Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -18,6 +18,29 @@ RANKER_URL = os.getenv("RANKER_URL")
|
|
| 18 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 19 |
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
class Retriever(EmbeddingRetriever):
|
| 22 |
def __init__(
|
| 23 |
self,
|
|
@@ -31,53 +54,51 @@ class Retriever(EmbeddingRetriever):
|
|
| 31 |
self.batch_size = batch_size
|
| 32 |
self.scale_score = scale_score
|
| 33 |
|
|
|
|
| 34 |
def embed_queries(self, queries: List[str]) -> np.ndarray:
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
json={"queries": queries, "inputs": ""},
|
| 38 |
-
headers={"Authorization": f"Bearer {HF_TOKEN}"},
|
| 39 |
-
)
|
| 40 |
|
| 41 |
-
|
|
|
|
| 42 |
|
|
|
|
| 43 |
return arrays
|
| 44 |
|
|
|
|
| 45 |
def embed_documents(self, documents: List[Document]) -> np.ndarray:
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
headers={"Authorization": f"Bearer {HF_TOKEN}"},
|
| 50 |
-
)
|
| 51 |
|
| 52 |
-
|
|
|
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
return arrays
|
| 55 |
|
| 56 |
|
| 57 |
class Ranker(BaseRanker):
|
|
|
|
| 58 |
def predict(
|
| 59 |
self, query: str, documents: List[Document], top_k: Optional[int] = None
|
| 60 |
) -> List[Document]:
|
| 61 |
documents = [d.to_dict() for d in documents]
|
| 62 |
for doc in documents:
|
| 63 |
-
doc["embedding"] =
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
json={
|
| 68 |
-
"query": query,
|
| 69 |
-
"documents": documents,
|
| 70 |
-
"top_k": top_k,
|
| 71 |
-
"inputs": "",
|
| 72 |
-
},
|
| 73 |
-
headers={"Authorization": f"Bearer {HF_TOKEN}"},
|
| 74 |
-
).json()
|
| 75 |
|
| 76 |
if "error" in response:
|
| 77 |
-
raise
|
| 78 |
|
| 79 |
return [Document.from_dict(d) for d in response]
|
| 80 |
|
|
|
|
| 81 |
def predict_batch(
|
| 82 |
self,
|
| 83 |
queries: List[str],
|
|
@@ -88,21 +109,19 @@ class Ranker(BaseRanker):
|
|
| 88 |
documents = [[d.to_dict() for d in docs] for docs in documents]
|
| 89 |
for docs in documents:
|
| 90 |
for doc in docs:
|
| 91 |
-
doc["embedding"] =
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
},
|
| 102 |
-
).json()
|
| 103 |
|
| 104 |
if "error" in response:
|
| 105 |
-
raise
|
| 106 |
|
| 107 |
return [[Document.from_dict(d) for d in docs] for docs in response]
|
| 108 |
|
|
@@ -125,12 +144,12 @@ if (
|
|
| 125 |
and os.path.exists("/data/faiss_index.json")
|
| 126 |
and os.path.exists("/data/faiss_index")
|
| 127 |
):
|
| 128 |
-
document_store = FAISSDocumentStore.load("
|
| 129 |
retriever = Retriever(
|
| 130 |
document_store=document_store, top_k=TOP_K, batch_size=BATCH_SIZE
|
| 131 |
)
|
| 132 |
document_store.update_embeddings(retriever=retriever)
|
| 133 |
-
document_store.save(index_path="
|
| 134 |
else:
|
| 135 |
try:
|
| 136 |
os.remove("/data/faiss_index")
|
|
|
|
| 18 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 19 |
|
| 20 |
|
| 21 |
+
|
| 22 |
+
def post(url, payload):
|
| 23 |
+
response = requests.post(
|
| 24 |
+
url,
|
| 25 |
+
json=payload,
|
| 26 |
+
headers={"Authorization": f"Bearer {HF_TOKEN}"},
|
| 27 |
+
)
|
| 28 |
+
return response.json()
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def method_timer(method):
|
| 32 |
+
def timed(self, *args, **kw):
|
| 33 |
+
start_time = perf_counter()
|
| 34 |
+
result = method(self, *args, **kw)
|
| 35 |
+
end_time = perf_counter()
|
| 36 |
+
print(
|
| 37 |
+
f"{self.__class__.__name__}.{method.__name__} took {end_time - start_time} seconds"
|
| 38 |
+
)
|
| 39 |
+
return result
|
| 40 |
+
|
| 41 |
+
return timed
|
| 42 |
+
|
| 43 |
+
|
| 44 |
class Retriever(EmbeddingRetriever):
|
| 45 |
def __init__(
|
| 46 |
self,
|
|
|
|
| 54 |
self.batch_size = batch_size
|
| 55 |
self.scale_score = scale_score
|
| 56 |
|
| 57 |
+
@method_timer
|
| 58 |
def embed_queries(self, queries: List[str]) -> np.ndarray:
|
| 59 |
+
payload = {"queries": queries, "inputs": ""}
|
| 60 |
+
response = post(RETRIEVER_URL, payload)
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
if "error" in response:
|
| 63 |
+
raise gr.Error(response["error"])
|
| 64 |
|
| 65 |
+
arrays = np.array(response)
|
| 66 |
return arrays
|
| 67 |
|
| 68 |
+
@method_timer
|
| 69 |
def embed_documents(self, documents: List[Document]) -> np.ndarray:
|
| 70 |
+
documents = [d.to_dict() for d in documents]
|
| 71 |
+
for doc in documents:
|
| 72 |
+
doc["embedding"] = None
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
payload = {"documents": documents, "inputs": ""}
|
| 75 |
+
response = post(RETRIEVER_URL, payload)
|
| 76 |
|
| 77 |
+
if "error" in response:
|
| 78 |
+
raise gr.Error(response["error"])
|
| 79 |
+
|
| 80 |
+
arrays = np.array(response)
|
| 81 |
return arrays
|
| 82 |
|
| 83 |
|
| 84 |
class Ranker(BaseRanker):
|
| 85 |
+
@method_timer
|
| 86 |
def predict(
|
| 87 |
self, query: str, documents: List[Document], top_k: Optional[int] = None
|
| 88 |
) -> List[Document]:
|
| 89 |
documents = [d.to_dict() for d in documents]
|
| 90 |
for doc in documents:
|
| 91 |
+
doc["embedding"] = None
|
| 92 |
+
|
| 93 |
+
payload = {"query": query, "documents": documents, "top_k": top_k, "inputs": ""}
|
| 94 |
+
response = post(RANKER_URL, payload)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
if "error" in response:
|
| 97 |
+
raise gr.Error(response["error"])
|
| 98 |
|
| 99 |
return [Document.from_dict(d) for d in response]
|
| 100 |
|
| 101 |
+
@method_timer
|
| 102 |
def predict_batch(
|
| 103 |
self,
|
| 104 |
queries: List[str],
|
|
|
|
| 109 |
documents = [[d.to_dict() for d in docs] for docs in documents]
|
| 110 |
for docs in documents:
|
| 111 |
for doc in docs:
|
| 112 |
+
doc["embedding"] = None
|
| 113 |
+
|
| 114 |
+
payload = {
|
| 115 |
+
"queries": queries,
|
| 116 |
+
"documents": documents,
|
| 117 |
+
"batch_size": batch_size,
|
| 118 |
+
"top_k": top_k,
|
| 119 |
+
"inputs": "",
|
| 120 |
+
}
|
| 121 |
+
response = post(RANKER_URL, payload)
|
|
|
|
|
|
|
| 122 |
|
| 123 |
if "error" in response:
|
| 124 |
+
raise gr.Error(response["error"])
|
| 125 |
|
| 126 |
return [[Document.from_dict(d) for d in docs] for docs in response]
|
| 127 |
|
|
|
|
| 144 |
and os.path.exists("/data/faiss_index.json")
|
| 145 |
and os.path.exists("/data/faiss_index")
|
| 146 |
):
|
| 147 |
+
document_store = FAISSDocumentStore.load("/data/faiss_index")
|
| 148 |
retriever = Retriever(
|
| 149 |
document_store=document_store, top_k=TOP_K, batch_size=BATCH_SIZE
|
| 150 |
)
|
| 151 |
document_store.update_embeddings(retriever=retriever)
|
| 152 |
+
document_store.save(index_path="/data/faiss_index")
|
| 153 |
else:
|
| 154 |
try:
|
| 155 |
os.remove("/data/faiss_index")
|