Spaces:
Running
Running
File size: 7,175 Bytes
b462700 844e617 b462700 4321600 b462700 5d037b9 b462700 511930c b462700 bc53087 b462700 05fda4a 4321600 b462700 16d40d7 511930c b462700 511930c b462700 511930c b462700 844e617 b462700 5d037b9 b462700 bc53087 b462700 ade9bc3 b462700 5d037b9 b462700 58220b6 4321600 511930c 0ec1374 b462700 5d037b9 4321600 5d037b9 4321600 5d037b9 4321600 5d037b9 b462700 844e617 b462700 ade9bc3 b462700 ade9bc3 511930c b462700 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
#pragma once
#include "llama.h"
#include <array>
// bump if necessary
#define LLAMA_MAX_LAYERS 512
#define LLAMA_MAX_EXPERTS 384 // Kimi-K2
enum llama_expert_gating_func_type {
LLAMA_EXPERT_GATING_FUNC_TYPE_NONE = 0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX = 1,
LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID = 2,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT = 3, // applied to the router weights instead of the logits
};
enum llama_swa_type {
LLAMA_SWA_TYPE_NONE = 0,
LLAMA_SWA_TYPE_STANDARD = 1,
LLAMA_SWA_TYPE_CHUNKED = 2,
};
struct llama_hparams_posnet {
uint32_t n_embd;
uint32_t n_layer;
};
struct llama_hparams_convnext {
uint32_t n_embd;
uint32_t n_layer;
};
struct llama_hparams {
bool vocab_only;
bool rope_finetuned;
bool use_par_res;
bool swin_norm;
uint32_t n_ctx_train; // context size the model was trained on
uint32_t n_embd;
uint32_t n_embd_features = 0;
uint32_t n_layer;
uint32_t n_rot;
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
uint32_t n_expert = 0;
uint32_t n_expert_used = 0;
uint32_t n_rel_attn_bkts = 0;
// note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
uint32_t n_embd_head_k_mla = 0;
uint32_t n_embd_head_v_mla = 0;
// for WavTokenizer
struct llama_hparams_posnet posnet;
struct llama_hparams_convnext convnext;
uint32_t n_shortconv_l_cache = 0;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
uint32_t n_layer_dense_lead = 0;
uint32_t n_lora_q = 0;
uint32_t n_lora_kv = 0;
uint32_t n_ff_exp = 0;
uint32_t n_ff_shexp = 0;
uint32_t n_expert_shared = 0;
uint32_t n_norm_groups = 0;
float expert_weights_scale = 0.0;
bool expert_weights_norm = false;
uint32_t expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_NONE;
uint32_t moe_every_n_layers = 0;
uint32_t nextn_predict_layers = 0;
float f_norm_eps;
float f_norm_rms_eps;
float f_norm_group_eps;
float f_attn_logit_softcapping = 50.0f;
float f_final_logit_softcapping = 30.0f;
// for RWKV
uint32_t rescale_every_n_layers = 0;
uint32_t time_mix_extra_dim = 0;
uint32_t time_decay_extra_dim = 0;
uint32_t wkv_head_size = 0;
uint32_t token_shift_count = 2;
uint32_t n_lora_decay = 0;
uint32_t n_lora_iclr = 0;
uint32_t n_lora_value_res_mix = 0;
uint32_t n_lora_gate = 0;
float rope_attn_factor = 1.0f;
float rope_freq_base_train;
float rope_freq_base_train_swa;
float rope_freq_scale_train;
float rope_freq_scale_train_swa;
uint32_t n_ctx_orig_yarn;
float rope_yarn_log_mul = 0.0f;
std::array<int, 4> rope_sections;
// Sliding Window Attention (SWA)
llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE;
// the size of the sliding window (0 - no SWA)
uint32_t n_swa = 0;
// if swa_layers[il] == true, then layer il is SWA
// if swa_layers[il] == false, then layer il is dense (i.e. non-SWA)
// by default, all layers are dense
std::array<bool, LLAMA_MAX_LAYERS> swa_layers;
// for State Space Models
uint32_t ssm_d_conv = 0;
uint32_t ssm_d_inner = 0;
uint32_t ssm_d_state = 0;
uint32_t ssm_dt_rank = 0;
uint32_t ssm_n_group = 0;
// for hybrid state space models
std::array<bool, LLAMA_MAX_LAYERS> recurrent_layer_arr;
bool ssm_dt_b_c_rms = false;
float f_clamp_kqv = 0.0f;
float f_max_alibi_bias = 0.0f;
float f_logit_scale = 0.0f;
// Additional scale factors (Granite/Granite MoE)
float f_residual_scale = 0.0f;
float f_embedding_scale = 0.0f;
float f_attention_scale = 0.0f;
bool causal_attn = true;
bool use_alibi = false;
bool attn_soft_cap = false;
bool use_kq_norm = true;
// for Classifiers
uint32_t n_cls_out = 1;
// llama4 smallthinker
uint32_t n_moe_layer_step = 0;
uint32_t n_no_rope_layer_step = 4;
uint32_t n_attn_temp_floor_scale = 8192;
float f_attn_temp_scale = 0.1;
// gemma3n altup
uint32_t n_altup = 4; // altup_num_inputs
uint32_t i_altup_act = 0; // altup_active_idx
uint32_t laurel_rank = 64;
uint32_t n_embd_altup = 256;
// needed by encoder-decoder models (e.g. T5, FLAN-T5)
// ref: https://github.com/ggerganov/llama.cpp/pull/8141
llama_token dec_start_token_id = LLAMA_TOKEN_NULL;
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
// this value n_pattern means that every nth layer is dense (i.e. non-SWA)
// dense_first means whether the pattern is start with a dense layer
// note that if n_pattern == 0, all layers are SWA
// if n_pattern == 1, all layers are dense
// example 1: n_pattern = 3, dense_first = false
// il == 0: swa
// il == 1: swa
// il == 2: dense
// il == 3: swa
// il == 4: swa
// il == 5: dense
// il == 6: swa
// etc ...
// example 2: n_pattern = 2, dense_first = true
// il == 0: dense
// il == 1: swa
// il == 2: dense
// il == 3: swa
// etc ...
void set_swa_pattern(uint32_t n_pattern, bool dense_first = false);
// return true if one of the layers is SWA
bool is_swa_any() const;
uint32_t n_head(uint32_t il = 0) const;
uint32_t n_head_kv(uint32_t il = 0) const;
uint32_t n_ff(uint32_t il = 0) const;
uint32_t n_gqa(uint32_t il = 0) const;
// dimension of key embeddings across all k-v heads
uint32_t n_embd_k_gqa(uint32_t il = 0) const;
// dimension of value embeddings across all k-v heads
uint32_t n_embd_v_gqa(uint32_t il = 0) const;
// true if any layer has a different n_embd_k_gqa/n_embd_v_gqa
bool is_n_embd_k_gqa_variable() const;
bool is_n_embd_v_gqa_variable() const;
// return the maximum n_embd_k_gqa/n_embd_v_gqa across all layers
uint32_t n_embd_k_gqa_max() const;
uint32_t n_embd_v_gqa_max() const;
// dimension of the rolling state embeddings
// corresponds to Mamba's conv_states size or RWKV's token_shift states size
uint32_t n_embd_r() const;
// dimension of the recurrent state embeddings
uint32_t n_embd_s() const;
// whether or not the given layer is recurrent (for hybrid models)
bool is_recurrent(uint32_t il) const;
uint32_t n_pos_per_embd() const;
bool is_swa(uint32_t il) const;
};
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|