Spaces:
Sleeping
Sleeping
update utils-1.5
Browse files
utils.py
CHANGED
|
@@ -14,12 +14,205 @@ from dataclasses import dataclass
|
|
| 14 |
# Import configurations
|
| 15 |
from config import IDX_STOCKS, IDX_MARKET_CONFIG
|
| 16 |
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# --- Utility Functions (Modified) ---
|
| 20 |
|
| 21 |
def retry_yfinance_request(func, max_retries=3, initial_delay=1):
|
| 22 |
-
# ... (
|
| 23 |
for attempt in range(max_retries):
|
| 24 |
try:
|
| 25 |
result = func()
|
|
@@ -39,7 +232,7 @@ def retry_yfinance_request(func, max_retries=3, initial_delay=1):
|
|
| 39 |
return None
|
| 40 |
|
| 41 |
def calculate_rsi(prices: pd.Series, period: int = 14) -> pd.Series:
|
| 42 |
-
# ... (
|
| 43 |
prices = prices.ffill().bfill()
|
| 44 |
delta = prices.diff()
|
| 45 |
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
|
|
@@ -48,7 +241,7 @@ def calculate_rsi(prices: pd.Series, period: int = 14) -> pd.Series:
|
|
| 48 |
return 100 - (100 / (1 + rs))
|
| 49 |
|
| 50 |
def calculate_macd(prices: pd.Series, fast: int = 12, slow: int = 26, signal: int = 9) -> Tuple[pd.Series, pd.Series]:
|
| 51 |
-
# ... (
|
| 52 |
prices = prices.ffill().bfill()
|
| 53 |
exp1 = prices.ewm(span=fast, adjust=False).mean()
|
| 54 |
exp2 = prices.ewm(span=slow, adjust=False).mean()
|
|
@@ -57,7 +250,7 @@ def calculate_macd(prices: pd.Series, fast: int = 12, slow: int = 26, signal: in
|
|
| 57 |
return macd, signal_line
|
| 58 |
|
| 59 |
def calculate_bollinger_bands(prices: pd.Series, period: int = 20, std_dev: int = 2) -> Tuple[pd.Series, pd.Series, pd.Series]:
|
| 60 |
-
# ... (
|
| 61 |
prices = prices.ffill().bfill()
|
| 62 |
middle_band = prices.rolling(window=period).mean()
|
| 63 |
std = prices.rolling(window=period).std()
|
|
@@ -66,7 +259,7 @@ def calculate_bollinger_bands(prices: pd.Series, period: int = 20, std_dev: int
|
|
| 66 |
return upper_band, middle_band, lower_band
|
| 67 |
|
| 68 |
def calculate_technical_indicators(df: pd.DataFrame) -> pd.DataFrame:
|
| 69 |
-
# ... (
|
| 70 |
try:
|
| 71 |
# Calculate moving averages
|
| 72 |
df['SMA_20'] = df['Close'].rolling(window=20, min_periods=1).mean()
|
|
@@ -97,11 +290,11 @@ def calculate_technical_indicators(df: pd.DataFrame) -> pd.DataFrame:
|
|
| 97 |
|
| 98 |
|
| 99 |
# --- Existing Utility Functions (Modified) ---
|
|
|
|
| 100 |
# Hapus fungsi get_idx_stocks
|
| 101 |
|
| 102 |
def fetch_stock_data(symbol, period_days):
|
| 103 |
-
|
| 104 |
-
# ... (Fungsi ini SAMA) ...
|
| 105 |
try:
|
| 106 |
end_date = datetime.now()
|
| 107 |
start_date = end_date - timedelta(days=period_days + 30)
|
|
@@ -134,7 +327,7 @@ def fetch_stock_data(symbol, period_days):
|
|
| 134 |
return None
|
| 135 |
|
| 136 |
def prepare_timesfm_data(stock_data, use_volume=False):
|
| 137 |
-
# ... (
|
| 138 |
data = stock_data['Close'].copy()
|
| 139 |
|
| 140 |
data = data.fillna(method='ffill').fillna(method='bfill')
|
|
@@ -147,7 +340,7 @@ def prepare_timesfm_data(stock_data, use_volume=False):
|
|
| 147 |
|
| 148 |
|
| 149 |
def create_forecast_plot(historical_data, forecast_dates, forecast_prices, symbol):
|
| 150 |
-
# ... (
|
| 151 |
fig = make_subplots(
|
| 152 |
rows=2, cols=1,
|
| 153 |
shared_xaxes=True,
|
|
@@ -241,7 +434,7 @@ def create_forecast_plot(historical_data, forecast_dates, forecast_prices, symbo
|
|
| 241 |
return fig
|
| 242 |
|
| 243 |
def get_stock_info(symbol):
|
| 244 |
-
|
| 245 |
try:
|
| 246 |
ticker = yf.Ticker(symbol)
|
| 247 |
info = retry_yfinance_request(lambda: ticker.info)
|
|
|
|
| 14 |
# Import configurations
|
| 15 |
from config import IDX_STOCKS, IDX_MARKET_CONFIG
|
| 16 |
|
| 17 |
+
|
| 18 |
+
# --- Market Status Manager ---
|
| 19 |
+
|
| 20 |
+
@dataclass
|
| 21 |
+
class MarketStatus:
|
| 22 |
+
"""Data class to hold market status information"""
|
| 23 |
+
is_open: bool
|
| 24 |
+
status_text: str
|
| 25 |
+
next_trading_day: str
|
| 26 |
+
last_updated: str
|
| 27 |
+
time_until_open: str
|
| 28 |
+
time_until_close: str
|
| 29 |
+
current_time_et: str
|
| 30 |
+
market_name: str
|
| 31 |
+
market_type: str
|
| 32 |
+
market_symbol: str
|
| 33 |
+
|
| 34 |
+
# Global configuration for market status updates
|
| 35 |
+
MARKET_STATUS_UPDATE_INTERVAL_MINUTES = 10 # Update every 10 minutes
|
| 36 |
+
|
| 37 |
+
class MarketStatusManager:
|
| 38 |
+
"""Manages market status with periodic updates for the IDX market"""
|
| 39 |
+
|
| 40 |
+
def __init__(self):
|
| 41 |
+
self.update_interval = MARKET_STATUS_UPDATE_INTERVAL_MINUTES * 60 # Convert to seconds
|
| 42 |
+
self._statuses = {}
|
| 43 |
+
self._lock = threading.Lock()
|
| 44 |
+
self._stop_event = threading.Event()
|
| 45 |
+
self._update_thread = None
|
| 46 |
+
self._start_update_thread()
|
| 47 |
+
|
| 48 |
+
def _get_current_market_status(self, market_key: str = 'IDX_STOCKS') -> MarketStatus:
|
| 49 |
+
"""Get current market status with detailed information for specific market"""
|
| 50 |
+
config = IDX_MARKET_CONFIG[market_key]
|
| 51 |
+
now = datetime.now(pytz.timezone('Asia/Jakarta')) # Use timezone-aware datetime for IDX
|
| 52 |
+
|
| 53 |
+
market_tz = pytz.timezone(config['timezone'])
|
| 54 |
+
market_time = now.astimezone(market_tz)
|
| 55 |
+
|
| 56 |
+
open_hour, open_minute = map(int, config['open_time'].split(':'))
|
| 57 |
+
close_hour, close_minute = map(int, config['close_time'].split(':'))
|
| 58 |
+
|
| 59 |
+
market_open_time = market_time.replace(hour=open_hour, minute=open_minute, second=0, microsecond=0)
|
| 60 |
+
market_close_time = market_time.replace(hour=close_hour, minute=close_minute, second=0, microsecond=0)
|
| 61 |
+
|
| 62 |
+
is_trading_day = market_time.weekday() in config['days']
|
| 63 |
+
|
| 64 |
+
if not is_trading_day:
|
| 65 |
+
is_open = False
|
| 66 |
+
status_text = f"{config['name']} is closed (Weekend)"
|
| 67 |
+
elif market_open_time <= market_time <= market_close_time:
|
| 68 |
+
is_open = True
|
| 69 |
+
status_text = f"{config['name']} is currently open"
|
| 70 |
+
else:
|
| 71 |
+
is_open = False
|
| 72 |
+
if market_time < market_open_time:
|
| 73 |
+
status_text = f"{config['name']} is closed (Before opening)"
|
| 74 |
+
else:
|
| 75 |
+
status_text = f"{config['name']} is closed (After closing)"
|
| 76 |
+
|
| 77 |
+
next_trading_day = self._get_next_trading_day(market_time, config['days'])
|
| 78 |
+
time_until_open = self._get_time_until_open(market_time, market_open_time, config)
|
| 79 |
+
time_until_close = self._get_time_until_close(market_time, market_close_time, config)
|
| 80 |
+
|
| 81 |
+
return MarketStatus(
|
| 82 |
+
is_open=is_open,
|
| 83 |
+
status_text=status_text,
|
| 84 |
+
next_trading_day=next_trading_day.strftime('%Y-%m-%d'),
|
| 85 |
+
last_updated=market_time.strftime('%Y-%m-%d %H:%M:%S %Z'),
|
| 86 |
+
time_until_open=time_until_open,
|
| 87 |
+
time_until_close=time_until_close,
|
| 88 |
+
current_time_et=market_time.strftime('%H:%M:%S %Z'),
|
| 89 |
+
market_name=config['name'],
|
| 90 |
+
market_type=config['type'],
|
| 91 |
+
market_symbol=config['symbol']
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
def _get_next_trading_day(self, current_time: datetime, trading_days: list) -> datetime:
|
| 95 |
+
"""Get the next trading day for a specific market"""
|
| 96 |
+
next_day = current_time.replace(hour=0, minute=0, second=0, microsecond=0) + timedelta(days=1)
|
| 97 |
+
|
| 98 |
+
while next_day.weekday() not in trading_days:
|
| 99 |
+
next_day += timedelta(days=1)
|
| 100 |
+
|
| 101 |
+
return next_day
|
| 102 |
+
|
| 103 |
+
def _get_time_until_open(self, current_time: datetime, market_open_time: datetime, config: dict) -> str:
|
| 104 |
+
"""Calculate time until market opens"""
|
| 105 |
+
if current_time.weekday() not in config['days']:
|
| 106 |
+
days_until_next = 1
|
| 107 |
+
while (current_time + timedelta(days=days_until_next)).weekday() not in config['days']:
|
| 108 |
+
days_until_next += 1
|
| 109 |
+
|
| 110 |
+
next_trading_day = current_time.replace(hour=0, minute=0, second=0, microsecond=0) + timedelta(days=days_until_next)
|
| 111 |
+
next_open = next_trading_day.replace(
|
| 112 |
+
hour=int(config['open_time'].split(':')[0]),
|
| 113 |
+
minute=int(config['open_time'].split(':')[1]),
|
| 114 |
+
second=0, microsecond=0
|
| 115 |
+
)
|
| 116 |
+
time_diff = next_open - current_time
|
| 117 |
+
else:
|
| 118 |
+
if current_time < market_open_time:
|
| 119 |
+
time_diff = market_open_time - current_time
|
| 120 |
+
else:
|
| 121 |
+
days_until_next = 1
|
| 122 |
+
while (current_time + timedelta(days=days_until_next)).weekday() not in config['days']:
|
| 123 |
+
days_until_next += 1
|
| 124 |
+
|
| 125 |
+
next_trading_day = current_time.replace(hour=0, minute=0, second=0, microsecond=0) + timedelta(days=days_until_next)
|
| 126 |
+
next_open = next_trading_day.replace(
|
| 127 |
+
hour=int(config['open_time'].split(':')[0]),
|
| 128 |
+
minute=int(config['open_time'].split(':')[1]),
|
| 129 |
+
second=0, microsecond=0
|
| 130 |
+
)
|
| 131 |
+
time_diff = next_open - current_time
|
| 132 |
+
|
| 133 |
+
return self._format_time_delta(time_diff)
|
| 134 |
+
|
| 135 |
+
def _get_time_until_close(self, current_time: datetime, market_close_time: datetime, config: dict) -> str:
|
| 136 |
+
"""Calculate time until market closes"""
|
| 137 |
+
if current_time.weekday() not in config['days']:
|
| 138 |
+
return "N/A (Weekend)"
|
| 139 |
+
|
| 140 |
+
if current_time < market_close_time:
|
| 141 |
+
time_diff = market_close_time - current_time
|
| 142 |
+
return self._format_time_delta(time_diff)
|
| 143 |
+
else:
|
| 144 |
+
return "Market closed for today"
|
| 145 |
+
|
| 146 |
+
def _format_time_delta(self, time_diff: timedelta) -> str:
|
| 147 |
+
"""Format timedelta into human-readable string"""
|
| 148 |
+
total_seconds = int(time_diff.total_seconds())
|
| 149 |
+
if total_seconds < 0:
|
| 150 |
+
return "N/A"
|
| 151 |
+
|
| 152 |
+
days = total_seconds // 86400
|
| 153 |
+
hours = (total_seconds % 86400) // 3600
|
| 154 |
+
minutes = (total_seconds % 3600) // 60
|
| 155 |
+
|
| 156 |
+
if days > 0:
|
| 157 |
+
return f"{days}d {hours}h {minutes}m"
|
| 158 |
+
elif hours > 0:
|
| 159 |
+
return f"{hours}h {minutes}m"
|
| 160 |
+
else:
|
| 161 |
+
return f"{minutes}m"
|
| 162 |
+
|
| 163 |
+
def _update_loop(self):
|
| 164 |
+
"""Background thread loop for updating market status"""
|
| 165 |
+
while not self._stop_event.is_set():
|
| 166 |
+
try:
|
| 167 |
+
new_statuses = {}
|
| 168 |
+
market_key = 'IDX_STOCKS'
|
| 169 |
+
new_statuses[market_key] = self._get_current_market_status(market_key)
|
| 170 |
+
|
| 171 |
+
with self._lock:
|
| 172 |
+
self._statuses = new_statuses
|
| 173 |
+
time.sleep(self.update_interval)
|
| 174 |
+
except Exception as e:
|
| 175 |
+
print(f"Error updating market status: {str(e)}")
|
| 176 |
+
time.sleep(60)
|
| 177 |
+
|
| 178 |
+
def _start_update_thread(self):
|
| 179 |
+
"""Start the background update thread"""
|
| 180 |
+
if self._update_thread is None or not self._update_thread.is_alive():
|
| 181 |
+
self._stop_event.clear()
|
| 182 |
+
self._update_thread = threading.Thread(target=self._update_loop, daemon=True)
|
| 183 |
+
self._update_thread.start()
|
| 184 |
+
|
| 185 |
+
def get_status(self, market_key: str = 'IDX_STOCKS') -> MarketStatus:
|
| 186 |
+
"""Get current market status (thread-safe)"""
|
| 187 |
+
with self._lock:
|
| 188 |
+
if market_key not in self._statuses:
|
| 189 |
+
self._statuses[market_key] = self._get_current_market_status(market_key)
|
| 190 |
+
return self._statuses[market_key]
|
| 191 |
+
|
| 192 |
+
def stop(self):
|
| 193 |
+
"""Stop the update thread"""
|
| 194 |
+
self._stop_event.set()
|
| 195 |
+
if self._update_thread and self._update_thread.is_alive():
|
| 196 |
+
self._update_thread.join(timeout=5)
|
| 197 |
+
|
| 198 |
+
# --- LAZY INITIALIZATION FIX ---
|
| 199 |
+
_market_status_manager_instance = None
|
| 200 |
+
|
| 201 |
+
def get_market_manager():
|
| 202 |
+
"""Returns the singleton MarketStatusManager instance, initializing it if necessary."""
|
| 203 |
+
global _market_status_manager_instance
|
| 204 |
+
if _market_status_manager_instance is None:
|
| 205 |
+
_market_status_manager_instance = MarketStatusManager()
|
| 206 |
+
return _market_status_manager_instance
|
| 207 |
+
|
| 208 |
+
# Hapus baris lama: market_status_manager = MarketStatusManager()
|
| 209 |
+
# --- LAZY INITIALIZATION FIX ---
|
| 210 |
+
|
| 211 |
|
| 212 |
# --- Utility Functions (Modified) ---
|
| 213 |
|
| 214 |
def retry_yfinance_request(func, max_retries=3, initial_delay=1):
|
| 215 |
+
# ... (SAMA) ...
|
| 216 |
for attempt in range(max_retries):
|
| 217 |
try:
|
| 218 |
result = func()
|
|
|
|
| 232 |
return None
|
| 233 |
|
| 234 |
def calculate_rsi(prices: pd.Series, period: int = 14) -> pd.Series:
|
| 235 |
+
# ... (SAMA) ...
|
| 236 |
prices = prices.ffill().bfill()
|
| 237 |
delta = prices.diff()
|
| 238 |
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
|
|
|
|
| 241 |
return 100 - (100 / (1 + rs))
|
| 242 |
|
| 243 |
def calculate_macd(prices: pd.Series, fast: int = 12, slow: int = 26, signal: int = 9) -> Tuple[pd.Series, pd.Series]:
|
| 244 |
+
# ... (SAMA) ...
|
| 245 |
prices = prices.ffill().bfill()
|
| 246 |
exp1 = prices.ewm(span=fast, adjust=False).mean()
|
| 247 |
exp2 = prices.ewm(span=slow, adjust=False).mean()
|
|
|
|
| 250 |
return macd, signal_line
|
| 251 |
|
| 252 |
def calculate_bollinger_bands(prices: pd.Series, period: int = 20, std_dev: int = 2) -> Tuple[pd.Series, pd.Series, pd.Series]:
|
| 253 |
+
# ... (SAMA) ...
|
| 254 |
prices = prices.ffill().bfill()
|
| 255 |
middle_band = prices.rolling(window=period).mean()
|
| 256 |
std = prices.rolling(window=period).std()
|
|
|
|
| 259 |
return upper_band, middle_band, lower_band
|
| 260 |
|
| 261 |
def calculate_technical_indicators(df: pd.DataFrame) -> pd.DataFrame:
|
| 262 |
+
# ... (SAMA) ...
|
| 263 |
try:
|
| 264 |
# Calculate moving averages
|
| 265 |
df['SMA_20'] = df['Close'].rolling(window=20, min_periods=1).mean()
|
|
|
|
| 290 |
|
| 291 |
|
| 292 |
# --- Existing Utility Functions (Modified) ---
|
| 293 |
+
|
| 294 |
# Hapus fungsi get_idx_stocks
|
| 295 |
|
| 296 |
def fetch_stock_data(symbol, period_days):
|
| 297 |
+
# ... (SAMA) ...
|
|
|
|
| 298 |
try:
|
| 299 |
end_date = datetime.now()
|
| 300 |
start_date = end_date - timedelta(days=period_days + 30)
|
|
|
|
| 327 |
return None
|
| 328 |
|
| 329 |
def prepare_timesfm_data(stock_data, use_volume=False):
|
| 330 |
+
# ... (SAMA) ...
|
| 331 |
data = stock_data['Close'].copy()
|
| 332 |
|
| 333 |
data = data.fillna(method='ffill').fillna(method='bfill')
|
|
|
|
| 340 |
|
| 341 |
|
| 342 |
def create_forecast_plot(historical_data, forecast_dates, forecast_prices, symbol):
|
| 343 |
+
# ... (SAMA) ...
|
| 344 |
fig = make_subplots(
|
| 345 |
rows=2, cols=1,
|
| 346 |
shared_xaxes=True,
|
|
|
|
| 434 |
return fig
|
| 435 |
|
| 436 |
def get_stock_info(symbol):
|
| 437 |
+
# ... (SAMA) ...
|
| 438 |
try:
|
| 439 |
ticker = yf.Ticker(symbol)
|
| 440 |
info = retry_yfinance_request(lambda: ticker.info)
|