size: size of bond vocab.

        :param hidden_size: hidden size

        """
        super(BondVocabPrediction, self).__init__()
        if not hidden_size:
            hidden_size = args.hidden_size
        self.linear = nn.Linear(hidden_size, vocab_size)

        # ad-hoc here
        # If TWO_FC_4_BOND_VOCAB, we will use two distinct fc layer to deal with the bond and rev bond.
        self.TWO_FC_4_BOND_VOCAB = True
        if self.TWO_FC_4_BOND_VOCAB:
            self.linear_rev = nn.Linear(hidden_size, vocab_size)
        self.logsoftmax = nn.LogSoftmax(dim=1)

    def forward(self, embeddings):
        """

        If embeddings is None: do not go through forward pass.

        :param embeddings: the atom embeddings, num_bond X fea_dim.

        :return: the prediction for each atom, num_bond X vocab_size.

        """
        if embeddings is None:
            return None
        nm_bonds = embeddings.shape[0]  # must be an odd number
        # The bond and rev bond have odd and even ids respectively. See definition in molgraph.
        ids1 = [0] + list(range(1, nm_bonds, 2))
        ids2 = list(range(0, nm_bonds, 2))
        if self.TWO_FC_4_BOND_VOCAB:
            logits = self.linear(embeddings[ids1]) + self.linear_rev(embeddings[ids2])
        else:
            logits = self.linear(embeddings[ids1] + embeddings[ids2])

        return self.logsoftmax(logits)


class FunctionalGroupPrediction(nn.Module):
    """

    The functional group (semantic motifs) prediction task. This is a graph-level task.

    """
    def __init__(self, args, fg_size):
        """

        :param args: The arguments.

        :param fg_size: The size of semantic motifs.

        """
        super(FunctionalGroupPrediction, self).__init__()
        first_linear_dim = args.hidden_size
        hidden_size = args.hidden_size

        # In order to retain maximal information in the encoder, we use a simple readout function here.
        self.readout = Readout(rtype="mean", hidden_size=hidden_size)
        # We have four branches here. But the input with less than four branch is OK.
        # Since we use BCEWithLogitsLoss as the loss function, we only need to output logits here.
        self.linear_atom_from_atom = nn.Linear(first_linear_dim, fg_size)
        self.linear_atom_from_bond = nn.Linear(first_linear_dim, fg_size)
        self.linear_bond_from_atom = nn.Linear(first_linear_dim, fg_size)
        self.linear_bond_from_bond = nn.Linear(first_linear_dim, fg_size)

    def forward(self, embeddings: Dict, ascope: List, bscope: List) -> Dict:
        """

        The forward function of semantic motif prediction. It takes the node/bond embeddings, and the corresponding

        atom/bond scope as input and produce the prediction logits for different branches.

        :param embeddings: The input embeddings are organized as dict. The output of GROVEREmbedding.

        :param ascope: The scope for bonds. Please refer BatchMolGraph for more details.

        :param bscope: The scope for aotms. Please refer BatchMolGraph for more details.

        :return: a dict contains the predicted logits.

        """

        preds_atom_from_atom, preds_atom_from_bond, preds_bond_from_atom, preds_bond_from_bond = \
            None, None, None, None

        if embeddings["bond_from_atom"] is not None:
            preds_bond_from_atom = self.linear_bond_from_atom(self.readout(embeddings["bond_from_atom"], bscope))
        if embeddings["bond_from_bond"] is not None:
            preds_bond_from_bond = self.linear_bond_from_bond(self.readout(embeddings["bond_from_bond"], bscope))

        if embeddings["atom_from_atom"] is not None:
            preds_atom_from_atom = self.linear_atom_from_atom(self.readout(embeddings["atom_from_atom"], ascope))
        if embeddings["atom_from_bond"] is not None:
            preds_atom_from_bond = self.linear_atom_from_bond(self.readout(embeddings["atom_from_bond"], ascope))

        return {"atom_from_atom": preds_atom_from_atom, "atom_from_bond": preds_atom_from_bond,
                "bond_from_atom": preds_bond_from_atom, "bond_from_bond": preds_bond_from_bond}


class GroverTask(nn.Module):
    """

    The pretrain module.

    """
    def __init__(self, args, grover, atom_vocab_size, bond_vocab_size, fg_size):
        super(GroverTask, self).__init__()
        self.grover = grover
        self.av_task_atom = AtomVocabPrediction(args, atom_vocab_size)
        self.av_task_bond = AtomVocabPrediction(args, atom_vocab_size)
        self.bv_task_atom = BondVocabPrediction(args, bond_vocab_size)
        self.bv_task_bond = BondVocabPrediction(args, bond_vocab_size)

        self.fg_task_all = FunctionalGroupPrediction(args, fg_size)

        self.embedding_output_type = args.embedding_output_type

    @staticmethod
    def get_loss_func(args: Namespace) -> Callable:
        """

        The loss function generator.

        :param args: the arguments.

        :return: the loss fucntion for GroverTask.

        """
        def loss_func(preds, targets, dist_coff=args.dist_coff):
            """

            The loss function for GroverTask.

            :param preds: the predictions.

            :param targets: the targets.

            :param dist_coff: the default disagreement coefficient for the distances between different branches.

            :return:

            """
            av_task_loss = nn.NLLLoss(ignore_index=0, reduction="mean")  # same for av and bv

            fg_task_loss = nn.BCEWithLogitsLoss(reduction="mean")
            # av_task_dist_loss = nn.KLDivLoss(reduction="mean")
            av_task_dist_loss = nn.MSELoss(reduction="mean")
            fg_task_dist_loss = nn.MSELoss(reduction="mean")
            sigmoid = nn.Sigmoid()

            av_atom_loss, av_bond_loss, av_dist_loss = 0.0, 0.0, 0.0
            fg_atom_from_atom_loss, fg_atom_from_bond_loss, fg_atom_dist_loss = 0.0, 0.0, 0.0
            bv_atom_loss, bv_bond_loss, bv_dist_loss = 0.0, 0.0, 0.0
            fg_bond_from_atom_loss, fg_bond_from_bond_loss, fg_bond_dist_loss = 0.0, 0.0, 0.0

            if preds["av_task"][0] is not None:
                av_atom_loss = av_task_loss(preds['av_task'][0], targets["av_task"])
                fg_atom_from_atom_loss = fg_task_loss(preds["fg_task"]["atom_from_atom"], targets["fg_task"])

            if preds["av_task"][1] is not None:
                av_bond_loss = av_task_loss(preds['av_task'][1], targets["av_task"])
                fg_atom_from_bond_loss = fg_task_loss(preds["fg_task"]["atom_from_bond"], targets["fg_task"])

            if preds["bv_task"][0] is not None:
                bv_atom_loss = av_task_loss(preds['bv_task'][0], targets["bv_task"])
                fg_bond_from_atom_loss = fg_task_loss(preds["fg_task"]["bond_from_atom"], targets["fg_task"])

            if preds["bv_task"][1] is not None:
                bv_bond_loss = av_task_loss(preds['bv_task'][1], targets["bv_task"])
                fg_bond_from_bond_loss = fg_task_loss(preds["fg_task"]["bond_from_bond"], targets["fg_task"])

            if preds["av_task"][0] is not None and preds["av_task"][1] is not None:
                av_dist_loss = av_task_dist_loss(preds['av_task'][0], preds['av_task'][1])
                fg_atom_dist_loss = fg_task_dist_loss(sigmoid(preds["fg_task"]["atom_from_atom"]),
                                                      sigmoid(preds["fg_task"]["atom_from_bond"]))

            if preds["bv_task"][0] is not None and preds["bv_task"][1] is not None:
                bv_dist_loss = av_task_dist_loss(preds['bv_task'][0], preds['bv_task'][1])
                fg_bond_dist_loss = fg_task_dist_loss(sigmoid(preds["fg_task"]["bond_from_atom"]),
                                                      sigmoid(preds["fg_task"]["bond_from_bond"]))

            av_loss = av_atom_loss + av_bond_loss
            bv_loss = bv_atom_loss + bv_bond_loss
            fg_atom_loss = fg_atom_from_atom_loss + fg_atom_from_bond_loss
            fg_bond_loss = fg_bond_from_atom_loss + fg_bond_from_bond_loss

            fg_loss = fg_atom_loss + fg_bond_loss
            fg_dist_loss = fg_atom_dist_loss + fg_bond_dist_loss

            # dist_loss = av_dist_loss + bv_dist_loss + fg_dist_loss
            # print("%.4f %.4f %.4f %.4f %.4f %.4f"%(av_atom_loss,
            #                                       av_bond_loss,
            #                                       fg_atom_loss,
            #                                       fg_bond_loss,
            #                                       av_dist_loss,
            #                                       fg_dist_loss))
            # return av_loss + fg_loss + dist_coff * dist_loss
            overall_loss = av_loss + bv_loss + fg_loss + dist_coff * av_dist_loss + \
                           dist_coff * bv_dist_loss + fg_dist_loss

            return overall_loss, av_loss, bv_loss, fg_loss, av_dist_loss, bv_dist_loss, fg_dist_loss

        return loss_func

    def forward(self, graph_batch: List):
        """

        The forward function.

        :param graph_batch:

        :return:

        """
        _, _, _, _, _, a_scope, b_scope, _ = graph_batch
        a_scope = a_scope.data.cpu().numpy().tolist()

        embeddings = self.grover(graph_batch)

        av_task_pred_atom = self.av_task_atom(
            embeddings["atom_from_atom"])  # if None: means not go through this fowward
        av_task_pred_bond = self.av_task_bond(embeddings["atom_from_bond"])

        bv_task_pred_atom = self.bv_task_atom(embeddings["bond_from_atom"])
        bv_task_pred_bond = self.bv_task_bond(embeddings["bond_from_bond"])

        fg_task_pred_all = self.fg_task_all(embeddings, a_scope, b_scope)

        return {"av_task": (av_task_pred_atom, av_task_pred_bond),
                "bv_task": (bv_task_pred_atom, bv_task_pred_bond),
                "fg_task": fg_task_pred_all}


class GroverFpGeneration(nn.Module):
    """

    GroverFpGeneration class.

    It loads the pre-trained model and produce the fingerprints for input molecules.

    """
    def __init__(self, args):
        """

        Init function.

        :param args: the arguments.

        """
        super(GroverFpGeneration, self).__init__()

        self.fingerprint_source = args.fingerprint_source
        self.iscuda = args.cuda

        self.grover = GROVEREmbedding(args)
        self.readout = Readout(rtype="mean", hidden_size=args.hidden_size)

    def forward(self, batch, features_batch):
        """

        The forward function.

        It takes graph batch and molecular feature batch as input and produce the fingerprints of this molecules.

        :param batch:

        :param features_batch:

        :return:

        """
        _, _, _, _, _, a_scope, b_scope, _ = batch

        output = self.grover(batch)
        # Share readout
        mol_atom_from_bond_output = self.readout(output["atom_from_bond"], a_scope)
        mol_atom_from_atom_output = self.readout(output["atom_from_atom"], a_scope)

        if self.fingerprint_source == "bond" or self.fingerprint_source == "both":
            mol_bond_from_atom_output = self.readout(output["bond_from_atom"], b_scope)
            mol_bond_from_bodd_output = self.readout(output["bond_from_bond"], b_scope)

        if features_batch[0] is not None:
            features_batch = torch.from_numpy(np.stack(features_batch)).float()
            if self.iscuda:
                features_batch = features_batch.cuda()
            features_batch = features_batch.to(output["atom_from_atom"])
            if len(features_batch.shape) == 1:
                features_batch = features_batch.view([1, features_batch.shape[0]])
        else:
            features_batch = None

        if self.fingerprint_source == "atom":
            fp = torch.cat([mol_atom_from_atom_output, mol_atom_from_bond_output], 1)
        elif self.fingerprint_source == "bond":
            fp = torch.cat([mol_bond_from_atom_output, mol_bond_from_bodd_output], 1)
        else:
            # the both case.
            fp = torch.cat([mol_atom_from_atom_output, mol_atom_from_bond_output,
                            mol_bond_from_atom_output, mol_bond_from_bodd_output], 1)
        if features_batch is not None:
            fp = torch.cat([fp, features_batch], 1)
        return fp


class GroverFinetuneTask(nn.Module):
    """

    The finetune

    """
    def __init__(self, args):
        super(GroverFinetuneTask, self).__init__()

        self.hidden_size = args.hidden_size
        self.iscuda = args.cuda

        self.grover = GROVEREmbedding(args)

        if args.self_attention:
            self.readout = Readout(rtype="self_attention", hidden_size=self.hidden_size,
                                   attn_hidden=args.attn_hidden,
                                   attn_out=args.attn_out)
        else:
            self.readout = Readout(rtype="mean", hidden_size=self.hidden_size)

        self.mol_atom_from_atom_ffn = self.create_ffn(args)
        self.mol_atom_from_bond_ffn = self.create_ffn(args)
        #self.ffn = nn.ModuleList()
        #self.ffn.append(self.mol_atom_from_atom_ffn)
        #self.ffn.append(self.mol_atom_from_bond_ffn)

        self.classification = args.dataset_type == 'classification'
        if self.classification:
            self.sigmoid = nn.Sigmoid()

    def create_ffn(self, args: Namespace):
        """

        Creates the feed-forward network for the model.



        :param args: Arguments.

        """
        # Note: args.features_dim is set according the real loaded features data
        if args.features_only:
            first_linear_dim = args.features_size + args.features_dim
        else:
            if args.self_attention:
                first_linear_dim = args.hidden_size * args.attn_out
                # TODO: Ad-hoc!
                # if args.use_input_features:
                first_linear_dim += args.features_dim
            else:
                first_linear_dim = args.hidden_size + args.features_dim

        dropout = nn.Dropout(args.dropout)
        activation = get_activation_function(args.activation)
        # TODO: ffn_hidden_size
        # Create FFN layers
        if args.ffn_num_layers == 1:
            ffn = [
                dropout,
                nn.Linear(first_linear_dim, args.output_size)
            ]
        else:
            ffn = [
                dropout,
                nn.Linear(first_linear_dim, args.ffn_hidden_size)
            ]
            for _ in range(args.ffn_num_layers - 2):
                ffn.extend([
                    activation,
                    dropout,
                    nn.Linear(args.ffn_hidden_size, args.ffn_hidden_size),
                ])
            ffn.extend([
                activation,
                dropout,
                nn.Linear(args.ffn_hidden_size, args.output_size),
            ])

        # Create FFN model
        return nn.Sequential(*ffn)

    @staticmethod
    def get_loss_func(args):
        def loss_func(preds, targets,

                      dt=args.dataset_type,

                      dist_coff=args.dist_coff):

            if dt == 'classification':
                pred_loss = nn.BCEWithLogitsLoss(reduction='none')
            elif dt == 'regression':
                pred_loss = nn.MSELoss(reduction='none')
            else:
                raise ValueError(f'Dataset type "{args.dataset_type}" not supported.')

            # print(type(preds))
            # TODO: Here, should we need to involve the model status? Using len(preds) is just a hack.
            if type(preds) is not tuple:
                # in eval mode.
                return pred_loss(preds, targets)

            # in train mode.
            dist_loss = nn.MSELoss(reduction='none')
            # dist_loss = nn.CosineSimilarity(dim=0)
            # print(pred_loss)

            dist = dist_loss(preds[0], preds[1])
            pred_loss1 = pred_loss(preds[0], targets)
            pred_loss2 = pred_loss(preds[1], targets)
            return pred_loss1 + pred_loss2 + dist_coff * dist

        return loss_func

    def forward(self, batch, features_batch):
        _, _, _, _, _, a_scope, _, _ = batch

        output = self.grover(batch)
        # Share readout
        mol_atom_from_bond_output = self.readout(output["atom_from_bond"], a_scope)
        mol_atom_from_atom_output = self.readout(output["atom_from_atom"], a_scope)

        if features_batch[0] is not None:
            features_batch = torch.from_numpy(np.stack(features_batch)).float()
            if self.iscuda:
                features_batch = features_batch.cuda()
            features_batch = features_batch.to(output["atom_from_atom"])
            if len(features_batch.shape) == 1:
                features_batch = features_batch.view([1, features_batch.shape[0]])
        else:
            features_batch = None


        if features_batch is not None:
            mol_atom_from_atom_output = torch.cat([mol_atom_from_atom_output, features_batch], 1)
            mol_atom_from_bond_output = torch.cat([mol_atom_from_bond_output, features_batch], 1)

        if self.training:
            atom_ffn_output = self.mol_atom_from_atom_ffn(mol_atom_from_atom_output)
            bond_ffn_output = self.mol_atom_from_bond_ffn(mol_atom_from_bond_output)
            return atom_ffn_output, bond_ffn_output
        else:
            atom_ffn_output = self.mol_atom_from_atom_ffn(mol_atom_from_atom_output)
            bond_ffn_output = self.mol_atom_from_bond_ffn(mol_atom_from_bond_output)
            if self.classification:
                atom_ffn_output = self.sigmoid(atom_ffn_output)
                bond_ffn_output = self.sigmoid(bond_ffn_output)
            output = (atom_ffn_output + bond_ffn_output) / 2

        return output