File size: 7,175 Bytes
b462700
 
 
 
 
 
 
 
844e617
b462700
 
4321600
 
 
 
b462700
 
5d037b9
 
 
 
 
 
b462700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
511930c
 
 
 
b462700
 
 
 
bc53087
 
b462700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05fda4a
4321600
b462700
 
 
 
 
 
 
 
 
 
 
 
 
16d40d7
511930c
 
 
 
b462700
 
 
511930c
b462700
511930c
b462700
844e617
b462700
 
 
5d037b9
 
 
 
 
 
 
 
 
b462700
 
 
 
 
bc53087
b462700
ade9bc3
 
 
b462700
 
 
 
 
 
 
 
 
 
 
 
 
 
5d037b9
b462700
58220b6
 
 
4321600
511930c
 
 
 
 
0ec1374
 
 
 
 
 
b462700
 
 
 
 
 
 
 
5d037b9
4321600
5d037b9
 
4321600
5d037b9
 
 
 
 
 
 
 
4321600
 
 
 
 
 
 
5d037b9
 
 
 
b462700
 
 
 
 
 
 
 
 
 
 
 
 
 
844e617
 
 
 
 
 
 
 
b462700
 
ade9bc3
b462700
 
ade9bc3
 
 
 
 
 
511930c
 
b462700
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#pragma once

#include "llama.h"

#include <array>

// bump if necessary
#define LLAMA_MAX_LAYERS  512
#define LLAMA_MAX_EXPERTS 384  // Kimi-K2

enum llama_expert_gating_func_type {
    LLAMA_EXPERT_GATING_FUNC_TYPE_NONE           = 0,
    LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX        = 1,
    LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID        = 2,
    LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT = 3, // applied to the router weights instead of the logits
};

enum llama_swa_type {
    LLAMA_SWA_TYPE_NONE     = 0,
    LLAMA_SWA_TYPE_STANDARD = 1,
    LLAMA_SWA_TYPE_CHUNKED  = 2,
};

struct llama_hparams_posnet {
    uint32_t n_embd;
    uint32_t n_layer;
};

struct llama_hparams_convnext {
    uint32_t n_embd;
    uint32_t n_layer;
};

struct llama_hparams {
    bool vocab_only;
    bool rope_finetuned;
    bool use_par_res;
    bool swin_norm;

    uint32_t n_ctx_train; // context size the model was trained on
    uint32_t n_embd;
    uint32_t n_embd_features = 0;
    uint32_t n_layer;
    uint32_t n_rot;
    uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
    uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
    uint32_t n_expert = 0;
    uint32_t n_expert_used = 0;
    uint32_t n_rel_attn_bkts = 0;

    // note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
    uint32_t n_embd_head_k_mla = 0;
    uint32_t n_embd_head_v_mla = 0;

    // for WavTokenizer
    struct llama_hparams_posnet   posnet;
    struct llama_hparams_convnext convnext;

    uint32_t n_shortconv_l_cache  = 0;

    std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
    std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
    std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;

    uint32_t n_layer_dense_lead = 0;
    uint32_t n_lora_q           = 0;
    uint32_t n_lora_kv          = 0;
    uint32_t n_ff_exp           = 0;
    uint32_t n_ff_shexp         = 0;
    uint32_t n_expert_shared    = 0;
    uint32_t n_norm_groups      = 0;

    float    expert_weights_scale = 0.0;
    bool     expert_weights_norm  = false;
    uint32_t expert_gating_func   = LLAMA_EXPERT_GATING_FUNC_TYPE_NONE;
    uint32_t moe_every_n_layers   = 0;
    uint32_t nextn_predict_layers = 0;

    float f_norm_eps;
    float f_norm_rms_eps;
    float f_norm_group_eps;

    float f_attn_logit_softcapping  = 50.0f;
    float f_final_logit_softcapping = 30.0f;

    // for RWKV
    uint32_t rescale_every_n_layers = 0;
    uint32_t time_mix_extra_dim     = 0;
    uint32_t time_decay_extra_dim   = 0;
    uint32_t wkv_head_size          = 0;
    uint32_t token_shift_count      = 2;
    uint32_t n_lora_decay           = 0;
    uint32_t n_lora_iclr            = 0;
    uint32_t n_lora_value_res_mix   = 0;
    uint32_t n_lora_gate            = 0;

    float    rope_attn_factor = 1.0f;
    float    rope_freq_base_train;
    float    rope_freq_base_train_swa;
    float    rope_freq_scale_train;
    float    rope_freq_scale_train_swa;
    uint32_t n_ctx_orig_yarn;
    float    rope_yarn_log_mul = 0.0f;

    std::array<int, 4> rope_sections;

    // Sliding Window Attention (SWA)
    llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE;
    // the size of the sliding window (0 - no SWA)
    uint32_t n_swa = 0;
    // if swa_layers[il] == true, then layer il is SWA
    // if swa_layers[il] == false, then layer il is dense (i.e. non-SWA)
    // by default, all layers are dense
    std::array<bool, LLAMA_MAX_LAYERS> swa_layers;

    // for State Space Models
    uint32_t ssm_d_conv  = 0;
    uint32_t ssm_d_inner = 0;
    uint32_t ssm_d_state = 0;
    uint32_t ssm_dt_rank = 0;
    uint32_t ssm_n_group = 0;

    // for hybrid state space models
    std::array<bool, LLAMA_MAX_LAYERS> recurrent_layer_arr;

    bool ssm_dt_b_c_rms = false;

    float f_clamp_kqv      = 0.0f;
    float f_max_alibi_bias = 0.0f;
    float f_logit_scale    = 0.0f;

    // Additional scale factors (Granite/Granite MoE)
    float f_residual_scale  = 0.0f;
    float f_embedding_scale = 0.0f;
    float f_attention_scale = 0.0f;

    bool causal_attn   = true;
    bool use_alibi     = false;
    bool attn_soft_cap = false;
    bool use_kq_norm   = true;

    // for Classifiers
    uint32_t n_cls_out = 1;

    // llama4 smallthinker
    uint32_t n_moe_layer_step        = 0;
    uint32_t n_no_rope_layer_step    = 4;
    uint32_t n_attn_temp_floor_scale = 8192;
    float    f_attn_temp_scale       = 0.1;

    // gemma3n altup
    uint32_t n_altup      = 4; // altup_num_inputs
    uint32_t i_altup_act  = 0; // altup_active_idx
    uint32_t laurel_rank  = 64;
    uint32_t n_embd_altup = 256;

    // needed by encoder-decoder models (e.g. T5, FLAN-T5)
    // ref: https://github.com/ggerganov/llama.cpp/pull/8141
    llama_token dec_start_token_id = LLAMA_TOKEN_NULL;

    enum llama_pooling_type      pooling_type            = LLAMA_POOLING_TYPE_NONE;
    enum llama_rope_type         rope_type               = LLAMA_ROPE_TYPE_NONE;
    enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;

    // this value n_pattern means that every nth layer is dense (i.e. non-SWA)
    // dense_first means whether the pattern is start with a dense layer
    // note that if n_pattern == 0, all layers are SWA
    //           if n_pattern == 1, all layers are dense
    // example 1: n_pattern = 3, dense_first = false
    //   il == 0: swa
    //   il == 1: swa
    //   il == 2: dense
    //   il == 3: swa
    //   il == 4: swa
    //   il == 5: dense
    //   il == 6: swa
    //   etc ...
    // example 2: n_pattern = 2, dense_first = true
    //   il == 0: dense
    //   il == 1: swa
    //   il == 2: dense
    //   il == 3: swa
    //   etc ...
    void set_swa_pattern(uint32_t n_pattern, bool dense_first = false);

    // return true if one of the layers is SWA
    bool is_swa_any() const;

    uint32_t n_head(uint32_t il = 0) const;

    uint32_t n_head_kv(uint32_t il = 0) const;

    uint32_t n_ff(uint32_t il = 0) const;

    uint32_t n_gqa(uint32_t il = 0) const;

    // dimension of key embeddings across all k-v heads
    uint32_t n_embd_k_gqa(uint32_t il = 0) const;

    // dimension of value embeddings across all k-v heads
    uint32_t n_embd_v_gqa(uint32_t il = 0) const;

    // true if any layer has a different n_embd_k_gqa/n_embd_v_gqa
    bool is_n_embd_k_gqa_variable() const;
    bool is_n_embd_v_gqa_variable() const;

    // return the maximum n_embd_k_gqa/n_embd_v_gqa across all layers
    uint32_t n_embd_k_gqa_max() const;
    uint32_t n_embd_v_gqa_max() const;

    // dimension of the rolling state embeddings
    // corresponds to Mamba's conv_states size or RWKV's token_shift states size
    uint32_t n_embd_r() const;

    // dimension of the recurrent state embeddings
    uint32_t n_embd_s() const;

    // whether or not the given layer is recurrent (for hybrid models)
    bool is_recurrent(uint32_t il) const;

    uint32_t n_pos_per_embd() const;

    bool is_swa(uint32_t il) const;
};

static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");